TCSS 422 A — Spring 2025 4/24/2025
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Introduction to Concurrency,
Linux Thread API

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2025]

apali22025 School of Engineering and Technology, University of Washington jll Tacoma

TEXT BOOK COUPON

= 15% off textbook code: HAPPYPLANET15
(through Friday Apr 25)

= https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-
arpaci-dusseau/operating-systems-three-easy-pieces-

hardcover-version-110/hardcover/product-

15gjeeky.html?q=three+easy+tpiecestoperatingtsystems&pag

e=1&pageSize=4

= With coupon textbook is only $33.79 + tax & shipping

TCSS422: Operating Systems [Spring 2025] | 182 |

Fymil| 22, 2007 School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L8.1

https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4

TCSS 422 A — Spring 2025 4/24/2025
School of Engineering and Technology

TCSS 422 - OFFICE HRS - SPRING 2025

= Office Hours plan for Spring (by Zoom):

= Monday 11:30am - 12:30p GTA Xinghan
= NEXT MONDAY: Wes

= Tuesday 11:30am - 12:30p GTA Xinghan

= Wednesday 11:00am - 12:00p Instructor Wes

= Friday 12:00pm - 1:00p Instructor Wes or GTA Xinghan
= THIS FRIDAY: Xinghan

® Instructor is available after class at 6pm in CP 229
each day

April 24, 2025

TCSS422: Operating Systems [Spring 2025] 183
School of Engineering and Technology, University of Washington - Tacoma :

TCSS 422 DISCORD SERVER

= Please join the TCSS 422 A - Spring 2025 Discord Server

= https://discord.gg/Jh5Cp8TMYn

= Under Edit Server Profile:
Please update your ‘Server Nickname’
to your real name or UW NET ID
THANK YOU

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma | 184

April 24, 2025

Slides by Wes J. Lloyd L8.2

https://discord.gg/Jh5Cp8TMYn

TCSS 422 A — Spring 2025 4/24/2025
School of Engineering and Technology

OBJECTIVES - 4/24

L= Ouestions from 4/22 J
® C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
m Assignment O - Due Fri Apr 25 AOE | Assignment 1 soon
B Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
® Chapter 9: Proportional Share Schedulers
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock

= pthread_cond_wait/_signal/_broadcast

TCSS422: Operating Systems [Spring 2025] 185
School of Engineering and Technology, University of Washington - Tacoma i

April 24, 2025

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
® Tuesday surveys: due by ~ Wed @ 11:59p

® Thursday surveys: due ~ Mon @ 11:59p
— TC55422 A » Assignments

Spring 2021
Home

Announcements

* Upcoming Assignments

Zoom
Syllabus TCSS 422 - Online Daily Feedback Survey - 4/1
** Available until Apr 5 at 11:59pm | Due Apr 5 at 10pm | -/1 pts
Dicruccinng P Y S WO o S0 | [e
TCSS422: Computer Operating Systems [Spring 2025] | 186 |

Fymil| 22, 2007 School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L8.3

TCSS 422 A — Spring 2025 4/24/2025
School of Engineering and Technology

TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions

[C | Question1 0.5 pts

On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:

el 2 3 4 5 6 7 9 10
Mostly Equal Mostly
Review To Me New and Review New to Me

O Question 2 0.5 pts

Please rate the pace of today’s class:

1 2 3 4 5 6 7 8 9 160

Slow Just Right Fast

TCSS422: Computer Operating Systems [Spring 2025]

Al 2, 2P School of Engineering and Technology, University of Washington - Tacoma L8.7

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (47 of 63 respondents - 74.6%) :

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.55 (T - previous 6.32)

= Please rate the pace of today’s class:
® 1-slow, 5-just right, 10-fast
= Average - 5.19 (T - previous 4.98)

TCSS422: Computer Operating Systems [Spring 2025] | 188 |

Fymil| 22, 2007 School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L8.4

TCSS 422 A — Spring 2025
School of Engineering and Technology

FEEDBACK FROM 4/22

= What would happen in an MLFQ scheduler if there are so many
jobs overall that the high priority queue never finishes giving
each job a time slice to execute before doing a priority boost?

m cycle time - total time shared among all jobs in a run queue
= time slice - time an individual job runs for

= From slide 6.50:
= no rule explicitly describes how the cycle time is divided among jobs
= No rule explicitly describes how time slice is determine

= Any MLFQ problem having this issue would require rules to

describe how this scenario is handled to allow a scheduling
graph to be drawn

April 24, 2025 TCSS422: Operating Systems [Spring 2025] | L8.9 |

School of Engineering and Technology, University of Washington - Tacoma

REVIEW: MLFQ RULE SUMMARY

® The refined set of MLFQ rules:

= Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
= Rule 2: If Priority(A) = Priority(B), A & B run in RR.

= Rule 3: When a job enters the system, it is placed at the
highest priority.

® Rule 4: Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the
CPU), its priority is reduced(i.e., it moves down on queue).

= Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 1810

April 24, 2025

10

Slides by Wes J. Lloyd

4/24/2025

L8.5

TCSS 422 A — Spring 2025
School of Engineering and Technology

ADDRESSING AN

OVERLOADED RUNQUEUE

= One possible way:
= Cycle time split evenly among jobs in runqueue with no min timeslice

= For MLFQ, all jobs in runqueue use full timeslice and have priority
reduced

= Not realistic in practice - timeslice becomes too small to be useful

= Another way:
= Specify min_time_slice (1 ms) per job, and total_cycle_time (10 ms)
= Job’s time_slice = total_cycle_time / jobs_in_runqueue
= Beyond 10 jobs, other jobs receive no runtime this cycle
= Jobs receiving no runtime are scheduled first in next cycle
= Jobs could pile up and experience multi-cycle delays
= More realistic

TCSS422: Operating Systems [Spring 2025]

April 2412025 School of Engineering and Technology, University of Washington - Tacoma

L8.11

11

OBJECTIVES - 4/24

B Questions from 4/22
= C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE|
m Assignment O - Due Fri Apr 25 AOE | Assignment 1 soon
® Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
® Chapter 9: Proportional Share Schedulers
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Race condition

= Critical section
® Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broadcast

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 1812

April 24, 2025

12

Slides by Wes J. Lloyd

4/24/2025

L8.6

TCSS 422 A — Spring 2025
School of Engineering and Technology

OBJECTIVES - 4/24

B Questions from 4/22
® C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
L= Assignment O - Due Fri Apr 25 AOE|| Assignment 1 soon
B Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
® Chapter 9: Proportional Share Schedulers
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broadcast

TCSS422: Operating Systems [Spring 2025]

April 2412025 School of Engineering and Technology, University of Washington - Tacoma

L8.13

13

ASSIGNMENT O - DUE FRI APR 25 AOE

® Due Friday April 25 AOE (Apr 26 @ 4:59am)
® Grace period: submission ok until Mon Apr 28 @ 4:59 AM
® Late submissions thru Wed Apr 30 @ 4:59am

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 1814

April 24, 2025

14

Slides by Wes J. Lloyd

4/24/2025

L8.7

TCSS 422 A — Spring 2025
School of Engineering and Technology

OBJECTIVES - 4/24

B Questions from 4/22
® C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assighment O - Due Fri Apr 25 AOE | |Assignment 1 soon |
B Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
® Chapter 9: Proportional Share Schedulers

= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction

= Race condition

= Critical section
= Chapter 27: Linux Thread API

= pthread_create/_join

= pthread_mutex_lock/_unlock/_trylock/_timelock

= pthread cond wait/ signal/ broadcast

TCSS422: Operating Systems [Spring 2025]

April 2412025 School of Engineering and Technology, University of Washington - Tacoma

L8.15

15

OBJECTIVES - 4/24

B Questions from 4/22
® C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
m Assignment O - Due Fri Apr 25 AOE | Assignment 1 soon
|- Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)|
® Chapter 9: Proportional Share Schedulers
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Race condition

= Critical section
® Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broadcast

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 1816

April 24, 2025

16

Slides by Wes J. Lloyd

4/24/2025

L8.8

TCSS 422 A — Spring 2025
School of Engineering and Technology

QuUIZ 1

m Active reading on Chapter 9 - Proportional Share Schedulers

®m Posted in Canvas
= Due Thursday May 1st AOE

= Link:

= https://faculty.washington.edu/wlloyd/courses/tcss422/quiz/
TCSS422 s2025_quiz_41.pdf

TCSS422: Operating Systems [Spring 2025]

April 2412025 School of Engineering and Technology, University of Washington - Tacoma

L8.17

17

QUIZ 2

= Canvas Quiz - Practice CPU Scheduling Problems

= Posted in Canvas
= Unlimited attempts permitted
= Due Tuesday May 6" AOE

= Link:
= https://canvas.uw.edu/courses/1809484/assignments/10329061

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 24, 2025 18.18

18

Slides by Wes J. Lloyd

4/24/2025

L8.9

https://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_s2025_quiz_1.pdf
https://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_s2025_quiz_1.pdf
https://canvas.uw.edu/courses/1809484/assignments/10329061

TCSS 422 A — Spring 2025
School of Engineering and Technology

OBJECTIVES - 4/24

B Questions from 4/22
® C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
m Assignment O - Due Fri Apr 25 AOE | Assignment 1 soon
B Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
® Chapter 9: Proportional Share Schedulers
|___=Linux Completely Fair Scheduler]
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broadcast

TCSS422: Operating Systems [Spring 2025]

April 2412025 School of Engineering and Technology, University of Washington - Tacoma

L8.19

19

CATCH UP FROM LECTURE 7

®m Switch to Lecture 7 Slides
® Slides L7.56 to L7.61 (Linux CFS)

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 1620

April 17, 2025

20

Slides by Wes J. Lloyd

4/24/2025

L8.10

TCSS 422 A — Spring 2025
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER - 7

® More information:

B Man page: “man sched” : Describes Linux scheduling API
http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

https://www.kernel.org/doc/Documentation/scheduler/sched-
design-CFS.txt
= https://en.wikipedia.org/wiki/Completely_ Fair_Scheduler

m See paper: The Linux Scheduler - a Decade of Wasted Cores
= http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

TCSS422: Operating Systems [Spring 2025]

18.21
School of Engineering and Technology, University of Washington - Tacoma 8

April 24, 2025

21

BEYOND CFS - EEVDF SCHEDULER

= Earliest Eligible Virtual Deadline First (EEVDF) Scheduler
= Linux kernel version 6.6, October 29, 2023
= First described in a research article in 1995

= Like CFS, EEVDF aims to distribute CPU time equally among all
runnable tasks with the same priority.

= EEVDF assigns a virtual runtime to each task, creating a “lag” value
that is used to determine whether a task has received its fair share
of CPU time

= A task with a positive lag is owed CPU time
= A task with negative lag has exceeded its timeshare

= EEVDF calculates a virtual deadline (VD) for each task with lag
greater or equal to zero

= Task with the earliest virtual deadline is selected to run next

= Virtual deadlines enable latency-sensitive tasks with shorter-time
slices to be prioritized more than CFS which helps improve
responsiveness

® More info: https://docs.kernel.org/scheduler/sched-eevdf.html

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 1822

April 24, 2025

22

Slides by Wes J. Lloyd

4/24/2025

L8.11

http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf
https://docs.kernel.org/scheduler/sched-eevdf.html

TCSS 422 A — Spring 2025
School of Engineering and Technology

OBJECTIVES - 4/24

® Questions from 4/22
® C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
= Assignment O - Due Fri Apr 25 AOE | Assignment 1 soon
® Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
= Chapter 9: Proportional Share Schedulers
= Linux Completely Fair Scheduler

= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broadcast

TCSS422: Operating Systems [Spring 2025] 18.23

April 2412025 School of Engineering and Technology, University of Washington - Tacoma

23

CHAPTER 26 -

CONCURRENCY:
AN INTRODUCTION

. TCSS422: Operating Systems [Spring 2025]
eyl 2 2 School of Engineering and Technology, University of Washington -

24

Slides by Wes J. Lloyd

4/24/2025

L8.12

TCSS 422 A — Spring 2025

School of Engineering and Technology

THREADS

Single
Threaded
Process

Process State: PC,
registers, SP, e

 Heap

Process

&

i)

Multithreaded Process

Thread
State

Thread
State

Thread
State

Process State: PC,
registers, SP, etc...

©Alfred Park, http.//randu.org/tutorials/threads

Multiple
Threaded
Process

| April 24, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.25

25

shared

THREADS - 2

= What is an embarrassingly parallel program?

® Each thread has its own Thread Control Block (TCB)
= PC, registers, SP, and stack

= Enables a single process (program) to have multiple “workers”
= This is parallel programming...

®m Supports independent path(s) of execution within a program
with shared memory ...

® Threads share code segment, data segment, and heap are

April 24,

2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.26

26

Slides by Wes J. Lloyd

4/24/2025

L8.13

TCSS 422 A — Spring 2025

School of Engineering and Technology

PROCESS AND THREAD METADATA

® Thread Control Block vs. Process Control Block

Thread identification
Thread state
CPU information:

Thread priority
Pointer to process that created this thread
Pointers to all other threads created by this thread

Program counter
Register contents

Process identification
Process status
Process state:
Process status word
Register contents
Main memory
Resources
Process priority
Accounting

April 24, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.27

27

0KB

1KB

2KB

15KB
16KB

= Every thread has

SHARED ADDRESS SPACE

The code segment:

Program Code where instructions live

The heap segment:
Hea .
P contains malloc'd data

dynamic data structures
(it grows downward)

(free)

(it grows upward)
The stack segment:
contains local variables

Stack (1) arguments to routines,
return values, etc.

A Single-Threaded

Address Space

it’'s own stack / PC

OKB
Program Code
1KB
Heap
2KB
(free)
Stack (2)
(free)
15KB
Stack (1)
16KB

Two threaded
Address Space

April 24, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

18.28

28

Slides by Wes J. Lloyd

4/24/2025

L8.14

TCSS 422 A — Spring 2025
School of Engineering and Technology

THREAD CREATION EXAMPLE

#include <stdie.h>
#include <assert.h>
tinclude <pthread.h>

void smythread{veid ~arg) {
printf("%s\n", (char) arqg);
return NULL;

t

int
main(int argec, char *argv[])} {
pthread_t pl, p2;
int rc;
printf("main: begini\n");
rc = pthread create(&pl, NULL, mythread, "A"); assert(rc == 0);
rc = pthread create(&p2, NULL, mythread, "B"); assert(rc == 0);
// join waits for the threads to finish
rc = pthread_join(pl, NULL); assert(rc == ();
rc = pthread join(p2, NULL); assert(rc == 0);
printf("main: end\n");
return 0;

TCSS422: Operating Systems [Spring 2025]

April 2412025 School of Engineering and Technology, University of Washington - Tacoma

L8.29

29

POSSIBLE ORDERINGS OF EVENTS

Starts running
»Prints ‘main: begin’
Creates Thread 1
Creates Thread 2
Waits for T1
Runs
Prints ‘A’
Returns
» Waits for T2
Runs
Prints ‘B’

Returns

» Prints ‘main: end’

Thread 1 Thread 2

TCSS422: Operating Systems [Spring 2025]

| Fymil| 22, 2007 School of Engineering and Technology, University of Washington - Tacoma

L8.30

30

Slides by Wes J. Lloyd

4/24/2025

L8.15

TCSS 422 A — Spring 2025

4/24/2025
School of Engineering and Technology

POSSIBLE ORDERINGS OF EVENTS - 2

Starts running

Prints ‘main: begin’

— _—
Creates Thread 1
Runs
Prints ‘A’
Returns
—=< Creates Thread 2 B—
Runs
Prints ‘B’
Returns
Waits for T1 Returns immediately
— -
Waits for T2

Returns immediately
Prints ‘main: end’

" TCSS422: Operating Systems [Spring 2025]
April 2412025 School of Engineering and Technology, University of Washington - Tacoma

L8.31

31

POSSIBLE ORDERINGS OF EVENTS - 3

Starts running

Prints ‘main: begin’
—

Creates Thread 1

Creates Thread 2

What if execution order of
s events in the program matters?

Runs
Prints ‘A’
Returns
.
Waits for T2 Immediately returns
Prints ‘main: end’
April 24, 2025 TCSS422: Operating Systems [Spring 2025]

18.32

School of Engineering and Technology, University of Washington - Tacoma

32

Slides by Wes J. Lloyd L8.16

TCSS 422 A — Spring 2025 4/24/2025
School of Engineering and Technology

COUNTER EXAMPLE

= Counter example

= A+ B:ordering
® Counter: incrementing global variable by two threads

u |s the counter example embarrassingly parallel?

= What does the parallel counter program require?

TCSS422: Operating Systems [Spring 2025]

April 2412025 School of Engineering and Technology, University of Washington - Tacoma

L8.33

33

PROCESSES VS. THREADS

= What's the difference between forks and threads?
= Forks: duplicate a process
= Think of CLONING - There will be two identical processes at the end
= Threads: no duplication of code/heap, lightweight execution threads

| oo || data “ L= | (=] | data || files. |
Process Process | .
Process State: PC, Process State: PC, |r-:g==r-‘=m| | stack ragisters |r¢§ﬁslnm||rcgshr$~|
registers, SP, etc... registers, 5P, etc...
— slack | slack || slack |
,
: : . <
[P — - — — —
T —_—h throad ' < [thread
¥ ¢ ¢ <

mrgle-ihrpaded procass muththireadaed pracess

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 24, 2025

L8.34

34

Slides by Wes J. Lloyd L8.17

TCSS 422 A — Spring 2025 4/24/2025
School of Engineering and Technology

OBJECTIVES - 4/24

B Questions from 4/22
® C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
m Assignment O - Due Fri Apr 25 AOE | Assignment 1 soon
B Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
® Chapter 9: Proportional Share Schedulers
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
| = Race condition |
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broadcast

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 24, 2025

L8.35 |

35

RACE CONDITION

= What is happening with our counter?
= When counter=50, consider code: counter = counter + 1

= If synchronized, counter will = 52
(after instruction)
— 0s Threadl Thread2 PC %eax counter =
before critical section 100 0 50
= mov 0xB8049%alc, %eax 105 50 50 -
add $0x1, %eax 108 51 50
— -
— save Tl's state =
restore T2's state 100 0 50
— mov 0x8049%alc, %eax 105 50 50 —
add $0x1, %eax 108 51 50
mov %eax, 0x804%alc 113 51 51
— -
[save T2's state I
- restore T1's state 108 51 50 -
mov %$eax, 0x8049%alc 113 51
— -

TCSS422: Operating Systems [Spring 2025]

Fymil| 22, 2007 School of Engineering and Technology, University of Washington - Tacoma

L8.36 |

36

Slides by Wes J. Lloyd L8.18

TCSS 422 A — Spring 2025 4/24/2025
School of Engineering and Technology

OBJECTIVES - 4/24

B Questions from 4/22
® C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
m Assignment O - Due Fri Apr 25 AOE | Assignment 1 soon
B Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
® Chapter 9: Proportional Share Schedulers
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Race condition
| = Critical section]
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock

= pthread cond wait/ signal/ broadcast
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 24, 2025

L8.37

37

CRITICAL SECTION

®m Code that accesses a shared variable must not be
concurrently executed by more than one thread

= Multiple active threads inside a critical section produce a
race condition.

= Atomic execution (all code executed as a unit) must be
ensured in critical sections
= These sections must be mutually exclusive

TCSS422: Operating Systems [Spring 2025]

Fymil| 22, 2007 School of Engineering and Technology, University of Washington - Tacoma

L8.38

38

Slides by Wes J. Lloyd L8.19

TCSS 422 A — Spring 2025
School of Engineering and Technology

LOCKS

= To demonstrate how critical section(s) can be executed
“atomically-as a unit” Chapter 27 & beyond introduce locks

lock t mutex;

lock (smutex) :
balance = balance + 1; | Critical section
unlock(amutex) ;

[S =S VR S I

® Counter example revisited

TCSS422: Operating Systems [Spring 2025]

L8.
School of Engineering and Technology, University of Washington - Tacoma 8.39

April 24, 2025

39

COUNTER EXAMPLE

= With locks
= 2 threads count to 16 million
= ~1.4 seconds
= COUNT IS CORRECT - no data loss

= Without locks
= 2 threads count to 16 million
= ~0.03 seconds
= COUNT IS INCORRECT - DATA IS LOST

® Correct version is 46.6 x slower
= Cost is 16 million Lock & Unlock API calls

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 18.40

April 24, 2025

40

Slides by Wes J. Lloyd

4/24/2025

L8.20

TCSS 422 A — Spring 2025

School of Engineering and Technology

WE WILL RETURN AT

April 24, 2025 TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington -

CHAPTER 27 -
LINUX
THREAD API

TCSS422: Operating Systems [Spring 2025]

eyl 2 2 School of Engineering and Technology, University of Washington -

42

Slides by Wes J. Lloyd

4/24/2025

L8.21

TCSS 422 A — Spring 2025
School of Engineering and Technology

OBJECTIVES - 4/24

B Questions from 4/22
® C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
m Assignment O - Due Fri Apr 25 AOE | Assignment 1 soon
B Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
® Chapter 9: Proportional Share Schedulers
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API

|__= pthread_create/_join]

= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread cond wait/ signal/ broadcast

TCSS422: Operating Systems [Spring 2025]

April 2412025 School of Engineering and Technology, University of Washington - Tacoma

L8.43

43

THREAD CREATION

pthread_create

#include <pthread.h>

int
pthread create(pthread t* thread,
const pthread attr t* attr,
void* (*start_routine) (void*),
void* arqg) ;

thread: thread struct

= attr: stack size, scheduling priority... (optional)
start_routine: function pointer to thread routine

= arg: argument to pass to thread routine (optional)

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 24, 2025 L8.44

44

Slides by Wes J. Lloyd

4/24/2025

L8.22

TCSS 422 A — Spring 2025

4/24/2025
School of Engineering and Technology

PTHREAD_CREATE - PASS ANY DATA

#include <pthread.h>
typedef struct _ myarg t {
» int a;
int b;
} myarg t;
vold *mythread(void *arg) {
myarg_t *m = (myarg_t *) arg;
» printf (“%d $d\n”, m->»a, m->b);
NULL;?
1
int main(int arge, char *argv([]) {
pthread t p;
int rec;
myarg t args:
» args.a = 10;
args.b = 20;
rc = pthread create(&p, NULL, mythread, &args):

}

TCSS422: Operating Systems [Spring 2025]

| April 2412025 School of Engineering and Technology, University of Washington - Tacoma

L8.45

45

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,

How large (in bvtes) can the primitive data type be?

prin BCONIL , M) 7

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

int rc, m;

pthread create (¢p, NULL, my‘thread,lOO) :

11 pthread join(p, (void **) &m);

printf (“returned %d\n”, m);
0;

April 24, 2025 TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma L.46

46

Slides by Wes J. Lloyd L8.23

TCSS 422 A — Spring 2025
School of Engineering and Technology

WAITING FOR THREADS TO FINISH

int pthread join(pthread t thread, void **value ptr):

® thread: which thread?

® value_ptr: pointer to return value
type is dynamic / agnostic

® Returned values *must* be on the heap

® Thread stacks destroyed upon thread termination (join)

® Pointers to thread stack memory addresses are invalid
= May appear as gibberish or lead to crash (seg fault)

= Not all threads join - What would be Examples ??

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 24, 2025

L8.47

47

}

struct myarg {

int main (int argc, char * argv[])

it What will this code do?

void *worker(void *arg)

struct myarg *input = (struct myarg *) arg;

printf("a=%d b=%d\n",input->a, input->b);

gﬁ;;ﬁz_gyir%; output; Data on thread stack

output.b = 2;

return (void *) &output; $./pthread_struct
a=10 b=20

pthread_t pl;

struct myarg args;
struct myarg *ret_args;
args.a = 10;

args.b = 20;

pthread_
gaeern How can this code be fixed?
return 0

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 24, 2025

Segmentation fault (core dumped)

L8.48

48

Slides by Wes J. Lloyd

4/24/2025

L8.24

TCSS 422 A — Spring 2025
School of Engineering and Technology

struct myarg {
int a;

How about this code?

int b;
b
void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;

input->b = 2;

return (void *) &input;

3 $./pthread_struct
a=10 b=20

%

int main (int argc, char argv[])

returned 1 2

pthread_t pl;

struct myarg args;

struct myarg *ret_args;

args.a 10;

args.b = 20;

pthread_create(&pl, NULL, worker, &args);
pthread_join(pl, (void *)&ret_args);

printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

TCSS422: Operating Systems [Spring 2025]

Al 2, 2P School of Engineering and Technology, University of Washington - Tacoma

L8.49

49

ADDING CASTS

m Casting

B Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

= Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’
from incompatible pointer type [-Wincompatible-pointer-types]

pthread_join(pl, &plval);

= Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument

is of type ‘int **’
extern int pthread_join (pthread_t __th, void **__thread_return);

TCSS422: Operating Systems [Spring 2025]

Fymil| 22, 2007 School of Engineering and Technology, University of Washington - Tacoma

L8.50

50

Slides by Wes J. Lloyd

4/24/2025

L8.25

TCSS 422 A — Spring 2025

School of Engineering and Technology

ADDING CASTS - 2

= pthread_join

b

int plval;
int * p2val;
pthread_join(pl, (void *)&plval);
pthread_join(p2, (void *)&p2val);

® return from thread function

int * counterval = malloc(sizeof(int));
*counterval = counter;
return (void *) counterval;

TCSS422: Operating Systems [Spring 2025]

April 2412025 School of Engineering and Technology, University of Washington - Tacoma

L8.51

51

OBJECTIVES - 4/24

B Questions from 4/22
® C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
m Assignment O - Due Fri Apr 25 AOE | Assignment 1 soon

® Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)

® Chapter 9: Proportional Share Schedulers

= Linux Completely Fair Scheduler

= Chapter 26: Concurrency: An Introduction

= Race condition
= Critical section

® Chapter 27: Linux Thread API

= pthread_create/_join

= pthread_mutex_lock/_unlock/_trylock/_timelock]

= pthread cond wait/ signal/ broadcast

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 24, 2025

L8.52

52

Slides by Wes J. Lloyd

4/24/2025

L8.26

TCSS 422 A — Spring 2025
School of Engineering and Technology

// Global Address
static volatile i

void *worker(void

{

int i;

assert(rc==0)
counter = cou

}

return NULL;

}

LOCKS

= pthread_mutex_t data type
® /usr/include/bits/pthread_types.h

Space
nt counter = 0;

*arg)

for (i=0;1<10000000;1i++) {

nter + 1;

April 24, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.53

53

= API

LOCKS - 2

= Ensure critical sections are executed atomically-as a unit
= Provides implementation of “Mutual Exclusion”

int pthread mutex_ lock(pthread mutex t *mutex);
int pthread mutex_unlock (pthread mutex t *mutex);

= Example w/o initialization & error checking

x =x + 1;

pthread_mutex_t lock;
pthread mutex lock (&lock) ;

// or whatever your critical section is

pthread mutex unlock(&lock) ;

= Blocks forever
= Enters critical
= Releases lock

until lock can be obtained
section once lock is obtained

April 24, 2025

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma

L8.54

54

Slides by Wes J. Lloyd

4/24/2025

L8.27

TCSS 422 A — Spring 2025

School of Engineering and Technology

LOCK INITIALIZATION

m Assigning the constant

| pthread mutex t lock = PTHREAD MUTEX TINITIALIZER;

u API call:

int rc = pthread mutex_init (&lock, NULL);
assert(rc == 0); // alway

s check success!

= |nitializes mutex with attributes specified by 2"? argument
= |[f NULL, then default attributes are used

= Upon initialization, the mutex is initialized and unlocked

April 24, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.55

55

LOCKS - 3

= Error checking wrapper

// Use this to keep your code clean but check for failures
// Only use if exiting p

ogram is OK upon failure
void Pthread mutex_lock (pthread mutex t *mutex) {
int rc = pthread mutex lock(mutex);
assert (rc == 0);

® What if lock can’t be obtained?

int pthread mutex_ trylock(pthread mutex_t *mutex);
int pthread mutex timelock (pthread mutex_t *mutex,
struct timespec *abs timeout):;

m trylock - returns immediately (fails) if lock is unavailable
= timelock - tries to obtain a lock for a specified duration

April 24, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.56

56

Slides by Wes J. Lloyd

4/24/2025

L8.28

TCSS 422 A — Spring 2025
School of Engineering and Technology

OBJECTIVES - 4/24

B Questions from 4/22
® C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE
m Assignment O - Due Fri Apr 25 AOE | Assignment 1 soon
B Quiz 1 (Due Thur May 1 AOE) - Quiz 2 (Due Tue May 6 AOE)
® Chapter 9: Proportional Share Schedulers
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock

= pthread_cond_wait/_signal/ broadcast]

TCSS422: Operating Systems [Spring 2025]

April 2412025 School of Engineering and Technology, University of Washington - Tacoma

L8.57

57

CONDITIONS AND SIGNALS

= Condition variables support “signaling”
between threads

int pthread cond wait (pthread cond t *cond,
pthread mutex t *mutex);
int pthread cond signal (pthread cond t *cond):

= pthread_cont_t datatype

= pthread_cond_wait()
= Puts thread to “sleep” (waits) (THREAD is BLOCKED)
= Threads added to >FIFO queue<, lock is released
= Waits (listens) for a “signal” (NON-BUSY WAITING, no polling)

= When signal occurs, interrupt fires, wakes up first thread,
(THREAD is RUNNING), lock is provided to thread

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 1858

April 24, 2025

58

Slides by Wes J. Lloyd

4/24/2025

L8.29

TCSS 422 A — Spring 2025
School of Engineering and Technology

CONDITIONS AND SIGNALS -2

int pthread_cond_signal (pthread_cond_t * cond);
int pthread_cond_broadcast(pthread_cond_t * cond);

= pthread_cond_signal ()
= Called to send a “signal” to wake-up first thread in FIFO “wait” queue
= The goal is to unblock a thread to respond to the signal

= pthread_cond_broadcast()

= Unblocks all threads in FIFO “wait” queue, currently blocked on the
specified condition variable

= Broadcast is used when all threads should wake-up for the signal

® Which thread is unblocked first?
= Determined by OS scheduler (based on priority)
= Thread(s) awoken based on placement order in FIFO wait queue
= When awoken threads acquire lock as in pthread_mutex_lock ()

TCSS422: Operating Systems [Spring 2025]

April 2412025 School of Engineering and Technology, University of Washington - Tacoma

L8.59

59

CONDITIONS AND SIGNALS -3

= Wait example:

pthread mutex_t lock = PTHREAD MUTEX INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

while (initialized == 0)
pthread cond wait(&cond, &lock);

// Perform work that requires lock

a=a+ b;

pthread mutex_unlock (&lock) ;

| pthread _mutex_lock (&lock) ;

= wait puts thread to sleep, releases lock
= when awoken, lock reacquired (but then released bv this co

e)

® When initialized, another thread signals Ensti?éiﬁ?ﬁfﬂﬁéiﬁ(s)

pthread_mutex_lock (&lock) ; to proceed above.

initialized = 1;
pthread cond signal (&init);
pthread mutex unlock(slock):;

TCSS422: Operating Systems [Spring 2025]

Fymil| 22, 2007 School of Engineering and Technology, University of Washington - Tacoma

L8.60

60

Slides by Wes J. Lloyd

4/24/2025

L8.30

TCSS 422 A — Spring 2025
School of Engineering and Technology

CONDITION AND SIGNALS - 4

pthread mutex t lock = PTHREAD MUTEX INITIALIZER;
pthread cond_ t cond = PTHREAD COND_INITIALIZER;

pthread mutex lock(&lock) ;
rhile (initialized == 0)

pthread cond wait(&cond, &lock) ;
// Perform work that requires lock
a=a+b;
pthread mutex unlock (&lock) ;

= Why do we wait inside a while loop?

= The while ensures upon awakening the condition is rechecked

= A signal is raised, but the pre-conditions required to proceed may
have not been met. **MUST CHECK STATE VARIABLE* *

= Without checking the state variable the thread may proceed to
execute when it should not. (e.g. too early)

April 24, 2025 TCSS422: Operating Systems [Spring 2025]

L8.61
School of Engineering and Technology, University of Washington - Tacoma 86

61

PTHREADS LIBRARY

= Compilation:
gcc requires special option to require programs with pthreads:
= gcc -pthread pthread.c -o pthread
= Explicitly links library with compiler flag
= RECOMMEND: using makefile to provide compiler arguments

m List of pthread manpages
" man -k pthread

April 24, 2025 TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 1862

62

Slides by Wes J. Lloyd

4/24/2025

L8.31

TCSS 422 A — Spring 2025
School of Engineering and Technology

SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct
all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(cCc) $(CFLAGS) $A -0 $@

clean:
$(RM) -f $(binaries) *.o

® Example builds multiple single file programs
= All target
= pthread_mult

® clean target

= Example if multiple source files should produce a single executable

TCSS422: Operating Systems [Spring 2025]

April 2412025 School of Engineering and Technology, University of Washington - Tacoma

L8.63

63

QUESTIONS

64

Slides by Wes J. Lloyd

4/24/2025

L8.32

	Slide 1: TCSS 422: Operating Systems
	Slide 2: Text book coupon
	Slide 3: Tcss 422 – office hrs – Spring 2025
	Slide 4: TCSS 422 Discord server
	Slide 5: OBJECTIVES – 4/24
	Slide 6: Online daily feedback survey
	Slide 7
	Slide 8: Material / pace
	Slide 9: Feedback from 4/22
	Slide 10: Review: Mlfq rule summary
	Slide 11: Addressing an Overloaded runqueue
	Slide 12: OBJECTIVES – 4/24
	Slide 13: OBJECTIVES – 4/24
	Slide 14: Assignment 0 - Due Fri Apr 25 AOE
	Slide 15: OBJECTIVES – 4/24
	Slide 16: OBJECTIVES – 4/24
	Slide 17: Quiz 1
	Slide 18: Quiz 2
	Slide 19: OBJECTIVES – 4/24
	Slide 20: Catch up from lecture 7
	Slide 21: Completely fair scheduler - 7
	Slide 22: Beyond CFS  EEVDF Scheduler
	Slide 23: OBJECTIVES – 4/24
	Slide 24: Chapter 26 -Concurrency: An introduction
	Slide 25: Threads
	Slide 26: Threads - 2
	Slide 27: Process and thread metadata
	Slide 28: Shared Address space
	Slide 29: Thread creation example
	Slide 30: Possible Orderings of events
	Slide 31: Possible Orderings of events - 2
	Slide 32: Possible orderings of events - 3
	Slide 33: Counter example
	Slide 34: Processes vs. threads
	Slide 35: OBJECTIVES – 4/24
	Slide 36: Race condition
	Slide 37: OBJECTIVES – 4/24
	Slide 38: Critical section
	Slide 39: locks
	Slide 40: Counter example
	Slide 41: We will return at 5:03pm
	Slide 42: Chapter 27 - Linux Thread API
	Slide 43: OBJECTIVES – 4/24
	Slide 44: Thread creation
	Slide 45: Pthread_create – pass any data
	Slide 46: Passing a single value
	Slide 47: Waiting for threads to finish
	Slide 48
	Slide 49
	Slide 50: ADDING CASTS
	Slide 51: Adding casts - 2
	Slide 52: OBJECTIVES – 4/24
	Slide 53: locks
	Slide 54: Locks - 2
	Slide 55: Lock initialization
	Slide 56: Locks - 3
	Slide 57: OBJECTIVES – 4/24
	Slide 58: Conditions and signals
	Slide 59: Conditions and signals - 2
	Slide 60: conditions and signals - 3
	Slide 61: Condition and SIGNALS - 4
	Slide 62: Pthreads library
	Slide 63: Sample Makefile
	Slide 64: Questions

