
TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.1Slides by Wes J. Lloyd

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

Multi-level Feedback Queue II,
Proportional Share Schedulers,
Linux Completely Fair Scheduler

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

L7.2

EXTRA CREDIT SEMINAR - FRIDAY
Research Talk: Rethinking Reliability in Large-Scale
Distributed Systems

Dr. Li (Lilly) Wu, Postdoctoral Research Associate in the
College of Information and Computer Sciences at UMass
Amherst.

Friday Jan 23, 12:20pm - 1:20pm MDS 313 (room may
change)

Abstract: Today’s distributed systems have evolved into a vast
continuum, from hyperscale cloud data centers spanning continents,
to 1000s of edge servers operating closer to users and devices. These
systems power transformative workloads, such as AI-driven and
microservices-based applications, reshaping domains including
scientific discovery, autonomous transportation, and real-time digital
experiences. As systems continue to grow in scale and complexity,
they are becoming increasingly fragile. The impact of poor reliability
is no longer confined to service outages; it increasingly af fects
everyday life, critical infrastructure, and safety -sensitive applications.
Ensuring large systems operate correctly in the presence of failures
requires rethinking reliability as a 1st-class design principle.

1

2

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.2Slides by Wes J. Lloyd

L7.3

EXTRA CREDIT SEMINAR - FRIDAY
Research Talk: Rethinking Reliability in Large -Scale Distributed
Systems

Dr. Li (Lilly) Wu, Postdoctoral Research Associate in the College of
Information and Computer Sciences at UMass Amherst.

Friday Jan 23, 12:20pm - 1:20pm MDS 313 (room may change)

Abstract cont’d : This talk highlights two pressing challenges to achieving
this goal. First, many latency -critical applications are now deployed at
the edge, where computing resources are limited and failures are more
frequent, making traditional fault-tolerance mechanisms impractical.
Second, modern distr ibuted applications consist of hundreds of
interacting services spanning thousands of machines; as a result, a
single fault can quickly propagate, generating tens or even hundreds of
anomalies—cascading failures—that make root-cause localization
extremely dif ficult. To address these challenges, I will present two
systems: FailLite and MicroRCA. FailLite is a resil ient edge AI system that
rethinks fault tolerance for AI workloads under resource constraints. I t
intelligently deploys smaller backup models and strategically places
them to maximize service availability with negligible accuracy loss.
MicroRCA focuses on root-cause diagnosis for cascading failures in cloud
microservices. I t uses a graph-based approach to model anomaly
propagation and accurately identify root causes at runtime. Together,
these systems support a broader vision of making AI systems reliable by
design, enabling AI -driven applications to be deployed and operated
reliably at scale. I will conclude the talk by outlining my future research
directions.

 15% off textbook code: AAC72SAVE15

 https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-

arpaci-dusseau/operating-systems-three-easy-pieces-

hardcover-version-110/hardcover/product-

15gjeeky.html?q=three+easy+pieces+operating+systems&pag

e=1&pageSize=4

 With coupon textbook is only $33.79 + tax & shipping

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.4

TEXT BOOK COUPON

3

4

https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.3Slides by Wes J. Lloyd

 Office Hours plan for Winter:

 Tuesday 2:30 - 3:30 pm Instructor Wes, Zoom

 Tue/Thur 6:00 - 7:00 pm Instructor Wes, CP 229/Zoom

 Tue 6:00 – 7:00 pm GTA Robert, Zoom/MDS 302

 Wed 1:00 – 2:00 pm GTA Robert, Zoom/MDS 302

 Instructor is available after class at 6pm in CP 229

each day

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.5

TCSS 422 – OFFICE HRS – WINTER 2026

 To help prepare for quiz 1 and the midterm

 Wednesday January 28, 6 pm

 CP 108 and live-streamed on Zoom

 Recording is posted

 Sample problems solved

 Sample problem solutions are posted online:

 https://faculty.washington.edu/wlloyd/courses/tcss422/sche

duler_examples_w2026-solutions.pdf

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.6

BONUS SESSION –

CPU SCHEDULING PROBLEMS

5

6

https://faculty.washington.edu/wlloyd/courses/tcss422/scheduler_examples_w2026-solutions.pdf
https://faculty.washington.edu/wlloyd/courses/tcss422/scheduler_examples_w2026-solutions.pdf
https://faculty.washington.edu/wlloyd/courses/tcss422/scheduler_examples_w2026-solutions.pdf
https://faculty.washington.edu/wlloyd/courses/tcss422/scheduler_examples_w2026-solutions.pdf
https://faculty.washington.edu/wlloyd/courses/tcss422/scheduler_examples_w2026-solutions.pdf
https://faculty.washington.edu/wlloyd/courses/tcss422/scheduler_examples_w2026-solutions.pdf

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.4Slides by Wes J. Lloyd

 Questions from 1/27

 Assignment 0 - Due Fri Jan 30 AOE

 C Tutorial - Pointers, Strings, Exec in C - Due Wed Feb 11 AOE

 Quiz 1 and Quiz 2

 Chapter 8: Multi-level Feedback Queue

▪ Examples

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction
▪ Introduction

▪ Race condition

▪ Critical section

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.7

OBJECTIVES – 1/29

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

January 29, 2026
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L7.8

ONLINE DAILY FEEDBACK SURVEY

7

8

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.5Slides by Wes J. Lloyd

January 29, 2026
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L7.9

 Please classify your perspective on material covered in today’s

class (37 of 46 respondents – 80.4% - 7 online) :

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.00 ( - previous 7.03)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.59 ( - previous 5.08)

January 29, 2026
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L7.10

MATERIAL / PACE

9

10

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.6Slides by Wes J. Lloyd

 How is a job’s allotment time being tracked? Where in the CPU

is it being tracked?

 The Linux kernel tracks ‘vruntime’ for every process/thread

in the system – this is in the struct task_struct process

data structure described in chapter 4

 We talk about this more in chapter 9

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.11

FEEDBACK FROM 1/27

 For MLFQ, what is the dif ference between *time quantum*

and *time slice*?

▪ These terms are synonymous – they mean the same thing

 If an MLFQ has too many levels and frequently performs

priority boosts (low S value), which should you change f irst?

▪ If priority boosts are frequent, then jobs will never reach the lower

queues. The lower queues can be removed as they will likely be

under-utilized, if ever used at all.

 If there are multiple jobs spanning multiple quques, does each

higher prorioty queue need to process its jobs before moving

to jobs in a lower priority queue

▪ YES

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.12

FEEDBACK - 2

11

12

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.7Slides by Wes J. Lloyd

 In the MLFQ, how does job starvation work?

▪ If higher queues are full, and using all of the available

time, then jobs in lower queues may never have an

opportunity to run

▪ The solution is to Priority Boost – which is to periodically

reset all jobs back to the top-most high priority queue,

where they can run for a short time slice in round-robin

order

▪ Jobs that use their full time slice without relinquishing the

CPU will have their priority lowered

▪ Jobs that give up the CPU before using their full time slice

will remain in the top-most high priority queue

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.13

FEEDBACK - 3

 Which of these scheduler’s do today’s operating systems use?

 Chapter 9 introduces the Linux Completely Fair Scheduler
(CFS)

 CFS was used until version 6.5 of the Linux kernel

 Starting with Linux kernel 6.6+ (Oct 29 2023), CFS was
replaced with the Earliest Eligible Vir tual Deadline First
(EEVDF) scheduler

 Ubuntu 24.04 LTS launched with the 6.8 Linux Kernel,
and is now using 6.11 this quarter which is EEVDF

 We will not test on the EEVDF scheduler since it is not in the
textbook

▪ I’ve created 1 slide on EEVDF for the end of Chapter 9

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.14

FEEDBACK - 4

13

14

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.8Slides by Wes J. Lloyd

 Questions from 1/27

 Assignment 0 - Due Fri Jan 30 AOE

 C Tutorial - Pointers, Strings, Exec in C - Due Wed Feb 11 AOE

 Quiz 1 and Quiz 2

 Chapter 8: Multi-level Feedback Queue

▪ Examples

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction
▪ Introduction

▪ Race condition

▪ Critical section

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.15

OBJECTIVES – 1/29

 Due Friday Jan 30 AOE (Jan 31 4:59am)

 Grace period: submission ok until Mon Feb 2 @ 4:59 AM

 Late submissions thru Wed Feb 4 @ 4:59am

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.16

ASSIGNMENT 0 - DUE FRI JAN 30 AOE

15

16

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.9Slides by Wes J. Lloyd

 Questions from 1/27

 Assignment 0 - Due Fri Jan 30 AOE

 C Tutorial - Pointers, Strings, Exec in C - Due Wed Feb 11 AOE

 Quiz 1 and Quiz 2

 Chapter 8: Multi-level Feedback Queue

▪ Examples

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction
▪ Introduction

▪ Race condition

▪ Critical section

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.17

OBJECTIVES – 1/29

 Questions from 1/27

 Assignment 0 - Due Fri Jan 30 AOE

 C Tutorial - Pointers, Strings, Exec in C - Due Wed Feb 11 AOE

 Quiz 1 and Quiz 2

 Chapter 8: Multi-level Feedback Queue

▪ Examples

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction
▪ Introduction

▪ Race condition

▪ Critical section

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.18

OBJECTIVES – 1/29

17

18

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.10Slides by Wes J. Lloyd

 Active reading on Chapter 9 – Proportional Share Schedulers

 Posted in Canvas

 Due Wed Feb 4 th AOE (Thur Feb 5 4:59 am)

 Link:

 https://faculty.washington.edu/wlloyd/courses/tcss422/quiz/

TCSS422_w2026_quiz_1.pdf

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.19

QUIZ 1

 Canvas Quiz – Practice CPU Scheduling Problems

 Posted in Canvas

 Unlimited attempts

 Due Tuesday Feb 10 th AOE (Feb 11 th at 4:59am)

 Link:

 https://canvas.uw.edu/courses/1871290/assignments/ 11129208

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.20

QUIZ 2

19

20

https://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_w2026_quiz_1.pdf
https://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_w2026_quiz_1.pdf
https://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_w2026_quiz_1.pdf
https://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_w2026_quiz_1.pdf
https://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_w2026_quiz_1.pdf
https://canvas.uw.edu/courses/1871290/assignments/11129208
https://canvas.uw.edu/courses/1871290/assignments/11129208
https://canvas.uw.edu/courses/1871290/assignments/11129208
https://canvas.uw.edu/courses/1871290/assignments/11129208

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.11Slides by Wes J. Lloyd

 Assignment #1

▪ The Runtime is Right Shell

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.21

ASSIGNMENT 1

 Questions from 1/27

 Assignment 0 - Due Fri Jan 30 AOE

 C Tutorial - Pointers, Strings, Exec in C - Due Wed Feb 11 AOE

 Quiz 1 and Quiz 2

 Chapter 8: Multi-level Feedback Queue

▪ Examples

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction
▪ Introduction

▪ Race condition

▪ Critical section

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.22

OBJECTIVES – 1/29

21

22

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.12Slides by Wes J. Lloyd

 Question:

 Given a system with a total quantum length of 10 ms for all

jobs to run before priority is lowered in the highest queue,

what priority boost interval is required to boost jobs back to

the highest priority level to guarantee that a single long -

running (and potentially starving) job gets at least 5% of the

CPU?

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.23

EXAMPLE

 Question:

 Given a system with a quantum length of 10 ms for al l jobs in its

highest queue, what priority boost interval is required to boost jobs

back to the highest priority level to guarantee that a single long -

running (and potentially starving) job gets at least 5% of the CPU?

 Consider that a set of n jobs runs for a total of 10 ms per cycle.

These are not batch jobs, since they give up the CPU before 10ms.

▪ E.g. 2 jobs = 5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs = 1 ms ea

▪ combined n jobs use up full time quantum of highest queue (10 ms)

▪ A batch job will run for full quantum 10ms, then pushed to lower queue

▪ All other jobs run and context switch totaling the quantum per cycle

▪ If 10ms is 5% of the CPU (across queues), what must the priority boost

be ???

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.24

EXAMPLE

23

24

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.13Slides by Wes J. Lloyd

 Question:

 Given a system with a total quantum length of 10 ms for al l jobs to
run before priority is lowered in the highest queue, what priority
boost interval is required to boost jobs back to the highest priority
level to guarantee that a single long -running (and potentially
starving) job gets at least 5% of the CPU?

.

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.25

EXAMPLE

 Questions from 1/27

 Assignment 0 - Due Fri Jan 30 AOE

 C Tutorial - Pointers, Strings, Exec in C - Due Wed Feb 11 AOE

 Quiz 1 and Quiz 2

 Chapter 8: Multi-level Feedback Queue

▪ Examples

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction
▪ Introduction

▪ Race condition

▪ Critical section

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.26

OBJECTIVES – 1/29

25

26

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.14Slides by Wes J. Lloyd

CHAPTER 9 -

PROPORTIONAL SHARE

SCHEDULER

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L7.27

 Also called fair-share scheduler

 or lottery scheduler

▪ Guarantees each job receives some percentage of CPU

time based on share of “tickets”

▪ Each job receives an allotment of tickets

▪% of tickets corresponds to potential share of a resource

▪ Can conceptually schedule any resource this way

▪ CPU, disk I/O, memory

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.28

PROPORTIONAL SHARE SCHEDULER

27

28

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.15Slides by Wes J. Lloyd

 Simple implementation

▪ Just need a random number generator

▪ Picks the winning ticket

▪Maintain a data structure of jobs and tickets (list)

▪ Traverse list to find the owner of the ticket

▪ Consider sorting the list for speed

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.29

LOTTERY SCHEDULER

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.30

LOTTERY SCHEDULER IMPLEMENTATION

1 // counter: used to track if we’ve found the winner yet

2 int counter = 0;

3

4 // winner: use some call to a random number generator to

5 // get a value, between 0 and the total # of tickets

6 int winner = getrandom(0, totaltickets);

7

8 // current: use this to walk through the list of jobs

9 node_t *current = head;

10

11 // loop until the sum of ticket values is > the winner

12 while (current) {

13 counter = counter + current->tickets;

14 if (counter > winner)

15 break; // found the winner

16 current = current->next;

17 }

18 // ’current’ is the winner: schedule it...

29

30

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.16Slides by Wes J. Lloyd

 Questions from 1/27

 Assignment 0 - Due Fri Jan 30 AOE

 C Tutorial - Pointers, Strings, Exec in C - Due Wed Feb 11 AOE

 Quiz 1 and Quiz 2

 Chapter 8: Multi-level Feedback Queue

▪ Examples

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction
▪ Introduction

▪ Race condition

▪ Critical section

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.31

OBJECTIVES – 1/29

 Ticket currency / exchange

▪ User allocates tickets in any desired way

▪ OS converts user currency into global currency

 Example:

▪ There are 200 global tickets assigned by the OS

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.32

TICKET MECHANISMS

31

32

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.17Slides by Wes J. Lloyd

 Ticket transfer

▪ Temporarily hand off tickets to another process

 Ticket inflation

▪ Process can temporarily raise or lower the number of

tickets it owns

▪ If a process needs more CPU time, it can boost tickets.

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.33

TICKET MECHANISMS - 2

 Scheduler picks a winning ticket

▪ Load the job with the winning ticket and run it

 Example:

▪ Given 100 tickets in the pool

▪ Job A has 75 tickets: 0 - 74

▪ Job B has 25 tickets: 75 – 99

 But what do we know about probability of a coin flip?

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.34

LOTTERY SCHEDULING

Scheduled job:

33

34

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.18Slides by Wes J. Lloyd

 Equality of distribution (fairness) requires a lot of flips!

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.35

COIN FLIPPING

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.36

LOTTERY FAIRNESS

 With two jobs

▪ Each with the same number of tickets (t=100)

When the job length is not very long,
average unfairness can be quite severe.

35

36

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.19Slides by Wes J. Lloyd

 What is the best approach to assign tickets to jobs?

▪ Typical approach is to assume users know best

▪ Users are provided with tickets, which they allocate as

desired

 How should the OS automatically distribute tickets upon

job arrival?

▪What do we know about incoming jobs a priori ?

▪ Ticket assignment is really an open problem…

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.37

LOTTERY SCHEDULING CHALLENGES

 Questions from 1/27

 Assignment 0 - Due Fri Jan 30 AOE

 C Tutorial - Pointers, Strings, Exec in C - Due Wed Feb 11 AOE

 Quiz 1 and Quiz 2

 Chapter 8: Multi-level Feedback Queue

▪ Examples

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction
▪ Introduction

▪ Race condition

▪ Critical section

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.38

OBJECTIVES – 1/29

37

38

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.20Slides by Wes J. Lloyd

Addresses statistical probability issues with

lottery scheduling

 Instead of guessing a random number to select a

job, simply count…

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.39

STRIDE SCHEDULER

 Jobs have a “stride” value

▪ A stride value describes the counter pace when the job should

give up the CPU

▪ Stride value is inverse in proportion to the job’s number of

tickets (more tickets = smaller stride)

 Total system tickets = 10,000

▪ Job A has 100 tickets → Astride = 10000/100 = 100 stride

▪ Job B has 50 tickets → Bstride = 10000/50 = 200 stride

▪ Job C has 250 tickets → Cstride = 10000/250 = 40 stride

 Stride scheduler tracks “pass” values for each job (A, B, C)

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.40

STRIDE SCHEDULER - 2

39

40

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.21Slides by Wes J. Lloyd

 Basic algorithm:

1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and

starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a

new job (go to 1)

 KEY: When the counter reaches a job’s “PASS” value,

the scheduler passes on to the next job…

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.41

STRIDE SCHEDULER - 3

Stride values

▪Tickets = priority to select job

▪Stride is inverse to tickets

▪Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.42

STRIDE SCHEDULER - EXAMPLE

41

42

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.22Slides by Wes J. Lloyd

 Three-way tie: randomly pick job A (all pass values=0)

 Set A’s pass value to A’s stride = 100

 Increment counter until > 100

 Pick a new job: two-way tie

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.43

STRIDE SCHEDULER EXAMPLE - 2

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and receives a lot of
opportunities to run…

Initial job selection
is random. All @ 0

 We set A’s counter (pass value) to A’s stride = 100

 Next scheduling decision between B (pass=0) and C (pass=0)

▪ Randomly choose B

 C has the lowest counter for next 3 rounds

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.44

STRIDE SCHEDULER EXAMPLE - 3

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and is selected to run
more often …

43

44

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.23Slides by Wes J. Lloyd

 Job counters support determining which job to run next

 Over time jobs are scheduled to run based on their

priority represented as their share of tickets…

 Tickets are analogous to job priority

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.45

STRIDE SCHEDULER EXAMPLE - 4

Tickets
C = 250
A = 100
B = 50

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L7.46

45

46

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.24Slides by Wes J. Lloyd

WE WILL RETURN AT

5:02PM

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L7.47

 Questions from 1/27

 Assignment 0 - Due Fri Jan 30 AOE

 C Tutorial - Pointers, Strings, Exec in C - Due Wed Feb 11 AOE

 Quiz 1 and Quiz 2

 Chapter 8: Multi-level Feedback Queue

▪ Examples

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction
▪ Introduction

▪ Race condition

▪ Critical section

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.48

OBJECTIVES – 1/29

47

48

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.25Slides by Wes J. Lloyd

 Large Google datacenter study:

“Profiling a Warehouse -scale Computer” (Kanev et al.)

 Monitored 20,000 servers over 3 years

 Found 20% of CPU time spent in the Linux kernel

 5% of CPU time spent

in the CPU scheduler!

 Study highlights

importance for

high performance

OS kernels and

CPU schedulers !

S e e : h t t p s : / / d l . a c m . o r g / d o i / p d f / 1 0 . 1 1 4 5 / 2 7 4 9 4 6 9 . 2 7 5 0 3 9 2

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.49

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi -Tasking System

▪ In a perfect system every process of the same priority (class)

receives exactly 1/n th of the CPU time

 Each scheduling class has a runqueue

▪ Groups processes of the same class

▪ In the class, scheduler picks task w/ lowest vruntime to run

▪ Time slice varies based on how many jobs in shared runqueue

▪ Minimum time slice prevents too many context switches

(e.g. 3 ms)

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.50

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

49

50

https://dl.acm.org/doi/pdf/10.1145/2749469.2750392

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.26Slides by Wes J. Lloyd

 Every thread/process has a scheduling class (policy):

 Normal classes: SCHED_OTHER (TS), SCHED_IDLE,

SCHED_BATCH

▪ TS = Time Sharing (most user processes have this class)

 Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

 How to show scheduling class and priority:

 #class

ps –elfc

 #priority (nice value)

ps ax -o pid,ni,cls,pri,cmd

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.51

COMPLETELY FAIR SCHEDULER - 2

 Linux ≥ 2.6.23: Completely Fair Scheduler (CFS)

 Linux < 2.6.23: O(1) scheduler

 Linux maintains simple counter (vruntime) to track how long

each thread/process has run

 CFS picks process with lowest vruntime to run next

 CFS adjusts timeslice based on # of proc waiting for the CPU

 Kernel parameters that specify CFS behavior:

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.52

COMPLETELY FAIR SCHEDULER - 3

$ sudo sysctl kernel.sched_latency_ns

kernel.sched_latency_ns = 24000000

$ sudo sysctl kernel.sched_min_granularity_ns

kernel.sched_min_granularity_ns = 3000000

$ sudo sysctl kernel.sched_wakeup_granularity_ns

kernel.sched_wakeup_granularity_ns = 4000000

51

52

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.27Slides by Wes J. Lloyd

 Sched_min_granularity_ns (3ms)

▪ Time slice for a process: busy system (w/ full runqueue)

▪ If system has idle capacity, time slice exceeds the min as long as

difference in vruntime between running process and process with

lowest vruntime is less than sched_wakeup_granularity_ns

(4ms)

 Scheduling time period is: total cycle time for iterating through a

set of processes where each is allowed to run

(like round robin)

 Example:

sched_latency_ns (24ms)

if (proc in runqueue < sched_latency_ns/sched_min_granularity)

or

sched_min_granularity_ns * number of processes in runqueue

R e f : h t t p s : / / w w w . s y s t u t o r i a l s . c o m / s c h e d _ m i n _ g r a n u l a r i t y _ n s - s c h e d _ l a t e n c y _ n s - c f s - a f f e c t - t i m e s l i c e - p r o c e s s e s /

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.53

COMPLETELY FAIR SCHEDULER - 4

 HIGH sched_min_granularity_ns (timeslice)

 sched_latency_ns

 sched_wakeup_granularity_ns

CFS features reduced context switching → less overhead

poor near-term fairness

 LOW sched_min_granularity_ns (timeslice)

 sched_latency_ns

 sched_wakreup_granularity_ns

CFS features increased context switching → more overhead

better near-term fairness

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.54

CFS TRADEOFF

53

54

https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.28Slides by Wes J. Lloyd

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.55

COMPLETELY FAIR SCHEDULER - 5

 Runqueues are stored using a Linux red-black tree

▪ Self balancing binary tree - nodes indexed by vruntime

 Leftmost node has lowest

vruntime (approx execution time)

 Walking tree to find left

most node has very low

big O complexity:
~O(log N) for N nodes

 Completed processes

are removed

 Time slice: Linux “Nice value”

▪ Nice predates the CFS scheduler

▪ Top shows nice values

▪ Process command (nice & priority):
ps ax -o pid,ni,cmd,%cpu, pri

 Nice Values: from -20 to 19

▪ Lower is higher priority, default is 0

▪ vruntime is a weighted time measurement

▪ Priority weights the calculation of vruntime within a

runqueue to give high priority jobs a boost.

▪ Influences job’s position in rb-tree

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.56

CFS: JOB PRIORITY

55

56

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.29Slides by Wes J. Lloyd

 CFS tracks cumulative job run time with the vruntime variable

 The task on a given runqueue with the lowest vruntime is scheduled
next

 struct sched_entity contains vruntime parameter

▪ Describes process execution time in nanoseconds

▪ Value is not pure runtime, is weighted based on job priority

▪ GOAL: Perfect scheduler →
achieve equal vruntime for all processes of same priority

 Sleeping jobs: upon return a temporary vruntime can be used to
increase temporarily the priority of the task

 When tasks wait for I/O they should receive a comparable share of
the CPU as if they were performing compute ops when run again

 Key takeaway:
identifying the next job to schedule is really fast!

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.57

COMPLETELY FAIR SCHEDULER - 6

 More information:

 Man page: “man sched” : Describes Linux scheduling API

 http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

 https://www.kernel.org/doc/Documentation/scheduler/sched -

design-CFS.txt

 https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

 See paper: The Linux Scheduler – a Decade of Wasted Cores

 http://www.ece.ubc.ca/~sasha/papers/eurosys16 -final29.pdf

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.58

COMPLETELY FAIR SCHEDULER - 7

57

58

http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/29/2026

L7.30Slides by Wes J. Lloyd

 Earliest Eligible Virtual Deadline First (EEVDF) Scheduler

▪ Linux kernel version 6.6, October 29, 2023

▪ First described in a research article in 1995

 Like CFS, EEVDF aims to distribute CPU time equally among all
runnable tasks with the same priority.

 EEVDF assigns a virtual runtime to each task, creating a “lag” value
that is used to determine whether a task has received its fair share
of CPU time

▪ A task with a positive lag is owed CPU time

▪ A task with negative lag has exceeded its timeshare

 EEVDF calculates a virtual deadline (VD) for each task with lag
greater or equal to zero

 Task with the earliest virtual deadline is selected to run next

 Virtual deadlines enable latency -sensitive tasks with shorter -time
slices to be prioritized more than CFS which helps improve
responsiveness

 More info: https://docs.kernel.org/scheduler/sched -eevdf.html

January 29, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L7.59

BEYOND CFS → EEVDF SCHEDULER

QUESTIONS

59

77

https://docs.kernel.org/scheduler/sched-eevdf.html
https://docs.kernel.org/scheduler/sched-eevdf.html
https://docs.kernel.org/scheduler/sched-eevdf.html

	Slide 1: TCSS 422: Operating Systems
	Slide 2
	Slide 3
	Slide 4: Text book coupon
	Slide 5: Tcss 422 – office hrs – Winter 2026
	Slide 6: Bonus session – cpu scheduling problems
	Slide 7: OBJECTIVES – 1/29
	Slide 8: Online daily feedback survey
	Slide 9
	Slide 10: Material / pace
	Slide 11: Feedback from 1/27
	Slide 12: Feedback - 2
	Slide 13: Feedback - 3
	Slide 14: Feedback - 4
	Slide 15: OBJECTIVES – 1/29
	Slide 16: Assignment 0 - Due Fri Jan 30 AOE
	Slide 17: OBJECTIVES – 1/29
	Slide 18: OBJECTIVES – 1/29
	Slide 19: Quiz 1
	Slide 20: Quiz 2
	Slide 21: Assignment 1
	Slide 22: OBJECTIVES – 1/29
	Slide 23: example
	Slide 24: example
	Slide 25: example
	Slide 26: OBJECTIVES – 1/29
	Slide 27: Chapter 9 -Proportional Share Scheduler
	Slide 28: Proportional share scheduler
	Slide 29: Lottery scheduler
	Slide 30: Lottery scheduler implementation
	Slide 31: OBJECTIVES – 1/29
	Slide 32: Ticket mechanisms
	Slide 33: Ticket mechanisms - 2
	Slide 34: Lottery scheduling
	Slide 35: Coin flipping
	Slide 36: Lottery fairness
	Slide 37: Lottery scheduling challenges
	Slide 38: OBJECTIVES – 1/29
	Slide 39: Stride scheduler
	Slide 40: Stride scheduler - 2
	Slide 41: Stride scheduler - 3
	Slide 42: Stride scheduler - example
	Slide 43: Stride scheduler example - 2
	Slide 44: Stride scheduler example - 3
	Slide 45: Stride scheduler example - 4
	Slide 46
	Slide 47: We will return at 5:02pm
	Slide 48: OBJECTIVES – 1/29
	Slide 49: Linux: completely fair scheduler (CFS)
	Slide 50: Linux: Completely fair scheduler (CFS)
	Slide 51: Completely fair scheduler - 2
	Slide 52: Completely fair scheduler - 3
	Slide 53: Completely fair scheduler - 4
	Slide 54: Cfs TRADEOFF
	Slide 55: Completely fair scheduler - 5
	Slide 56: CFS: job priority
	Slide 57: Completely fair scheduler - 6
	Slide 58: Completely fair scheduler - 7
	Slide 59: Beyond CFS  EEVDF Scheduler
	Slide 77: Questions

