TCSS 422 A — Winter 2026 1/29/2026
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Multi-level Feedback Queue ll,
Proportional Share Schedulers,
Linux Completely Fair Scheduler g

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2026]

Lantany2e2026 School of Engineering and Technology, University of Washington

EXTRA CREDIT SEMINAR - FRIDAY

Research Talk: Rethinking Reliability in Large-Scale
Distributed Systems

Dr. Li (Lilly) Wu, Postdoctoral Research Associate in the
College of Information and Computer Sciences at UMass
Ambherst.

Friday Jan 23, 12:20pm - 1:20pm MDS 313 (room may
change)

Abstract: Today’'s distributed systems have evolved into a vast
continuum, from hyperscale cloud data centers spanning continents,
to 1000s of edge servers operating closer to users and devices. These
systems power transformative workloads, such as Al-driven and
microservices-based applications, reshaping domains including
scientific discovery, autonomous transportation, and real-time digital
experiences. As systems continue to grow in scale and complexity,
they are becoming increasingly fragile. The impact of poor reliability
is no longer confined to service outages; it increasingly affects
everyday life, critical infrastructure, and safety-sensitive applications.
Ensuring large systems operate correctly in the presence of failures
requires rethinking reliability as a 1st-class design principle. 172

Slides by Wes J. Lloyd L7.1

TCSS 422 A — Winter 2026 1/29/2026
School of Engineering and Technology

EXTRA CREDIT SEMINAR - FRIDAY
Research Talk: Rethinking Reliability in Large-Scale Distributed
Systems

Dr. Li (Lilly) Wu, Postdoctoral Research Associate in the College of
Information and Computer Sciences at UMass Amherst.

Friday Jan 23, 12:20pm - 1:20pm MDS 313 (room may change)

Abstract cont’d: This talk highlights two pressing challenges to achieving
this goal. First, many latency-critical applications are now deployed at
the edge, where computing resources are limited and failures are more
frequent, making traditional fault-tolerance mechanisms impractical.
Second, modern distributed applications consist of hundreds of
interacting services spanning thousands of machines; as a result, a
single fault can quickly propagate, generating tens or even hundreds of
anomalies—cascading failures—that make root-cause localization
extremely difficult. To address these challenges, | will present two
systems: FailLite and MicroRCA. FailLite is a resilient edge Al system that
rethinks fault tolerance for Al workloads under resource constraints. It
intelligently deploys smaller backup models and strategically places
them to maximize service availability with negligible accuracy loss.
MicroRCA focuses on root-cause diagnosis for cascading failures in cloud
microservices. It uses a graph-based approach to model anomaly
propagation and accurately identify root causes at runtime. Together,
these systems support a broader vision of making Al systems reliable by
design, enabling Al-driven applications to be deployed and operated
reliably at scale. | will conclude the talk by outlining my future research
directions. 173

TEXT BOOK COUPON

= 15% off textbook code: AAC72SAVE15

= https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remazi-
arpaci-dusseau/operating-systems-three-easy-pieces-
hardcover-version-110/hardcover/product-
15gjeeky.html?q=three+easy+piecest+operating+systems&pag
e=1&pageSize=4

= With coupon textbook is only $33.79 + tax & shipping

January 29, 2026

TCSS422: Operating Systems [Winter 2026] 7.4
School of Engineering and Technology, University of Washington - Tacoma :

Slides by Wes J. Lloyd L7.2

https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4

TCSS 422 A — Winter 2026 1/29/2026
School of Engineering and Technology

TCSS 422 - OFFICE HRS - WINTER 2026

= Office Hours plan for Winter:

= Tuesday 2:30 - 3:30 pm Instructor Wes, Zoom

® Tue/Thur 6:00 - 7:00 pm Instructor Wes, CP 229/Zoom
= Tue 6:00 - 7:00 pm GTA Robert, Zoom/MDS 302

= Wed 1:00 - 2:00 pm GTA Robert, Zoom/MDS 302

® [nstructor is available after class at 6pm in CP 229
each day

TCSS422: Operating Systems [Winter 2026] | 175 |

January|29,2026 School of Engineering and Technology, University of Washington - Tacoma

BONUS SESSION -

CPU SCHEDULING PROBLEMS

= To help prepare for quiz 1 and the midterm

= Wednesday January 28, 6 pm
= CP 108 and live-streamed on Zoom
= Recording is posted

= Sample problems solved
® Sample problem solutions are posted online:

= https://faculty.washington.edu/wlloyd/courses/tcss422/sche
duler_examples_w2026-solutions.pdf

TCSS422: Operating Systems [Winter 2026] 7.6
School of Engineering and Technology, University of Washington - Tacoma :

January 29, 2026

Slides by Wes J. Lloyd L7.3

https://faculty.washington.edu/wlloyd/courses/tcss422/scheduler_examples_w2026-solutions.pdf
https://faculty.washington.edu/wlloyd/courses/tcss422/scheduler_examples_w2026-solutions.pdf
https://faculty.washington.edu/wlloyd/courses/tcss422/scheduler_examples_w2026-solutions.pdf
https://faculty.washington.edu/wlloyd/courses/tcss422/scheduler_examples_w2026-solutions.pdf
https://faculty.washington.edu/wlloyd/courses/tcss422/scheduler_examples_w2026-solutions.pdf
https://faculty.washington.edu/wlloyd/courses/tcss422/scheduler_examples_w2026-solutions.pdf

TCSS 422 A — Winter 2026
School of Engineering and Technology

OBJECTIVES - 1/29

[= Questions from 1/27]
= Assignment O - Due Fri Jan 30 AOE
® C Tutorial - Pointers, Strings, Exec in C - Due Wed Feb 11 AOE
® Quiz 1 and Quiz 2
® Chapter 8: Multi-level Feedback Queue
= Examples
= Chapter 9: Proportional Share Schedulers
= | ottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

TCSS422: Operating Systems [Winter 2026]
L7.7
January|29,2026 School of Engineering and Technology, University of Washington - Tacoma

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
® Tuesday surveys: due by ~ Wed @ 11:59p

® Thursday surveys: due ~ Mon @ 11:59p
— TC55422 A » Assignments

Spring 2021
Home

Announcements

* Upcoming Assignments

Zoom
Syllabus TCSS 422 - Online Daily Feedback Survey - 4/1
** Available until Apr 5 at 11:59pm | Due Apr 5 at 10pm | -/1 pts
Dicruccinng P Y S WO o S0 | [e
TCSS422: Computer Operating Systems [Spring 2025] | 7.8 |

LantaiviRo 12020 School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

1/29/2026

L7.4

TCSS 422 A — Winter 2026
School of Engineering and Technology

TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions

[C | Question1 0.5 pts

On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:

el 2 3 4 5 6 7 9 10
Mostly Equal Mostly
Review To Me New and Review New to Me

O Question 2 0.5 pts

Please rate the pace of today’s class:

1 2 3 4 5 6 7 8 9 160

Slow Just Right Fast

TCSS422: Computer Operating Systems [Spring 2025]

gantavi2an2e School of Engineering and Technology, University of Washington - Tacoma L7.9

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (37 of 46 respondents - 80.4% - 7 online) :

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 7.00 ({ - previous 7.03)

= Please rate the pace of today’s class:
® 1-slow, 5-just right, 10-fast
= Average - 5.59 (T - previous 5.08)

TCSS422: Computer Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma L7.10

January 29, 2026

10

Slides by Wes J. Lloyd

1/29/2026

L7.5

TCSS 422 A — Winter 2026
School of Engineering and Technology

FEEDBACK FROM 1/27

= How is a job’s allotment time being tracked? Where in the CPU

is it being tracked?

® The Linux kernel tracks ‘vruntime’ for every process/thread
in the system - this is in the struct task_struct process
data structure described in chapter 4

m We talk about this more in chapter 9

TCSS422: Operating Systems [Winter 2026]

L7.11
School of Engineering and Technology, University of Washington - Tacoma

January 29, 2026

11

FEEDBACK - 2

= For MLFQ, what is the difference between *time quantum*
and *time slice*?
= These terms are synonymous - they mean the same thing

= |f an MLFQ has too many levels and frequently performs
priority boosts (low S value), which should you change first?
= If priority boosts are frequent, then jobs will never reach the lower

queues. The lower queues can be removed as they will likely be
under-utilized, if ever used at all.

= |If there are multiple jobs spanning multiple quques, does each
higher prorioty queue need to process its jobs before moving
to jobs in a lower priority queue
= YES

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma L712

January 29, 2026

12

Slides by Wes J. Lloyd

1/29/2026

L7.6

TCSS 422 A — Winter 2026
School of Engineering and Technology

FEEDBACK - 3

= |n the MLFQ, how does job starvation work?

= |If higher queues are full, and using all of the available
time, then jobs in lower queues may never have an
opportunity to run

= The solution is to Priority Boost - which is to periodically
reset all jobs back to the top-most high priority queue,
where they can run for a short time slice in round-robin
order

= Jobs that use their full time slice without relinquishing the
CPU will have their priority lowered

= Jobs that give up the CPU before using their full time slice
will remain in the top-most high priority queue

TCSS422: Operating Systems [Winter 2026]

January|29,2026 School of Engineering and Technology, University of Washington - Tacoma

L7.13

13

FEEDBACK - 4

= Which of these scheduler’s do today’s operating systems use?

= Chapter 9 introduces the Linux Completely Fair Scheduler
(CFS)

® CFS was used until version 6.5 of the Linux kernel

® Starting with Linux kernel 6.6+ (Oct 29 2023), CFS was
replaced with the Earliest Eligible Virtual Deadline First
(EEVDF) scheduler

= Ubuntu 24.04 LTS launched with the 6.8 Linux Kernel,
and is now using 6.11 this quarter which is EEVDF

= We will not test on the EEVDF scheduler since it is not in the
textbook
= |'ve created 1 slide on EEVDF for the end of Chapter 9

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma L7.14

January 29, 2026

14

Slides by Wes J. Lloyd

1/29/2026

L7.7

TCSS 422 A — Winter 2026
School of Engineering and Technology

OBJECTIVES - 1/29

® Questions from 1/27
® C Tutorial - Pointers, Strings, Exec in C - Due Wed Feb 11 AOE
® Quiz 1 and Quiz 2
® Chapter 8: Multi-level Feedback Queue
= Examples
= Chapter 9: Proportional Share Schedulers
= | ottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

TCSS422: Operating Systems [Winter 2026]

January|29,2026 School of Engineering and Technology, University of Washington - Tacoma

L7.15

15

ASSIGNMENT O - DUE FRI JAN 30 AOE

® Due Friday Jan 30 AOE (Jan 31 4:59am)
® Grace period: submission ok until Mon Feb 2 @ 4:59 AM
® Late submissions thru Wed Feb 4 @ 4:59am

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma L7.16

January 29, 2026

16

Slides by Wes J. Lloyd

1/29/2026

L7.8

TCSS 422 A — Winter 2026
School of Engineering and Technology

OBJECTIVES - 1/29

® Questions from 1/27
= Assignment O - Due Fri Jan 30 AOE
L= C Tutorial - Pointers, Strings, Exec in C - Due Wed Feb 11 AOE |
® Quiz 1 and Quiz 2
® Chapter 8: Multi-level Feedback Queue
= Examples
= Chapter 9: Proportional Share Schedulers
= | ottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

TCSS422: Operating Systems [Winter 2026]

L7.17
School of Engineering and Technology, University of Washington - Tacoma

January 29, 2026

17

OBJECTIVES - 1/29

® Questions from 1/27
= Assignment O - Due Fri Jan 30 AOE
= C Tutorial - Pointers, Strings, Exec in C - Due Wed Feb 11 AOE

L= Quiz 1 and Quiz 2 J
= Chapter 8: Multi-level Feedback Queue
= Examples

= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

January 29, 2026 L7.18

18

Slides by Wes J. Lloyd

1/29/2026

L7.9

TCSS 422 A — Winter 2026
School of Engineering and Technology

QuUIZ 1

m Active reading on Chapter 9 - Proportional Share Schedulers

®m Posted in Canvas
= Due Wed Feb 4t AOE (Thur Feb 5 4:59 am)

= Link:

= https://faculty.washington.edu/wlloyd/courses/tcss422/quiz/
TCSS422 w2026_quiz_1.pdf

TCSS422: Operating Systems [Winter 2026]

January|29,2026 School of Engineering and Technology, University of Washington - Tacoma

L7.19

19

QUIZ 2

= Canvas Quiz - Practice CPU Scheduling Problems

= Posted in Canvas
® Unlimited attempts
= Due Tuesday Feb 10t" AOE (Feb 11t" at 4:59am)

= Link:
= https://canvas.uw.edu/courses/1871290/assignments/11129208

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma L7.20

January 29, 2026

20

Slides by Wes J. Lloyd

1/29/2026

L7.10

https://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_w2026_quiz_1.pdf
https://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_w2026_quiz_1.pdf
https://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_w2026_quiz_1.pdf
https://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_w2026_quiz_1.pdf
https://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_w2026_quiz_1.pdf
https://canvas.uw.edu/courses/1871290/assignments/11129208
https://canvas.uw.edu/courses/1871290/assignments/11129208
https://canvas.uw.edu/courses/1871290/assignments/11129208
https://canvas.uw.edu/courses/1871290/assignments/11129208

TCSS 422 A — Winter 2026
School of Engineering and Technology

ASSIGNMENT 1

® Assighment #1
= The Runtime is Right Shell

TCSS422: Operating Systems [Winter 2026]

L7.21
School of Engineering and Technology, University of Washington - Tacoma

January 29, 2026

21

OBJECTIVES - 1/29

® Questions from 1/27

= Assignment O - Due Fri Jan 30 AOE

= C Tutorial - Pointers, Strings, Exec in C - Due Wed Feb 11 AOE
® Quiz 1 and Quiz 2

= Chapter 8: Multi-level Feedback Queue

= Examples]

= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

January 29, 2026 L7.22

22

Slides by Wes J. Lloyd

1/29/2026

L7.11

TCSS 422 A — Winter 2026

1/29/2026
School of Engineering and Technology

EXAMPLE

® Question:

= Given a system with a total quantum length of 10 ms for all
jobs to run before priority is lowered in the highest queue,
what priority boost interval is required to boost jobs back to
the highest priority level to guarantee that a single long-

running (and potentially starving) job gets at least 5% of the
CPU?

TCSS422: Operating Systems [Winter 2026]
January|29,2026 School of Engineering and Technology, University of Washington - Tacoma

L7.23 |

23

EXAMPLE

® Question:

= Given a system with a quantum length of 10 ms for all jobs in its
highest queue, what priority boost interval is required to boost jobs
back to the highest priority level to guarantee that a single long-
running (and potentially starving) job gets at least 5% of the CPU?

® Consider that a set of n jobs runs for a total of 10 ms per cycle.
These are not batch jobs, since they give up the CPU before 10ms.
= E.g. 2 jobs =5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs = 1 ms ea
= combined n jobs use up full time quantum of highest queue (10 ms)
= A batch job will run for full quantum 10ms, then pushed to lower queue
= All other jobs run and context switch totaling the quantum per cycle

= If 10ms is 5% of the CPU (across queues), what must the priority boost
be 22?

January 29, 2026 TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma L7.24

24

Slides by Wes J. Lloyd L7.12

TCSS 422 A — Winter 2026
School of Engineering and Technology

EXAMPLE

® Question:

= Given a system with a total quantum length of 10 ms for all jobs to
run before priority is lowered in the highest queue, what priority
boost interval is required to boost jobs back to the highest priority
level to guarantee that a single long-running (and potentially
starving) job gets at least 5% of the CPU?

PR
& BCDE ..,
Y
Ql . 05 PB - l O
Qp
10 ¢ PR - (0 _ 200 us
405
| January 29, 2026 TCSS422: Operating Systems [Winter 2026]

L7.2!
School of Engineering and Technology, University of Washington - Tacoma s

25

OBJECTIVES - 1/29

® Questions from 1/27

= Assignment O - Due Fri Jan 30 AOE

= C Tutorial - Pointers, Strings, Exec in C - Due Wed Feb 11 AOE
® Quiz 1 and Quiz 2

= Chapter 8: Multi-level Feedback Queue

= Examples
= Chapter 9: Proportional Share Schedulers
| = Lottery scheduler |

= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

January 29, 2026 TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma L7.26

26

Slides by Wes J. Lloyd

1/29/2026

L7.13

TCSS 422 A — Winter 2026
School of Engineering and Technology

CHAPTER 9 -
PROPORTIONAL SHARE
SCHEDULER

TCSS422: Operating Systems [Winter 2026]

Ty 2R, A0S School of Engineering and Technology, University of Washington -

PROPORTIONAL SHARE SCHEDULER

® Also called fair-share scheduler
or lottery scheduler

= Guarantees each job receives some percentage of CPU
time based on share of “tickets”

= Each job receives an allotment of tickets
= % of tickets corresponds to potential share of a resource

= Can conceptually schedule any resource this way
= CPU, disk I/0, memory

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma L7.28

January 29, 2026

28

Slides by Wes J. Lloyd

1/29/2026

L7.14

TCSS 422 A — Winter 2026
School of Engineering and Technology

LOTTERY SCHEDULER

= Simple implementation

= Just need a random number generator
Picks the winning ticket

= Maintain a data structure of jobs and tickets (list)

= Traverse list to find the owner of the ticket

= Consider sorting the list for speed

TCSS422: Operating Systems [Winter 2026]

January|29,2026 School of Engineering and Technology, University of Washington - Tacoma

L7.29 |

29

LOTTERY SCHEDULER IMPLEMENTATION

head
1 counter: u t k if we’ve found the ne et
2 int counter =
3
4 win a umk
5 get a and tal
6 int winner = getrandom(0, totaltickets);
7
8 current: use this to walk through the list of jobs
9 node_t *current = head;
10
11 oop until the sum of ticket values is > the winner
12 while (current) {
13 counter = counter + current->tickets;
14 f (counter > winner)
15 break; found the winne
16 current = current->next;
17 }
18 ’current’ s the winner: schedule
January 29, 2026 TCSS422: Operating Systems [Winter 2026] 17.30

School of Engineering and Technology, University of Washington - Tacoma

30

Slides by Wes J. Lloyd

1/29/2026

L7.15

TCSS 422 A — Winter 2026
School of Engineering and Technology

OBJECTIVES - 1/29

® Questions from 1/27
= Assignment O - Due Fri Jan 30 AOE
® C Tutorial - Pointers, Strings, Exec in C - Due Wed Feb 11 AOE
® Quiz 1 and Quiz 2
® Chapter 8: Multi-level Feedback Queue
= Examples
= Chapter 9: Proportional Share Schedulers
= | ottery scheduler
|__=Ticket mechanisms]
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

TCSS422: Operating Systems [Winter 2026]

January|29,2026 School of Engineering and Technology, University of Washington - Tacoma

L7.31

31

TICKET MECHANISMS

= Ticket currency / exchange
= User allocates tickets in any desired way
= OS converts user currency into global currency

= Example:
=There are 200 global tickets assigned by the 0S

User A > 500 (A's currency) to A1 = 50 (global currency)
= 500 (A's currency) to A2 2> 50 (global currency)

User B = I10(B's currency) to BL = 100 (global currency)

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

January 29, 2026 L7.32

32

Slides by Wes J. Lloyd

1/29/2026

L7.16

TCSS 422 A — Winter 2026
School of Engineering and Technology

TICKET MECHANISMS - 2

® Ticket transfer
= Temporarily hand off tickets to another process

® Ticket inflation

= Process can temporarily raise or lower the number of
tickets it owns

= |f a process needs more CPU time, it can boost tickets.

TCSS422: Operating Systems [Winter 2026]

January|29,2026 School of Engineering and Technology, University of Washington - Tacoma

L7.33

33

LOTTERY SCHEDULING

® Scheduler picks a winning ticket
= Load the job with the winning ticket and run it

= Example:

= Given 100 tickets in the pool
Job A has 75 tickets: 0 - 74
Job B has 25 tickets: 75 - 99

Scheduler’s winning tickets: 63 85 70 39 76 17 29 41 36 39 10 99 68 83 63
Scheduledjob: A B A A B A A A A A A B AB A

= But what do we know about probability of a coin flip?

TCSS422: Operating Systems [Winter 2026]

LantaiviRo 12020 School of Engineering and Technology, University of Washington - Tacoma

L7.34

34

Slides by Wes J. Lloyd

1/29/2026

L7.17

TCSS 422 A — Winter 2026 1/29/2026
School of Engineering and Technology

COIN FLIPPING

m Equality of distribution (fairness) requires a lot of flips!

100

90
80
70
60
50 1
40

All heads

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

Increasing number of coin tosses

TCSS422: Operating Systems [Winter 2026]

January|29,2026 School of Engineering and Technology, University of Washington - Tacoma

L7.35 |

35

LOTTERY FAIRNESS

= With two jobs
= Each with the same number of tickets (t=100)

LT T e PP
0.84
0.6

0.4

Unfairness (Average)

0.24

0.0 T T 1
1 10 100 1000

Job Length

When the job length is not very long,
average unfairness can be

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

January 29, 2026

36

Slides by Wes J. Lloyd L7.18

TCSS 422 A — Winter 2026
School of Engineering and Technology

LOTTERY SCHEDULING CHALLENGES

® What is the best approach to assign tickets to jobs?
= Typical approach is to assume users know best

= Users are provided with tickets, which they allocate as
desired

® How should the OS automatically distribute tickets upon
job arrival?

= What do we know about incoming jobs a priori ?
= Ticket assignment is really an open problem...

TCSS422: Operating Systems [Winter 2026]

January|29,2026 School of Engineering and Technology, University of Washington - Tacoma

L7.37

37

OBJECTIVES - 1/29

® Questions from 1/27
= Assignment O - Due Fri Jan 30 AOE
= C Tutorial - Pointers, Strings, Exec in C - Due Wed Feb 11 AOE
® Quiz 1 and Quiz 2
= Chapter 8: Multi-level Feedback Queue
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms

= Stride scheduler]

= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma L7.38

January 29, 2026

38

Slides by Wes J. Lloyd

1/29/2026

L7.19

TCSS 422 A — Winter 2026
School of Engineering and Technology

STRIDE SCHEDULER

= Addresses statistical probability issues with
lottery scheduling

® |nstead of guessing a random number to select a
job, simply count...

TCSS422: Operating Systems [Winter 2026]

January|29,2026 School of Engineering and Technology, University of Washington - Tacoma

L7.39

39

STRIDE SCHEDULER - 2

® Jobs have a “stride” value

= A stride value describes the counter pace when the job should
give up the CPU

= Stride value is inverse in proportion to the job’s number of
tickets (more tickets = smaller stride)

® Total system tickets = 10,000
= Job A has 100 tickets > A qe = 10000/100 = 100 stride
= Job B has 50 tickets 2 B4 = 10000/50 = 200 stride
= Job C has 250 tickets - C,,;4. = 10000/250 = 40 stride

® Stride scheduler tracks “pass” values for each job (A, B, C)

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma L7.40

January 29, 2026

40

Slides by Wes J. Lloyd

1/29/2026

L7.20

TCSS 422 A — Winter 2026
School of Engineering and Technology

STRIDE SCHEDULER - 3

® Basic algorithm:
1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and
starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a
new job (go to 1)

= KEY: When the counter reaches a job’s “PASS” value,
the scheduler passes on to the next job...

TCSS422: Operating Systems [Winter 2026]

L7.41
School of Engineering and Technology, University of Washington - Tacoma

January 29, 2026

41

STRIDE SCHEDULER - EXAMPLE

= Stride values
=Tickets = priority to select job
=Stride is inverse to tickets
=Lower stride = more chances to run (higher priority)

Priority
C stride = 40
A stride = 100
B stride = 200

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

January 29, 2026 L7.42

42

Slides by Wes J. Lloyd

1/29/2026

L7.21

TCSS 422 A — Winter 2026

1/29/2026
School of Engineering and Technology

STRIDE SCHEDULER EXAMPLE - 2

= Three-way tie: randomly pick job A (all pass values=0)
m Set A’s pass value to A’s stride = 100

. Tickets
® |[ncrement counter until > 100 C—- 250
= Pick a new job: two-way tie A =100
Pass(A) Pass(E) Pass(C) Who Runs? B = 50
(stride=100) (stride=200) (stride=40)
0 0 0 A « Initial job selection
100 0 0 is random. All @ 0
100 200 0 C
100 200 40 C « C has the most tickets
100 200 80 C and receives a lot of
100 200 120 A opportunities to run...
200 200 120 C
200 200 160 C
200 200 200
January 29, 2026 TCSS422: Operating Systems [Winter 2026]

L7.43

School of Engineering and Technology, University of Washington - Tacoma

43

STRIDE SCHEDULER EXAMPLE - 3

m We set A’s counter (pass value) to A’s stride = 100
® Next scheduling decision between B (pass=0) and C (pass=0)

n
Randomly choose B Tickets
= C has the lowest counter for next 3 rounds C =250
Pass(A) Pass(2) Pass(C) Who Runs? A =100
(stride=100) (stride=200) (stride=40) B = 50
0 0 0 A
100 0 0
100 200 0 C
100 200 40 C « C has the most tickets
100 200 80 C and is selected to run
100 200 120 A more often ...
200 200 120 C
200 200 160 C
200 200 200
January 29, 2026 TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma L7.44

44

Slides by Wes J. Lloyd L7.22

TCSS 422 A — Winter 2026 1/29/2026
School of Engineering and Technology

STRIDE SCHEDULER EXAMPLE - 4

= Job counters support determining which job to run next
® Qver time jobs are scheduled to run based on their

priority represented as their share of tickets... Tickets
= Tickets are analogous to job priority g = igg
Pass(A) Pass(2) Pass(C) Who Runs? B =50
(stride=100) (stride=200) (stride=40)
0 0 0 A
100 0 0
100 200 0 C
100 200 40 C
100 200 80 C
100 200 120 A
200 200 120 C
200 200 160 C
200 200 200
TCSS422: O ting Syst [Winter 2026]
January|29,2026 School of E:geiI:e::'igngyanedn]I;chr:glz;y, University of Washington - Tacoma L7.45

45

Which of the following is NOT a problem with

proportional share schedulers?

How tickets should be distributed to incoming

jobs A

Lottery scheduler is only eventually fair B

Given 2 users A and B who both receive a 50%
timeshare of the system, the runtime for User A's C
jobs is dependent on the runtime of User B's.

All of the above D

None of the above E

TCSS422: Operating Systems [Winter 2026]
At MO e e i N e e vy Rp— Lradl

46

Slides by Wes J. Lloyd L7.23

TCSS 422 A — Winter 2026
School of Engineering and Technology

WE WILL RETURN AT
5:02PM

TCSS422: Operating Systems [Winter 2026]

Ty 2R, A0S School of Engineering and Technology, University of Washington -

OBJECTIVES - 1/29

® Questions from 1/27
= Assignment O - Due Fri Jan 30 AOE
= C Tutorial - Pointers, Strings, Exec in C - Due Wed Feb 11 AOE
® Quiz 1 and Quiz 2
= Chapter 8: Multi-level Feedback Queue
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler

| ® Linux Completely Fair Scheduler |

= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

January 29, 2026 L7.48

48

Slides by Wes J. Lloyd

1/29/2026

L7.24

TCSS 422 A — Winter 2026 1/29/2026
School of Engineering and Technology

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

= | arge Google datacenter study:
“Profiling a Warehouse-scale Computer” (Kanev et al.)

= Monitored 20,000 servers over 3 years
= Found 20% of CPU time spent in the Linux kernel

= 5% of CPU time spent ¥
in the CPU scheduler! 3

8 25
= Study highlights g -
importance for <
high performance 3 1 kemnel/sched
0S kernels and o

CPU schedulers !

Figure 5: Kernel time, especially time spent in the scheduler,
is a significant fraction of WSC cycles.
See: https://dl.acm.org/dol/pdi/10.1145/2749469.2750392

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

January 29, 2026 L7.49

49

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

® | oosely based on the stride scheduler

® CFS models system as a Perfect Multi-Tasking System

= In a perfect system every process of the same priority (class)
receives exactly 1/nth of the CPU time

® Each scheduling class has a runqueue
= Groups processes of the same class
= In the class, scheduler picks task w/ lowest vruntime to run
= Time slice varies based on how many jobs in shared runqueue

= Minimum time slice prevents too many context switches
(e.g. 3 ms)

TCSS422: Operating Systems [Winter 2026]

LantaiviRo 12020 School of Engineering and Technology, University of Washington - Tacoma

L7.50

50

Slides by Wes J. Lloyd L7.25

https://dl.acm.org/doi/pdf/10.1145/2749469.2750392

TCSS 422 A — Winter 2026 1/29/2026
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER - 2

m Every thread/process has a scheduling class (policy):

= Normal classes: SCHED_OTHER (TS), SCHED_IDLE,
SCHED_BATCH

= TS = Time Sharing (most user processes have this class)
= Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

= How to show scheduling class and priority:
" #class
ps —-elfc

" priority (nice value)
pPs ax -o pid,ni,cls,pri,cmd

January 29, 2026 TCSS422: Operating Systems [Winter 2026]

L7.51
School of Engineering and Technology, University of Washington - Tacoma 5

51

COMPLETELY FAIR SCHEDULER - 3

® Linux 2 2.6.23: Completely Fair Scheduler (CFS)
B Linux < 2.6.23: O(1) scheduler

= Linux maintains simple counter (vruntime) to track how long
each thread/process has run

= CFS picks process with lowest vruntime to run next

®m CFS adjusts timeslice based on # of proc waiting for the CPU

= Kernel parameters that specify CFS behavior:
$ sudo sysctl kernel.sched_latency_ns
kernel.sched_latency_ns = 24000000
$ sudo sysctl kernel.sched_min_granularity_ns
kernel.sched_min_granularity_ns = 3000000
$ sudo sysctl kernel.sched_wakeup_granularity_ns
kernel.sched_wakeup_granularity_ns = 4000000

TCSS422: Operating Systems [Winter 2026]
LantaiviRo 12020 School of Engineering and Technology, University of Washington - Tacoma

L7.52

52

Slides by Wes J. Lloyd L7.26

TCSS 422 A — Winter 2026 1/29/2026
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER - 4

= Sched_min_granularity_ns (3ms)
= Time slice for a process: busy system (w/ full runqueue)
= |f system has idle capacity, time slice exceeds the min as long as
difference in vruntime between running process and process with
lowest vruntime is less than sched_wakeup granularity ns
(4ms)
® Scheduling time period is: total cycle time for iterating through a
set of processes where each is allowed to run
(like round robin)
= Example:
sched_latency_ns (24ms)
if (proc in runqueue < sched_Tlatency_ns/sched_min_granularity)
or
sched_min_granularity_ns * number of processes in runqueue

Ref: https://www.systutorlals.com/sched_mIn_granularlty_ns-sched_latency_ns-cfs-affect-timeslice-processes/

TCSS422: Operating Systems [Winter 2026]

January|29,2026 School of Engineering and Technology, University of Washington - Tacoma

L7.53

53

CFS TRADEOFF

= HIGH sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakeup_granularity_ns

CFS features reduced context switching - less overhead
poor near-term fairness

= LOW sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakreup_granularity_ns

CFS features increased context switching - more overhead
better near-term fairness

TCSS422: Operating Systems [Winter 2026]

LantaiviRo 12020 School of Engineering and Technology, University of Washington - Tacoma

L7.54

54

Slides by Wes J. Lloyd L7.27

https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/

TCSS 422 A — Winter 2026
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER -5

® Runqueues are stored using a Linux red-black tree
= Self balancing binary tree - nodes indexed by vruntime
m | eftmost node has lowest
vruntime (approx execution time
= Walking tree to find left
most node has very low
big O complexity:
~0(log N) for N nodes
® Completed processes o
are removed

virtual runtime

Nodes represent

sched_entity(s)

indexed by their
wirtual runtime

Mg ED [

Most need of CPU Least need of CPU

TCSS422: Operating Systems [Winter 2026]

L7.
School of Engineering and Technology, University of Washington - Tacoma 55

January 29, 2026

55

CFS: JOB PRIORITY

® Time slice: Linux “Nice value”
= Nice predates the CFS scheduler
= Top shows nice values

= Process command (hice & priority)':
Ps ax -o pid,ni,cmd, %cpu, pri

= Nice Values: from -20 to 19
= Lower is higher priority, default is O
*vruntime is a weighted time measurement

* Priority weights the calculation of vruntime within a
runqueue to give high priority jobs a boost.
Influences job’s position in rb-tree

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma L7.56

January 29, 2026

56

Slides by Wes J. Lloyd

1/29/2026

L7.28

TCSS 422 A — Winter 2026
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER - 6

= CFS tracks cumulative job run time with the vruntime variable

= The task on a given runqueue with the lowest vruntime is scheduled
next

= struct sched_entity contains vruntime parameter
= Describes process execution time in nanoseconds
= Value is not pure runtime, is weighted based on job priority

= GOAL: Perfect scheduler >
achieve equal vruntime for all processes of same priority

® Sleeping jobs: upon return a temporary vruntime can be used to
increase temporarily the priority of the task

® When tasks wait for I/0 they should receive a comparable share of
the CPU as if they were performing compute ops when run again

= Key takeaway:
identifying the next job to schedule is really fast!

TCSS422: Operating Systems [Winter 2026]

January|29,2026 School of Engineering and Technology, University of Washington - Tacoma

L7.57

57

COMPLETELY FAIR SCHEDULER - 7

® More information:

= Man page: “man sched” : Describes Linux scheduling API
= http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

= https://www.kernel.org/doc/Documentation/scheduler/sched-

design-CFS.txt
= https://en.wikipedia.org/wiki/Completely_ Fair_Scheduler

m See paper: The Linux Scheduler - a Decade of Wasted Cores
" http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma L7.58

January 29, 2026

58

Slides by Wes J. Lloyd

1/29/2026

L7.29

http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

TCSS 422 A — Winter 2026

School of Engineering and Technology

BEYOND CFS - EEVDF SCHEDULER

Earliest Eligible Virtual Deadline First (EEVDF) Scheduler

= Linux kernel version 6.6, October 29, 2023

= First described in a research article in 1995

Like CFS, EEVDF aims to distribute CPU time equally among all
runnable tasks with the same priority.

EEVDF assigns a virtual runtime to each task, creating a “lag” value
that is used to determine whether a task has received its fair share
of CPU time

= A task with a positive lag is owed CPU time

= A task with negative lag has exceeded its timeshare

EEVDF calculates a virtual deadline (VD) for each task with lag
greater or equal to zero

Task with the earliest virtual deadline is selected to run next
Virtual deadlines enable latency-sensitive tasks with shorter-time
slices to be prioritized more than CFS which helps improve
responsiveness

More info: https://docs.kernel.org/scheduler/sched-eevdf.html

TCSS422: Operating Systems [Winter 2026]

L7.
School of Engineering and Technology, University of Washington - Tacoma 759

January 29, 2026

59

QUESTIONS

77

Slides by Wes J. Lloyd

1/29/2026

L7.30

https://docs.kernel.org/scheduler/sched-eevdf.html
https://docs.kernel.org/scheduler/sched-eevdf.html
https://docs.kernel.org/scheduler/sched-eevdf.html

	Slide 1: TCSS 422: Operating Systems
	Slide 2
	Slide 3
	Slide 4: Text book coupon
	Slide 5: Tcss 422 – office hrs – Winter 2026
	Slide 6: Bonus session – cpu scheduling problems
	Slide 7: OBJECTIVES – 1/29
	Slide 8: Online daily feedback survey
	Slide 9
	Slide 10: Material / pace
	Slide 11: Feedback from 1/27
	Slide 12: Feedback - 2
	Slide 13: Feedback - 3
	Slide 14: Feedback - 4
	Slide 15: OBJECTIVES – 1/29
	Slide 16: Assignment 0 - Due Fri Jan 30 AOE
	Slide 17: OBJECTIVES – 1/29
	Slide 18: OBJECTIVES – 1/29
	Slide 19: Quiz 1
	Slide 20: Quiz 2
	Slide 21: Assignment 1
	Slide 22: OBJECTIVES – 1/29
	Slide 23: example
	Slide 24: example
	Slide 25: example
	Slide 26: OBJECTIVES – 1/29
	Slide 27: Chapter 9 -Proportional Share Scheduler
	Slide 28: Proportional share scheduler
	Slide 29: Lottery scheduler
	Slide 30: Lottery scheduler implementation
	Slide 31: OBJECTIVES – 1/29
	Slide 32: Ticket mechanisms
	Slide 33: Ticket mechanisms - 2
	Slide 34: Lottery scheduling
	Slide 35: Coin flipping
	Slide 36: Lottery fairness
	Slide 37: Lottery scheduling challenges
	Slide 38: OBJECTIVES – 1/29
	Slide 39: Stride scheduler
	Slide 40: Stride scheduler - 2
	Slide 41: Stride scheduler - 3
	Slide 42: Stride scheduler - example
	Slide 43: Stride scheduler example - 2
	Slide 44: Stride scheduler example - 3
	Slide 45: Stride scheduler example - 4
	Slide 46
	Slide 47: We will return at 5:02pm
	Slide 48: OBJECTIVES – 1/29
	Slide 49: Linux: completely fair scheduler (CFS)
	Slide 50: Linux: Completely fair scheduler (CFS)
	Slide 51: Completely fair scheduler - 2
	Slide 52: Completely fair scheduler - 3
	Slide 53: Completely fair scheduler - 4
	Slide 54: Cfs TRADEOFF
	Slide 55: Completely fair scheduler - 5
	Slide 56: CFS: job priority
	Slide 57: Completely fair scheduler - 6
	Slide 58: Completely fair scheduler - 7
	Slide 59: Beyond CFS  EEVDF Scheduler
	Slide 77: Questions

