
TCSS 422 A – Spring 2024
School of Engineering and Technology

4/18/2024

L8.1Slides by Wes J. Lloyd

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

Introduction to Concurrency,
Linux Thread API

Wes J. Lloyd

School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Grad C er t i f icate Sof t Dev Eng (GC -SDE) Spr ing Sem inar, o p en to T CSS 4 22 s t udents

 Damien Eversmann, RedHat Chief Architect for Education

 Saturday, A pr i l 20 - 12:30 to 1:20 pm

 Zoom L ink: https ://washington.zoom.us/j/96445774685

Selected as one of the Industr y Leaders of the Year in 2022 by EdScoop,
Damien has over 25 years of exper ience as an IT professiona l . Hav ing spent the
bu lk of h is career working in or in suppor t of the publ ic sector, he is somewhat
of an exper t when it comes to IT in government and h igher education .
Throughout h is working l i fe , Damien has ser ved as a Developer, System
Admin istra tor, Development Manager, Enterpr ise Arch itect and Technology
Director. L iv ing the l i fe of an Academic and Research Admin istra tor has a lso
g iven Damien a vast knowledge of and a hea lthy respect for regu lat ions and
compliance. He has worked on projects runn ing the gamut f rom desktop -based
widgets to major, mult i - t iered appl icat ions, f rom small , embedded systems to
many -faceted in frastructures.

As Ch ief Arch itect for Education at Red Hat, Damien ser ves the role of br idg ing
the gap between the mission and the business of education and the
technolog ies and solu t ions that suppor t i t a l l . He has a penchant for teach ing
and demonstrat ion and anyth ing e lse that gets h im in f ront of people to share
the message of Continuous Learn ing , DevOps Cu ltu re , Innovation through
Automation and IT Modern izat ion .

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.2

INDUSTRY GUEST SPEAKER

RED HAT LINUX (IBM) APRIL 20

 15% off textbook code: LULUBOOKS15

(through Friday Apr 19)

 https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-

arpaci-dusseau/operating-systems-three-easy-pieces-

hardcover-version-110/hardcover/product -

15gjeeky.html?q=three+easy+pieces+operating+systems&pag

e=1&pageSize=4

 With coupon textbook is only $33.79 + tax & shipping

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.3

TEXT BOOK COUPON

 Tuesdays af ter class until 7:00pm
Hybrid (In-person/Zoom)

▪ This session will be in person in CP 229.

▪ Zoom will be monitored when no student is in CP 229.

 Thursdays after class until 7:00pm – Hybrid (In-person/Zoom)

▪ Additional office time will be held on Thursdays after class
when there is high demand indicated by a busy Tuesday
office hour

▪ When Thursday Office Hours are planned, Zoom links will
be shared via Canvas

▪ Questions after class on Thursdays are always entertained
even when the formal office hour is not scheduled

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.4

OFFICE HOURS – SPRING 2024

 Please join the TCSS 422 A – Spring 2024 Discord Server

https://discord.gg/H7PPZ5ArFW

 Under Edit Server Profile:

Please update your ‘Server Nickname’

to your real name or UW NET ID

THANK YOU

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.5

TCSS 422 DISCORD SERVER

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 0 - Due Fri Apr 19 | Assignment 1

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apr 30)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.6

OBJECTIVES – 4/18

1 2

3 4

5 6

https://washington.zoom.us/j/96445774685
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://discord.gg/H7PPZ5ArFW

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/18/2024

L8.2Slides by Wes J. Lloyd

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

April 18, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.7

ONLINE DAILY FEEDBACK SURVEY

April 18, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L8.8

 Please classify your perspective on material covered in today’s

class (28 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.93 (- previous 6.81)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.21 (- previous 5.42)

April 18, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.9

MATERIAL / PACE

 How are the t ickets and strides represented and used in the

kernel?

 Linux does not use the lottery or stride scheduler

 Linux uses the Completely Fair Scheduler (CFS)

 CFS tracks vruntime for each job, which capture a job’s

runtime

 CFS attempts to balance accumulative vruntime between jobs

 CFS does not use tickets or stride values

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.10

FEEDBACK FROM 4/16

 I 'm not fully c lear on the dif ference between normal and real -
t ime CFS scheduling c lasses. What does real -time mean in
this context?

 “Real time” refers to a class of high priority processes which
must response with minimal delay (latency)

 These "real-time" processes are special time-critical
applications that need precise control over the way in which
runnable threads are selected for execution.

 In general, these may be system processes which must
respond to I/O or other critical operations

 These manual pages provide additional useful information:

 man sched_setscheduler

 man 7 sched

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.11

FEEDBACK - 2

 Still confused with some of the schedule. only comfortable

with Red Robin

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.12

FEEDBACK - 3

?

7 8

9 10

11 12

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/18/2024

L8.3Slides by Wes J. Lloyd

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 0 - Due Fri Apr 19 | Assignment 1

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apr 30)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.13

OBJECTIVES – 4/18

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 0 - Due Fri Apr 19 | Assignment 1

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apr 30)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.14

OBJECTIVES – 4/18

 Due Friday April 19 @ 11:59pm

 Grace period: submission ok until Sun Apr 21 @ 11:59 PM

 Late submissions thru Tuesday Apr 23 @ 11:59pm

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.15

ASSIGNMENT 0 - DUE FRI APR 19

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 0 - Due Fri Apr 19 | Assignment 1

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apr 30)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.16

OBJECTIVES – 4/18

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 0 - Due Fri Apr 19 | Assignment 1

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apr 30)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.17

OBJECTIVES – 4/18

 Active reading on Chapter 9 – Proportional Share Schedulers

 Posted in Canvas

 Due Thursday April 25 th at 11:59pm

 Link:

 https://faculty.washington.edu/wlloyd/courses/tcss422/

quiz/TCSS422_s2024_quiz_1.pdf

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.18

QUIZ 1

13 14

15 16

17 18

http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_s2024_quiz_1.pdf
http://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_s2024_quiz_1.pdf
http://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_s2024_quiz_1.pdf

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/18/2024

L8.4Slides by Wes J. Lloyd

 Canvas Quiz – Practice CPU Scheduling Problems

 Posted in Canvas

 Unlimited attempts permitted

 Due Tuesday May 2nd at 11:59pm

 Link:

 ht tps://canvas.uw.edu/courses/1728244/quizzes/2030525

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.19

QUIZ 2

WE WILL RETURN AT

5:00PM

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L8.20

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 0 - Due Fri Apr 19 | Assignment 1

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apr 30)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.21

OBJECTIVES – 4/18

 More information:

 Man page: “man sched” : Describes Linux scheduling API

 http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

 https://www.kernel.org/doc/Documentation/scheduler/sched -

design-CFS.txt

 https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

 See paper: The Linux Scheduler – a Decade of Wasted Cores

 http://www.ece.ubc.ca/~sasha/papers/eurosys16 -final29.pdf

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.22

COMPLETELY FAIR SCHEDULER - 7

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 0 - Due Fri Apr 19 | Assignment 1

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apr 30)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.23

OBJECTIVES – 4/18

CHAPTER 26 -

CONCURRENCY:

AN INTRODUCTION

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L8.24

19 20

21 22

23 24

https://canvas.uw.edu/courses/1728244/quizzes/2030525
http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/18/2024

L8.5Slides by Wes J. Lloyd

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.25

THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED

 Enables a single process (program) to have multiple “workers”

▪ This is parallel programming…

 Supports independent path(s) of execution within a program

with shared memory …

 Each thread has its own Thread Control Block (TCB)

▪ PC, registers, SP, and stack

 Threads share code segment, memory, and heap are shared

 What is an embarrassingly parallel program?

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.26

THREADS - 2

 Thread Control Block vs. Process Control Block

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.27

PROCESS AND THREAD METADATA

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.28

SHARED ADDRESS SPACE

 Every thread has it’s own stack / PC

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.29

THREAD CREATION EXAMPLE

int main() Thread 1 Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2

Runs

Prints ‘B’

Returns

Prints ‘main: end’

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.30

POSSIBLE ORDERINGS OF EVENTS

25 26

27 28

29 30

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/18/2024

L8.6Slides by Wes J. Lloyd

int main() Thread 1 Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Runs

Prints ‘A’

Returns

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1 Returns immediately

Waits for T2 Returns immediately

Prints ‘main: end’

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.31

POSSIBLE ORDERINGS OF EVENTS - 2

int main() Thread 1 Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.32

POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
events in the program matters?

 Counter example

 A + B : ordering

 Counter: incrementing global variable by two threads

 Is the counter example embarrassingly parallel?

 What does the parallel counter program require?

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.33

COUNTER EXAMPLE

 What’s the dif ference between forks and threads?

▪ Forks: duplicate a process

▪ Think of CLONING - There will be two identical processes at the end

▪ Threads: no duplication of code/heap, lightweight execution threads

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.34

PROCESSES VS. THREADS

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 0 - Due Fri Apr 19 | Assignment 1

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apr 30)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.35

OBJECTIVES – 4/18

 What is happening with our counter?

▪ When counter=50, consider code: counter = counter + 1

▪ If synchronized, counter will = 52

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.36

RACE CONDITION

31 32

33 34

35 36

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/18/2024

L8.7Slides by Wes J. Lloyd

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 0 - Due Fri Apr 19 | Assignment 1

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apr 30)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.37

OBJECTIVES – 4/18

 Code that accesses a shared variable must not be

concurrently executed by more than one thread

 Multiple active threads inside a critical section produce a

race condition .

 Atomic execution (all code executed as a unit) must be

ensured in critical sections

▪ These sections must be mutually exclusive

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.38

CRITICAL SECTION

 To demonstrate how critical section(s) can be executed

“atomically -as a unit” Chapter 27 & beyond introduce locks

 Counter example revisited

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.39

LOCKS

 With locks

▪ 2 threads count to 16 million

▪ ~1.4 seconds

▪ COUNT IS CORRECT – no data loss

 Without locks

▪ 2 threads count to 16 million

▪ ~0.03 seconds

▪ COUNT IS INCORRECT - DATA IS LOST

 Correct version is 46.6 x slower

▪ Cost is 16 million Lock & Unlock API calls

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.40

COUNTER EXAMPLE

CHAPTER 27 -

LINUX

THREAD API

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L8.41

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 0 - Due Fri Apr 19 | Assignment 1

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apr 30)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.42

OBJECTIVES – 4/18

37 38

39 40

41 42

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/18/2024

L8.8Slides by Wes J. Lloyd

 pthread_create

 thread: thread struct

 attr : stack size, scheduling priority… (optional)

 start_routine: function pointer to thread routine

 arg: argument to pass to thread routine (optional)

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.43

THREAD CREATION

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.44

PTHREAD_CREATE – PASS ANY DATA

 Here we “cast” the pointer to pass/return a primitive data type

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.45

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

 thread: which thread?

 value_ptr: pointer to return value

 type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid

▪ May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.46

WAITING FOR THREADS TO FINISH

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L8.47

struct myarg {
 int a;
 int b;
};

void *worker(void *arg)
{
 struct myarg *input = (struct myarg *) arg;
 printf("a=%d b=%d\n",input->a, input->b);
 struct myarg output;
 output.a = 1;
 output.b = 2;
 return (void *) &output;
}

int main (int argc, char * argv[])
{
 pthread_t p1;
 struct myarg args;
 struct myarg *ret_args;
 args.a = 10;
 args.b = 20;
 pthread_create(&p1, NULL, worker, &args);
 pthread_join(p1, (void *)&ret_args);
 printf("returned %d %d\n", ret_args->a, ret_args->b);
 return 0;
}

What will this code do?

How can this code be fixed?

$./pthread_struct
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L8.48

struct myarg {
 int a;
 int b;
};

void *worker(void *arg)
{
 struct myarg *input = (struct myarg *) arg;
 printf("a=%d b=%d\n",input->a, input->b);
 input->a = 1;
 input->b = 2;
 return (void *) &input;
}

int main (int argc, char * argv[])
{
 pthread_t p1;
 struct myarg args;
 struct myarg *ret_args;
 args.a = 10;
 args.b = 20;
 pthread_create(&p1, NULL, worker, &args);
 pthread_join(p1, (void *)&ret_args);
 printf("returned %d %d\n", ret_args->a, ret_args->b);
 return 0;
}

$./pthread_struct
a=10 b=20
returned 1 2

How about this code?

43 44

45 46

47 48

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/18/2024

L8.9Slides by Wes J. Lloyd

 Casting

 Suppresses compiler warnings when passing “typed” data

where (void) or (void *) is called for

 Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’
from incompatible pointer type [-Wincompatible-pointer-types]

 pthread_join(p1, &p1val);

 Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument
is of type ‘int **’

 extern int pthread_join (pthread_t __th, void **__thread_return);

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.49

ADDING CASTS

 pthread_join

 int * p1val;

 int * p2val;

 pthread_join(p1, (void *)&p1val);

 pthread_join(p2, (void *)&p2val);

 return from thread function

 int * counterval = malloc(sizeof(int));

 *counterval = counter;

 return (void *) counterval;

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.50

ADDING CASTS - 2

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 0 - Due Fri Apr 19 | Assignment 1

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apr 30)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.51

OBJECTIVES – 4/18

 pthread_mutex_t data type

 /usr/include/bits/pthread_types.h

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.52

LOCKS

// Global Address Space
static volatile int counter = 0;
pthread_mutex_t lock;

void *worker(void *arg)
{
 int i;
 for (i=0;i<10000000;i++) {
 int rc = pthread_mutex_lock(&lock);
 assert(rc==0);
 counter = counter + 1;
 pthread_mutex_unlock(&lock);
 }
 return NULL;
}

 Ensure critical sections are executed atomically -as a unit

▪ Provides implementation of “Mutual Exclusion”

 API

 Example w/o initialization & error checking

▪ Blocks forever until lock can be obtained

▪ Enters critical section once lock is obtained

▪ Releases lock

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.53

LOCKS - 2

 Assigning the constant

 API call:

 Initializes mutex with attributes specified by 2 nd argument

 If NULL, then default attributes are used

 Upon initialization, the mutex is initialized and unlocked

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.54

LOCK INITIALIZATION

49 50

51 52

53 54

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/18/2024

L8.10Slides by Wes J. Lloyd

 Error checking wrapper

 What if lock can’t be obtained?

 trylock – returns immediately (fails) if lock is unavailable

 timelock – tr ies to obtain a lock for a specified duration

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.55

LOCKS - 3

 Questions from 4/18

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 0 - Due Fri Apr 19 | Assignment 1

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apr 30)

 Chapter 9: Proportional Share Schedulers

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Race condition

▪ Critical section

 Chapter 27: Linux Thread API

▪ pthread_create/_join

▪ pthread_mutex_lock/_unlock/_trylock/_timelock

▪ pthread_cond_wait/_signal/_broadcast

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.56

OBJECTIVES – 4/18

 Condition variables support “signaling”
between threads

 pthread_cont_t datatype

 pthread_cond_wait()

▪ Puts thread to “sleep” (waits) (THREAD is BLOCKED)

▪ Threads added to >FIFO queue<, lock is released

▪ Waits (listens) for a “signal” (NON-BUSY WAITING, no polling)

▪ When signal occurs, interrupt fires, wakes up first thread,
(THREAD is RUNNING), lock is provided to thread

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.57

CONDITIONS AND SIGNALS

 pthread_cond_signal()

▪ Called to send a “signal” to wake -up first thread in FIFO “wait” queue

▪ The goal is to unblock a thread to respond to the signal

 pthread_cond_broadcast()

▪ Unblocks all threads in FIFO “wait” queue , currently blocked on the
specified condition variable

▪ Broadcast is used when all threads should wake-up for the signal

 Which thread is unblocked first?

▪ Determined by OS scheduler (based on priority)

▪ Thread(s) awoken based on placement order in FIFO wait queue

▪ When awoken threads acquire lock as in pthread_mutex_lock()

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.58

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

 Wait example:

 wait puts thread to sleep, releases lock

 when awoken, lock reacquired (but then released by this code)

 When initialized, another thread signals

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);

while (initialized == 0)

 pthread_cond_wait(&cond, &lock);

// Perform work that requires lock

a = a + b;

pthread_mutex_unlock(&lock);

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.59

CONDITIONS AND SIGNALS - 3

State variable set,
Enables other thread(s)

to proceed above.

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);

while (initialized == 0)

 pthread_cond_wait(&cond, &lock);

// Perform work that requires lock

a = a + b;

pthread_mutex_unlock(&lock);

 Why do we wait inside a while loop?

 The while ensures upon awakening the condition is rechecked

▪ A signal is raised, but the pre-conditions required to proceed may

have not been met. **MUST CHECK STATE VARIABLE**

▪ Without checking the state variable the thread may proceed to

execute when it should not. (e.g. too early)

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.60

CONDITION AND SIGNALS - 4

55 56

57 58

59 60

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/18/2024

L8.11Slides by Wes J. Lloyd

 Compilation:

gcc requires special option to require programs with pthreads:

▪ gcc –pthread pthread.c –o pthread

▪ Explicitly links library with compiler flag

▪ RECOMMEND: using makefile to provide compiler arguments

 List of pthread manpages

▪ man –k pthread

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.61

PTHREADS LIBRARY

 Example builds multiple single file programs

▪ All target

 pthread_mult

▪ Example if multiple source files should produce a single executable

 clean target

April 18, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L8.62

SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
 $(CC) $(CFLAGS) $^ -o $@

clean:
 $(RM) -f $(binaries) *.o

QUESTIONS

61 62

63

	Slide 1: TCSS 422: Operating Systems
	Slide 2: Industry guest speaker red hat linux (IBM) April 20
	Slide 3: Text book coupon
	Slide 4: Office hours – Spring 2024
	Slide 5: TCSS 422 Discord server
	Slide 6: OBJECTIVES – 4/18
	Slide 7: Online daily feedback survey
	Slide 8
	Slide 9: Material / pace
	Slide 10: Feedback from 4/16
	Slide 11: Feedback - 2
	Slide 12: Feedback - 3
	Slide 13: OBJECTIVES – 4/18
	Slide 14: OBJECTIVES – 4/18
	Slide 15: Assignment 0 - Due Fri Apr 19
	Slide 16: OBJECTIVES – 4/18
	Slide 17: OBJECTIVES – 4/18
	Slide 18: Quiz 1
	Slide 19: Quiz 2
	Slide 20: We will return at 5:00pm
	Slide 21: OBJECTIVES – 4/18
	Slide 22: Completely fair scheduler - 7
	Slide 23: OBJECTIVES – 4/18
	Slide 24: Chapter 26 -Concurrency: An introduction
	Slide 25: Threads
	Slide 26: Threads - 2
	Slide 27: Process and thread metadata
	Slide 28: Shared Address space
	Slide 29: Thread creation example
	Slide 30: Possible Orderings of events
	Slide 31: Possible Orderings of events - 2
	Slide 32: Possible orderings of events - 3
	Slide 33: Counter example
	Slide 34: Processes vs. threads
	Slide 35: OBJECTIVES – 4/18
	Slide 36: Race condition
	Slide 37: OBJECTIVES – 4/18
	Slide 38: Critical section
	Slide 39: locks
	Slide 40: Counter example
	Slide 41: Chapter 27 - Linux Thread API
	Slide 42: OBJECTIVES – 4/18
	Slide 43: Thread creation
	Slide 44: Pthread_create – pass any data
	Slide 45: Passing a single value
	Slide 46: Waiting for threads to finish
	Slide 47
	Slide 48
	Slide 49: ADDING CASTS
	Slide 50: Adding casts - 2
	Slide 51: OBJECTIVES – 4/18
	Slide 52: locks
	Slide 53: Locks - 2
	Slide 54: Lock initialization
	Slide 55: Locks - 3
	Slide 56: OBJECTIVES – 4/18
	Slide 57: Conditions and signals
	Slide 58: Conditions and signals - 2
	Slide 59: conditions and signals - 3
	Slide 60: Condition and SIGNALS - 4
	Slide 61: Pthreads library
	Slide 62: Sample Makefile
	Slide 63: Questions

