
TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.1Slides by Wes J. Lloyd

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

Introduction to Concurrency,
Linux Thread API

Wes J. Lloyd

School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 15% off textbook code: HAPPYPLANET15
(through Friday Apr 25)

 https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-

arpaci-dusseau/operating-systems-three-easy-pieces-

hardcover-version-110/hardcover/product-

15gjeeky.html?q=three+easy+pieces+operating+systems&pag

e=1&pageSize=4

 With coupon textbook is only $33.79 + tax & shipping

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.2

TEXT BOOK COUPON

1

2

https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.2Slides by Wes J. Lloyd

 Office Hours plan for Spring (by Zoom):

 Monday 11:30am - 12:30p GTA Xinghan

▪ NEXT MONDAY: Wes

 Tuesday 11:30am - 12:30p GTA Xinghan

 Wednesday 11:00am - 12:00p Instructor Wes

 Friday 12:00pm - 1:00p Instructor Wes or GTA Xinghan

▪ THIS FRIDAY: Xinghan

 Instructor is available after class at 6pm in CP 229

each day

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.3

TCSS 422 – OFFICE HRS – SPRING 2025

 Please join the TCSS 422 A – Spring 2025 Discord Server

https://discord.gg/Jh5Cp8TMYn

 Under Edit Server Profile:

Please update your ‘Server Nickname’

to your real name or UW NET ID

THANK YOU

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.4

TCSS 422 DISCORD SERVER

3

4

https://discord.gg/Jh5Cp8TMYn

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.3Slides by Wes J. Lloyd

 Questions from 4/22

 C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE

 Assignment 0 - Due Fri Apr 25 AOE | Assignment 1 soon

 Quiz 1 (Due Thur May 1 AOE) – Quiz 2 (Due Tue May 6 AOE)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.5

OBJECTIVES – 4/24

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

April 24, 2025
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.6

ONLINE DAILY FEEDBACK SURVEY

5

6

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.4Slides by Wes J. Lloyd

April 24, 2025
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L8.7

 Please classify your perspective on material covered in today’s

class (47 of 63 respondents – 74.6%) :

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.55 (- previous 6.32)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.19 (- previous 4.98)

April 24, 2025
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.8

MATERIAL / PACE

7

8

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.5Slides by Wes J. Lloyd

 What would happen in an MLFQ scheduler if there are so many
jobs overall that the high priority queue never f inishes giving
each job a time slice to execute before doing a priority boost?

 cycle time – total time shared among all jobs in a run queue

 time slice – time an individual job runs for

 From slide 6.50:

▪ no rule explicitly describes how the cycle time is divided among jobs

▪ No rule explicitly describes how time slice is determine

 Any MLFQ problem having this issue would require rules to
describe how this scenario is handled to allow a scheduling
graph to be drawn

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.9

FEEDBACK FROM 4/22

 The refined set of MLFQ rules:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 Rule 3: When a job enters the system, it is placed at the

highest priority.

 Rule 4: Once a job uses up its time allotment at a given

level (regardless of how many times it has given up the

CPU), its priority is reduced(i.e., it moves down on queue).

 Rule 5: After some time period S, move all the jobs in the

system to the topmost queue.

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.10

REVIEW: MLFQ RULE SUMMARY

9

10

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.6Slides by Wes J. Lloyd

 One possible way:

▪ Cycle time split evenly among jobs in runqueue with no min timeslice

▪ For MLFQ, all jobs in runqueue use full timeslice and have priority

reduced

▪ Not realistic in practice - timeslice becomes too small to be useful

 Another way:

▪ Specify min_time_slice (1 ms) per job, and total_cycle_time (10 ms)

▪ Job’s time_slice = total_cycle_time / jobs_in_runqueue

▪ Beyond 10 jobs, other jobs receive no runtime this cycle

▪ Jobs receiving no runtime are scheduled first in next cycle

▪ Jobs could pile up and experience multi-cycle delays

▪ More realistic

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.11

ADDRESSING AN

OVERLOADED RUNQUEUE

 Questions from 4/22

 C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE

 Assignment 0 - Due Fri Apr 25 AOE | Assignment 1 soon

 Quiz 1 (Due Thur May 1 AOE) – Quiz 2 (Due Tue May 6 AOE)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.12

OBJECTIVES – 4/24

11

12

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.7Slides by Wes J. Lloyd

 Questions from 4/22

 C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE

 Assignment 0 - Due Fri Apr 25 AOE | Assignment 1 soon

 Quiz 1 (Due Thur May 1 AOE) – Quiz 2 (Due Tue May 6 AOE)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.13

OBJECTIVES – 4/24

 Due Friday April 25 AOE (Apr 26 @ 4:59am)

 Grace period: submission ok until Mon Apr 28 @ 4:59 AM

 Late submissions thru Wed Apr 30 @ 4:59am

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.14

ASSIGNMENT 0 - DUE FRI APR 25 AOE

13

14

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.8Slides by Wes J. Lloyd

 Questions from 4/22

 C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE

 Assignment 0 - Due Fri Apr 25 AOE | Assignment 1 soon

 Quiz 1 (Due Thur May 1 AOE) – Quiz 2 (Due Tue May 6 AOE)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.15

OBJECTIVES – 4/24

 Questions from 4/22

 C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE

 Assignment 0 - Due Fri Apr 25 AOE | Assignment 1 soon

 Quiz 1 (Due Thur May 1 AOE) – Quiz 2 (Due Tue May 6 AOE)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.16

OBJECTIVES – 4/24

15

16

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.9Slides by Wes J. Lloyd

 Active reading on Chapter 9 – Proportional Share Schedulers

 Posted in Canvas

 Due Thursday May 1st AOE

 Link:

 https://faculty.washington.edu/wlloyd/courses/tcss422/quiz/

TCSS422_s2025_quiz_1.pdf

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.17

QUIZ 1

 Canvas Quiz – Practice CPU Scheduling Problems

 Posted in Canvas

 Unlimited attempts permitted

 Due Tuesday May 6 th AOE

 Link:

 https://canvas.uw.edu/courses/1809484/assignments/10329061

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.18

QUIZ 2

17

18

https://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_s2025_quiz_1.pdf
https://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_s2025_quiz_1.pdf
https://canvas.uw.edu/courses/1809484/assignments/10329061

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.10Slides by Wes J. Lloyd

 Questions from 4/22

 C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE

 Assignment 0 - Due Fri Apr 25 AOE | Assignment 1 soon

 Quiz 1 (Due Thur May 1 AOE) – Quiz 2 (Due Tue May 6 AOE)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.19

OBJECTIVES – 4/24

 Switch to Lecture 7 Slides

 Slides L7.56 to L7.61 (Linux CFS)

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.20

CATCH UP FROM LECTURE 7

19

20

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.11Slides by Wes J. Lloyd

 More information:

 Man page: “man sched” : Describes Linux scheduling API

 http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

 https://www.kernel.org/doc/Documentation/scheduler/sched -

design-CFS.txt

 https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

 See paper: The Linux Scheduler – a Decade of Wasted Cores

 http://www.ece.ubc.ca/~sasha/papers/eurosys16 -final29.pdf

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.21

COMPLETELY FAIR SCHEDULER - 7

 Earliest Eligible Virtual Deadline First (EEVDF) Scheduler

▪ Linux kernel version 6.6, October 29, 2023

▪ First described in a research article in 1995

 Like CFS, EEVDF aims to distribute CPU time equally among all
runnable tasks with the same priority.

 EEVDF assigns a virtual runtime to each task, creating a “lag” value
that is used to determine whether a task has received its fair share
of CPU time

▪ A task with a positive lag is owed CPU time

▪ A task with negative lag has exceeded its timeshare

 EEVDF calculates a virtual deadline (VD) for each task with lag
greater or equal to zero

 Task with the earliest virtual deadline is selected to run next

 Virtual deadlines enable latency -sensitive tasks with shorter -time
slices to be prioritized more than CFS which helps improve
responsiveness

 More info: https://docs.kernel.org/scheduler/sched -eevdf.html

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.22

BEYOND CFS → EEVDF SCHEDULER

21

22

http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf
https://docs.kernel.org/scheduler/sched-eevdf.html

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.12Slides by Wes J. Lloyd

 Questions from 4/22

 C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE

 Assignment 0 - Due Fri Apr 25 AOE | Assignment 1 soon

 Quiz 1 (Due Thur May 1 AOE) – Quiz 2 (Due Tue May 6 AOE)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.23

OBJECTIVES – 4/24

CHAPTER 26 -

CONCURRENCY:

AN INTRODUCTION

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L8.24

23

24

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.13Slides by Wes J. Lloyd

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.25

THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED

 Enables a single process (program) to have multiple “workers”

▪ This is parallel programming…

 Supports independent path(s) of execution within a program
with shared memory …

 Each thread has its own Thread Control Block (TCB)

▪ PC, registers, SP, and stack

 Threads share code segment, data segment, and heap are
shared

 What is an embarrassingly parallel program?

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.26

THREADS - 2

25

26

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.14Slides by Wes J. Lloyd

 Thread Control Block vs. Process Control Block

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.27

PROCESS AND THREAD METADATA

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.28

SHARED ADDRESS SPACE

 Every thread has it’s own stack / PC

27

28

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.15Slides by Wes J. Lloyd

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.29

THREAD CREATION EXAMPLE

int main() Thread 1 Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2

Runs

Prints ‘B’

Returns

Prints ‘main: end’

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.30

POSSIBLE ORDERINGS OF EVENTS

29

30

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.16Slides by Wes J. Lloyd

int main() Thread 1 Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Runs

Prints ‘A’

Returns

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1 Returns immediately

Waits for T2 Returns immediately

Prints ‘main: end’

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.31

POSSIBLE ORDERINGS OF EVENTS - 2

int main() Thread 1 Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.32

POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
events in the program matters?

31

32

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.17Slides by Wes J. Lloyd

 Counter example

 A + B : ordering

 Counter: incrementing global variable by two threads

 Is the counter example embarrassingly parallel?

 What does the parallel counter program require?

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.33

COUNTER EXAMPLE

 What’s the dif ference between forks and threads?

▪ Forks: duplicate a process

▪ Think of CLONING - There will be two identical processes at the end

▪ Threads: no duplication of code/heap, lightweight execution threads

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.34

PROCESSES VS. THREADS

33

34

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.18Slides by Wes J. Lloyd

 Questions from 4/22

 C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE

 Assignment 0 - Due Fri Apr 25 AOE | Assignment 1 soon

 Quiz 1 (Due Thur May 1 AOE) – Quiz 2 (Due Tue May 6 AOE)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.35

OBJECTIVES – 4/24

 What is happening with our counter?

▪ When counter=50, consider code: counter = counter + 1

▪ If synchronized, counter will = 52

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.36

RACE CONDITION

35

36

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.19Slides by Wes J. Lloyd

 Questions from 4/22

 C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE

 Assignment 0 - Due Fri Apr 25 AOE | Assignment 1 soon

 Quiz 1 (Due Thur May 1 AOE) – Quiz 2 (Due Tue May 6 AOE)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.37

OBJECTIVES – 4/24

 Code that accesses a shared variable must not be

concurrently executed by more than one thread

 Multiple active threads inside a critical section produce a

race condition .

 Atomic execution (all code executed as a unit) must be

ensured in critical sections

▪ These sections must be mutually exclusive

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.38

CRITICAL SECTION

37

38

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.20Slides by Wes J. Lloyd

 To demonstrate how critical section(s) can be executed

“atomically -as a unit” Chapter 27 & beyond introduce locks

 Counter example revisited

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.39

LOCKS

 With locks

▪ 2 threads count to 16 million

▪ ~1.4 seconds

▪ COUNT IS CORRECT – no data loss

 Without locks

▪ 2 threads count to 16 million

▪ ~0.03 seconds

▪ COUNT IS INCORRECT - DATA IS LOST

 Correct version is 46.6 x slower

▪ Cost is 16 million Lock & Unlock API calls

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.40

COUNTER EXAMPLE

39

40

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.21Slides by Wes J. Lloyd

WE WILL RETURN AT

5:03PM

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L8.41

CHAPTER 27 -

LINUX

THREAD API

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L8.42

41

42

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.22Slides by Wes J. Lloyd

 Questions from 4/22

 C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE

 Assignment 0 - Due Fri Apr 25 AOE | Assignment 1 soon

 Quiz 1 (Due Thur May 1 AOE) – Quiz 2 (Due Tue May 6 AOE)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.43

OBJECTIVES – 4/24

 pthread_create

 thread: thread struct

 attr: stack size, scheduling priority… (optional)

 start_routine: function pointer to thread routine

 arg: argument to pass to thread routine (optional)

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.44

THREAD CREATION

43

44

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.23Slides by Wes J. Lloyd

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.45

PTHREAD_CREATE – PASS ANY DATA

 Here we “cast” the pointer to pass/return a primitive data type

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.46

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

45

46

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.24Slides by Wes J. Lloyd

 thread: which thread?

 value_ptr: pointer to return value

 type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid

▪May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.47

WAITING FOR THREADS TO FINISH

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L8.48

struct myarg {
 int a;
 int b;
};

void *worker(void *arg)
{
 struct myarg *input = (struct myarg *) arg;
 printf("a=%d b=%d\n",input->a, input->b);
 struct myarg output;
 output.a = 1;
 output.b = 2;
 return (void *) &output;
}

int main (int argc, char * argv[])
{
 pthread_t p1;
 struct myarg args;
 struct myarg *ret_args;
 args.a = 10;
 args.b = 20;
 pthread_create(&p1, NULL, worker, &args);
 pthread_join(p1, (void *)&ret_args);
 printf("returned %d %d\n", ret_args->a, ret_args->b);
 return 0;
}

What will this code do?

How can this code be fixed?

$./pthread_struct
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack

47

48

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.25Slides by Wes J. Lloyd

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L8.49

struct myarg {
 int a;
 int b;
};

void *worker(void *arg)
{
 struct myarg *input = (struct myarg *) arg;
 printf("a=%d b=%d\n",input->a, input->b);
 input->a = 1;
 input->b = 2;
 return (void *) &input;
}

int main (int argc, char * argv[])
{
 pthread_t p1;
 struct myarg args;
 struct myarg *ret_args;
 args.a = 10;
 args.b = 20;
 pthread_create(&p1, NULL, worker, &args);
 pthread_join(p1, (void *)&ret_args);
 printf("returned %d %d\n", ret_args->a, ret_args->b);
 return 0;
}

$./pthread_struct
a=10 b=20
returned 1 2

How about this code?

 Casting

 Suppresses compiler warnings when passing “typed” data

where (void) or (void *) is called for

 Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’
from incompatible pointer type [-Wincompatible-pointer-types]

 pthread_join(p1, &p1val);

 Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument
is of type ‘int **’

 extern int pthread_join (pthread_t __th, void **__thread_return);

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.50

ADDING CASTS

49

50

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.26Slides by Wes J. Lloyd

 pthread_join

 int * p1val;

 int * p2val;

 pthread_join(p1, (void *)&p1val);

 pthread_join(p2, (void *)&p2val);

 return from thread function

 int * counterval = malloc(sizeof(int));

 *counterval = counter;

 return (void *) counterval;

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.51

ADDING CASTS - 2

 Questions from 4/22

 C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE

 Assignment 0 - Due Fri Apr 25 AOE | Assignment 1 soon

 Quiz 1 (Due Thur May 1 AOE) – Quiz 2 (Due Tue May 6 AOE)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.52

OBJECTIVES – 4/24

51

52

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.27Slides by Wes J. Lloyd

 pthread_mutex_t data type

 /usr/include/bits/pthread_types.h

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.53

LOCKS

// Global Address Space
static volatile int counter = 0;
pthread_mutex_t lock;

void *worker(void *arg)
{
 int i;
 for (i=0;i<10000000;i++) {
 int rc = pthread_mutex_lock(&lock);
 assert(rc==0);
 counter = counter + 1;
 pthread_mutex_unlock(&lock);
 }
 return NULL;
}

 Ensure critical sections are executed atomically -as a unit

▪ Provides implementation of “Mutual Exclusion”

 API

 Example w/o initialization & error checking

▪ Blocks forever until lock can be obtained

▪ Enters critical section once lock is obtained

▪ Releases lock

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.54

LOCKS - 2

53

54

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.28Slides by Wes J. Lloyd

 Assigning the constant

 API call:

 Initializes mutex with attributes specified by 2 nd argument

 If NULL, then default attributes are used

 Upon initialization, the mutex is initialized and unlocked

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.55

LOCK INITIALIZATION

 Error checking wrapper

 What if lock can’t be obtained?

 trylock – returns immediately (fails) if lock is unavailable

 timelock – tries to obtain a lock for a specified duration

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.56

LOCKS - 3

55

56

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.29Slides by Wes J. Lloyd

 Questions from 4/22

 C Tutorial - Pointers, Strings, Exec in C - Due Wed Apr 30 AOE

 Assignment 0 - Due Fri Apr 25 AOE | Assignment 1 soon

 Quiz 1 (Due Thur May 1 AOE) – Quiz 2 (Due Tue May 6 AOE)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.57

OBJECTIVES – 4/24

 Condition variables support “signaling”
between threads

 pthread_cont_t datatype

 pthread_cond_wait()

▪ Puts thread to “sleep” (waits) (THREAD is BLOCKED)

▪ Threads added to >FIFO queue<, lock is released

▪ Waits (listens) for a “signal” (NON -BUSY WAITING, no polling)

▪ When signal occurs, interrupt fires, wakes up first thread,
(THREAD is RUNNING), lock is provided to thread

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.58

CONDITIONS AND SIGNALS

57

58

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.30Slides by Wes J. Lloyd

 pthread_cond_signal()

▪ Called to send a “signal” to wake -up first thread in FIFO “wait” queue

▪ The goal is to unblock a thread to respond to the signal

 pthread_cond_broadcast()

▪ Unblocks all threads in FIFO “wait” queue , currently blocked on the
specified condition variable

▪ Broadcast is used when all threads should wake-up for the signal

 Which thread is unblocked first?

▪ Determined by OS scheduler (based on priority)

▪ Thread(s) awoken based on placement order in FIFO wait queue

▪ When awoken threads acquire lock as in pthread_mutex_lock()

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.59

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

 Wait example:

 wait puts thread to sleep, releases lock

 when awoken, lock reacquired (but then released by this code)

 When initialized, another thread signals

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);

while (initialized == 0)

 pthread_cond_wait(&cond, &lock);

// Perform work that requires lock

a = a + b;

pthread_mutex_unlock(&lock);

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.60

CONDITIONS AND SIGNALS - 3

State variable set,
Enables other thread(s)

to proceed above.

59

60

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.31Slides by Wes J. Lloyd

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);

while (initialized == 0)

 pthread_cond_wait(&cond, &lock);

// Perform work that requires lock

a = a + b;

pthread_mutex_unlock(&lock);

 Why do we wait inside a while loop?

 The while ensures upon awakening the condition is rechecked

▪ A signal is raised, but the pre-conditions required to proceed may

have not been met. **MUST CHECK STATE VARIABLE**

▪ Without checking the state variable the thread may proceed to

execute when it should not. (e.g. too early)

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.61

CONDITION AND SIGNALS - 4

 Compilation:

gcc requires special option to require programs with pthreads:

▪ gcc –pthread pthread.c –o pthread

▪ Explicitly links library with compiler flag

▪ RECOMMEND: using makefile to provide compiler arguments

 List of pthread manpages

▪ man –k pthread

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.62

PTHREADS LIBRARY

61

62

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/24/2025

L8.32Slides by Wes J. Lloyd

 Example builds multiple single file programs

▪ All target

 pthread_mult

▪ Example if multiple source files should produce a single executable

 clean target

April 24, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L8.63

SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
 $(CC) $(CFLAGS) $^ -o $@

clean:
 $(RM) -f $(binaries) *.o

QUESTIONS

63

64

	Slide 1: TCSS 422: Operating Systems
	Slide 2: Text book coupon
	Slide 3: Tcss 422 – office hrs – Spring 2025
	Slide 4: TCSS 422 Discord server
	Slide 5: OBJECTIVES – 4/24
	Slide 6: Online daily feedback survey
	Slide 7
	Slide 8: Material / pace
	Slide 9: Feedback from 4/22
	Slide 10: Review: Mlfq rule summary
	Slide 11: Addressing an Overloaded runqueue
	Slide 12: OBJECTIVES – 4/24
	Slide 13: OBJECTIVES – 4/24
	Slide 14: Assignment 0 - Due Fri Apr 25 AOE
	Slide 15: OBJECTIVES – 4/24
	Slide 16: OBJECTIVES – 4/24
	Slide 17: Quiz 1
	Slide 18: Quiz 2
	Slide 19: OBJECTIVES – 4/24
	Slide 20: Catch up from lecture 7
	Slide 21: Completely fair scheduler - 7
	Slide 22: Beyond CFS EEVDF Scheduler
	Slide 23: OBJECTIVES – 4/24
	Slide 24: Chapter 26 -Concurrency: An introduction
	Slide 25: Threads
	Slide 26: Threads - 2
	Slide 27: Process and thread metadata
	Slide 28: Shared Address space
	Slide 29: Thread creation example
	Slide 30: Possible Orderings of events
	Slide 31: Possible Orderings of events - 2
	Slide 32: Possible orderings of events - 3
	Slide 33: Counter example
	Slide 34: Processes vs. threads
	Slide 35: OBJECTIVES – 4/24
	Slide 36: Race condition
	Slide 37: OBJECTIVES – 4/24
	Slide 38: Critical section
	Slide 39: locks
	Slide 40: Counter example
	Slide 41: We will return at 5:03pm
	Slide 42: Chapter 27 - Linux Thread API
	Slide 43: OBJECTIVES – 4/24
	Slide 44: Thread creation
	Slide 45: Pthread_create – pass any data
	Slide 46: Passing a single value
	Slide 47: Waiting for threads to finish
	Slide 48
	Slide 49
	Slide 50: ADDING CASTS
	Slide 51: Adding casts - 2
	Slide 52: OBJECTIVES – 4/24
	Slide 53: locks
	Slide 54: Locks - 2
	Slide 55: Lock initialization
	Slide 56: Locks - 3
	Slide 57: OBJECTIVES – 4/24
	Slide 58: Conditions and signals
	Slide 59: Conditions and signals - 2
	Slide 60: conditions and signals - 3
	Slide 61: Condition and SIGNALS - 4
	Slide 62: Pthreads library
	Slide 63: Sample Makefile
	Slide 64: Questions

