TCSS 422 A — Spring 2025 4/22/2025
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Multi-level Feedback Queue Il,
Proportional Share Schedulers,
Linux Completely Fair Scheduler

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2025]

apali2212025 School of Engineering and Technology, University of Washington jll Tacoma

TEXT BOOK COUPON

= 15% off textbook code: HAPPYPLANET15
(through Friday Apr 25)

= https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-
arpaci-dusseau/operating-systems-three-easy-pieces-

hardcover-version-110/hardcover/product-

15gjeeky.html?q=three+easy+tpiecestoperatingtsystems&pag

e=1&pageSize=4

= With coupon textbook is only $33.79 + tax & shipping

TCSS422: Operating Systems [Spring 2025] | 172 |

Fymil| 22, 2007 School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L7.1

https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4

TCSS 422 A — Spring 2025 4/22/2025
School of Engineering and Technology

TCSS 422 - OFFICE HRS - SPRING 2025

= Office Hours plan for Spring (by Zoom):
= Monday 11:30am - 12:30p GTA Xinghan

= Tuesday 11:30am - 12:30p GTA Xinghan

= Wednesday 44:00am—12:00p Instructor Wes
= THIS WEEK: 5:30 to 6:30pm CP 229 & Zoom Instructor Wes

= Friday 12:00pm - 1:00p Instructor Wes or GTA Xinghan

= Office hours this Friday April 18t
= Wes

® [nstructor is available after class at 6pm in CP 229
each day

April 22, 2025

TCSS422: Operating Systems [Spring 2025] 173
School of Engineering and Technology, University of Washington - Tacoma :

BONUS SESSION -

CPU SCHEDULING PROBLEMS

= To help prepare for quiz 1 and the midterm

= Wednesday April 23, 4 to 5pm
= MLG 311 and live-streamed on Zoom
® Recording will be posted

® Sample problems will be solved
® Sample problems are posted online:

= https://faculty.washington.edu/wlloyd/courses/tcss422/
scheduler_examples_s2025.pdf

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma | 174

April 22, 2025

Slides by Wes J. Lloyd L7.2

https://faculty.washington.edu/wlloyd/courses/tcss422/scheduler_examples_s2025.pdf
https://faculty.washington.edu/wlloyd/courses/tcss422/scheduler_examples_s2025.pdf

TCSS 422 A — Spring 2025
School of Engineering and Technology

TCSS 422 DISCORD SERVER

® Please join the TCSS 422 A - Spring 2025 Discord Server

® https://discord.gg/H7PPZ5ArFW

= Under Edit Server Profile: Em -
Please update your ‘Server Nickname’ —
to your real name or UW NET ID
THANK YOU

TCSS422: Operating Systems [Spring 2025]

April 22,2025 School of Engineering and Technology, University of Washington - Tacoma

| L7.5 |

OBJECTIVES - 4/22

[" Questions from 4/17 |
" Assighment O - Due Fri Apr 26
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 30
® Quiz 1 and Quiz 2
= Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
® Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= |[ntroduction
= Race condition
= Critical section

TCSS422: Operating Systems [Spring 2025]

Fymil| 22, 2007 School of Engineering and Technology, University of Washington - Tacoma

| L7.6 |

Slides by Wes J. Lloyd

4/22/2025

L7.3

https://discord.gg/H7PPZ5ArFW

TCSS 422 A — Spring 2025 4/22/2025
School of Engineering and Technology

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
® Thursday surveys: due ~ Mon @ 11:59p
— TCSS 422 A » Assignments

Spring 2021
Home

Announcements

* Upcoming Assignments

Zoom

Syllabus « TCSS422- Online Daily Feedback Survey - 4/1
© Available until Apr 5 at 11:3%pm | Due Apr 5 at 10pm | -/1pts

Nicriiscinng Piiiz O - hael [BT

April 22, 2025

TCSS422: Computer Operating Systems [Spring 2025] 7.7
School of Engineering and Technology, University of Washington - Tacoma :

7
TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions
[Z| Question 1 0.5 pts
On a scale of 1 to 10, please classify your perspective on material covered in today's
class:
1 2 3 4 5 6 7 8 9 16
Mostly Equal Mostly
Review To Me New and Review NeWw to Me
[| Question 2 0.5 pts
Please rate the pace of today’s class:
el 2 3 4 5 6 7 9 10
slow Just Right Fast
. TCSS422: Computer Operating Systems [Spring 2025]
Spuilj222020 School of Engineering and Technology, University of Washington - Tacoma L7.8
8

Slides by Wes J. Lloyd L7.4

TCSS 422 A — Spring 2025
School of Engineering and Technology

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (44 of 63 respondents - 69.8%) :

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.32 (J - previous 6.88)

= Please rate the pace of today’s class:
m 1-slow, 5-just right, 10-fast
= Average - 4.98 ({ - previous 5.05)

TCSS422: Computer Operating Systems [Spring 2025]

April 22,2025 School of Engineering and Technology, University of Washington - Tacoma

| L7.9

FEEDBACK FROM 4/17

= Round-robin schedulers are excellent for providing low job
response time - but they sacrifice job turnaround time.

= For process scheduling, why is it generally better for
schedulers to satisfy both response time and turnaround
time?
= This is how the Multi-level Feedback Queue (MLFQ) improves on the
round-robin scheduler

= |IDEA: Could schedulers distribute tasks to dedicated
processors with specialized roles for handling interactive jobs
and batch (long-running & high-CPU-load) jobs?

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 22, 2025 L7.10

10

Slides by Wes J. Lloyd

4/22/2025

L7.5

TCSS 422 A — Spring 2025 4/22/2025
School of Engineering and Technology

FEEDBACK - 2

= How is the MLFQ itself scheduled within the 0OS ?
Is the scheduler assigned a dedicated time slice to prevent a
higher priority job from keeping it from running ?

= How can we be sure that priority boosts and job priority
adjustments can continue to occur ?

= Remember that preemptive multitasking operating systems
feature a timer interrupt. This interrupt is setup at boot time.
The timer fires every ~2 to 10ms to perform a non-voluntary
context switch. Also when the user performs 1/0, this creates
voluntary context switches.

= These context switches allow the system to take over, and the
0S kernel can run the MLFQ scheduler to manage jobs running
on the system

= MLFQ will priority boost, adjust job priority among queues, etc.

TCSS422: Operating Systems [Spring 2025]

April 22,2025 School of Engineering and Technology, University of Washington - Tacoma

L7.11 |

11

REVIEW

In the context of process What is an “interactive job” ?
scheduling, what is a “batch job” ?

TCSS422: Operating Systems [Spring 2025]

April 22, 2025 L7.12

School of Engir ing and University of i - Tacoma

12

Slides by Wes J. Lloyd L7.6

TCSS 422 A — Spring 2025
School of Engineering and Technology

FEEDBACK - 3

(CFS)

textbook

= Chapter 9 introduces the Linux Completely Fair Scheduler

® CFS was used until version 6.5 of the Linux kernel

® Starting with Linux kernel 6.6+ (Oct 29 2023), CFS was
replaced with the Earliest Eligible Virtual Deadline First
(EEVDF) scheduler

= Ubuntu 24.04 LTS launched with the 6.8 Linux Kernel,
and is now using 6.11 this quarter which is EEVDF

= We will not test on the EEVDF scheduler since it is not in the

= | created 1 slide on EEVDF at the end of Chapter 9

= Which of these scheduler’s do today’s operating systems use?

April 22, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L7.13

13

FEEDBACK - 4

= What is going to be

on the quiz ?

= What is going to be

on the quiz ??

= What is going to be

on the quiz ?2??

= What is going to be

on the quiz ???2?

= What is going to be

= What is going to be

= What is going to be

= What is going to be

= What is going to be

= What is going to be

= What is going to be

April 22, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L7.14

14

Slides by Wes J. Lloyd

4/22/2025

L7.7

TCSS 422 A — Spring 2025 4/22/2025
School of Engineering and Technology

OBJECTIVES - 4/22

® Questions from 4/17
| = Assignment O - Due Fri Apr 26 |
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 30
® Quiz 1 and Quiz 2
= Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
® Chapter 26: Concurrency: An Introduction
= |Introduction
= Race condition
= Critical section

TCSS422: Operating Systems [Spring 2025]

April 22,2025 School of Engineering and Technology, University of Washington - Tacoma

L7.15

15

ASSIGNMENT O - DUE FRI APR 26

® Due Friday April 26 AOE (Apr 27 4:59am)
® Grace period: submission ok until Tue Apr 29 @ 4:59 AM
® Late submissions thru Tuesday Thur May 1 @ 4:59am

TCSS422: Operating Systems [Spring 2025]

Fymil| 22, 2007 School of Engineering and Technology, University of Washington - Tacoma

L7.16

16

Slides by Wes J. Lloyd L7.8

TCSS 422 A — Spring 2025 4/22/2025
School of Engineering and Technology

OBJECTIVES - 4/22

® Questions from 4/17
u Assignment O - Due Fri Apr 26
| = C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 30 |
® Quiz 1 and Quiz 2 -
= Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
® Chapter 26: Concurrency: An Introduction
= |Introduction
= Race condition
= Critical section

TCSS422: Operating Systems [Spring 2025]

April 22,2025 School of Engineering and Technology, University of Washington - Tacoma

L7.17 |

17

OBJECTIVES - 4/22

= Questions from 4/17
® Assighment O - Due Fri Apr 26
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 30
" Quiz 1 and Quiz 2 -]
= Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
® Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= |[ntroduction
= Race condition
= Critical section

TCSS422: Operating Systems [Spring 2025]

Fymil| 22, 2007 School of Engineering and Technology, University of Washington - Tacoma

L7.18

18

Slides by Wes J. Lloyd L7.9

TCSS 422 A — Spring 2025
School of Engineering and Technology

QuUIZ 1

m Active reading on Chapter 9 - Proportional Share Schedulers

= Posted in Canvas
= Due Thursday May 1st AOE (Fri May 2 4:59 am)

= Link:

= https://faculty.washington.edu/wlloyd/courses/tcss422/quiz/
TCSS422 s2025_quiz_41.pdf

TCSS422: Operating Systems [Spring 2025]

April 22,2025 School of Engineering and Technology, University of Washington - Tacoma

L7.19

19

QUIZ 2

= Canvas Quiz - Practice CPU Scheduling Problems

= Posted in Canvas
= Unlimited attempts
= Due Tuesday May 6" AOE (May 7t at 4:59am)

= Link:
= https://canvas.uw.edu/courses/1809484/assignments/10329061

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma L7.20

April 22, 2025

20

Slides by Wes J. Lloyd

4/22/2025

L7.10

https://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_s2025_quiz_1.pdf
https://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_s2025_quiz_1.pdf
https://canvas.uw.edu/courses/1809484/assignments/10329061

TCSS 422 A — Spring 2025
School of Engineering and Technology

COMING SOON...

B Assignment #1
= To be posted soon

® Quiz 1
= Thursday April 24th
= In Class - BHS 106
= 4:40 - 5:40 pm
= Open notes, open books, no digital devices

= Midterm Exam
= Thursday May 8t"
= In Class - BHS 106
= 3:40 - 5:40 pm
= 3 pages of notes double-sides, no digital devices

TCSS422: Operating Systems [Spring 2025]

April 22,2025 School of Engineering and Technology, University of Washington - Tacoma

L7.21

21

CATCH UP FROM LECTURE 6

®m Switch to Lecture 6 Slides
m Slides L6.43 to L6.50 (MLFQ priority boost, MLFQ summary)

TCSS422: Operating Systems [Spring 2025]

QRLILZR0Z School of Engineering and Technology, University of Washington - Tacoma

16.22

22

Slides by Wes J. Lloyd

4/22/2025

L7.11

TCSS 422 A — Spring 2025 4/22/2025
School of Engineering and Technology

OBJECTIVES - 4/22

® Questions from 4/17
= Assighment O - Due Fri Apr 26
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 30
® Quiz 1 and Quiz 2
= Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
[= Examples |
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
® Chapter 26: Concurrency: An Introduction
= |Introduction
= Race condition
= Critical section

TCSS422: Operating Systems [Spring 2025]

April 22,2025 School of Engineering and Technology, University of Washington - Tacoma

L7.23

23

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium
priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units.
When the priority boost fires, the current job is preempted, and the next scheduled job is run in
round-robin order.

SANITY CHECK: Consider the timing graph
Job Arrival Time Job Length x-axis should not exceed the combined job
A T-0 4 length of all jobs.
B T=0 16
C T=0 8

(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.
Draw vertical lines for key events and be sure to label the X-axis times as in the example.
Please draw clearly. An unreadable graph will loose points.

24

Slides by Wes J. Lloyd L7.12

TCSS 422 A — Spring 2025
School of Engineering and Technology

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium
priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units.
When the priority boost fires, the current job is preempted, and the next scheduled job is run in

round-robin order. - —
—_— SANITY CHECK: Consider the timing graph
Job Arrival Time Job Length x-axis should not exceed the combined job

A T=0 Yo length of all jobs.
B T=0 167 R0
c T=0 ¥ ANKO

(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.
Draw vertical lines for key events and be sure to label the X-axis times as in the example.
Please draw clearly. An unreadable graph will loose points.

a &

HIGH IP’%C‘" CP\E.);J (% LE’I}, L

PRl iy BB B | eo

|
MED | l
| / ' : Co ;
| : ' : Do .
LOW | : : o B
3= LIRS 1 B
0 3 ¢ A w Py e END
25

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium
priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units.
When the priority boost fires, the current job is preempted, and the next scheduled job is run in
round-robin order.

Job Arrival Time Job Length Fime shice 15 JDB +ime_
A T=0 4 A%

B T=0 16 mm?&&\l\ BCF"M, C/5
C T=0 % &qﬁgﬁ\o f}\z&._}

(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.
Draw vertical lines for key events and be sure to label the X-axis times as in the example.
Please draw clearly. An unreadable graph will loose points.

PR (45 P8 P8

M B
HI]GH IAB C CP}B B @

2| Myl (B o8| s | BB
|

L(;}W I / , BB ﬁ
0 3 ¢ T 1z 13 V| 2%

26

Slides by Wes J. Lloyd

4/22/2025

L7.13

TCSS 422 A — Spring 2025
School of Engineering and Technology

EXAMPLE

® Question:
= Given a system with a quantum length of 10 ms for all jobs in its

highest queue, how often would you have to boost job A (the first
job to arrive and run) back to the highest priority level to guarantee
that job A, a long-running (and potentially starving) job gets at
least 5% of the CPU assuming that on priority boost job execution
resets to the front of the queue?

" TCSS422: Operating Systems [Spring 2025]
April 22,2025 School of Engineering and Technology, University of Washington - Tacoma

L7.27

27

EXAMPLE

Question:

Given a system with a total quantum length of 10 ms for all jobs to
run before priority is lowered in the highest queue, how often would
you have to boost jobs back to the highest priority level to

guarantee that a single long-running (and potentially starving) job
gets at least 5% of the CPU?

05 PR=1p

o ? PG: (o _ 200 ms
05

April 22, 2025 TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma L7.28

28

Slides by Wes J. Lloyd

4/22/2025

L7.14

TCSS 422 A — Spring 2025 4/22/2025
School of Engineering and Technology

EXAMPLE

® Question:

= Given a system with a quantum length of 10 ms for all jobs in its
highest queue, how often would you have to boost jobs back to the
highest priority level to guarantee that a single long-running (and
potentially starving) job gets at least 5% of the CPU?

® Some combination of n short jobs runs for a total of 10 ms per
cycle without relinquishing the CPU

= E.g. 2 jobs = 5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs =1 ms ea

= n jobs always uses full time quantum in highest queue (10 ms)

= Batch jobs starts, runs for full quantum of 10ms, pushed to lower queue
= All other jobs run and context switch totaling the quantum per cycle

= |f 10ms is 5% of the CPU, when must the priority boost be ?2??

= ANSWER - Priority boost should occur every 200ms

TCSS422: Operating Systems [Spring 2025]

April 22,2025 School of Engineering and Technology, University of Washington - Tacoma

L7.29 |

29

OBJECTIVES - 4/22

= Questions from 4/17
® Assighment O - Due Fri Apr 26
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 30
® Quiz 1 and Quiz 2
= Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler

= Examples
® Chapter 9: Proportional Share Schedulers
| = Lottery scheduler |

= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= [ntroduction
= Race condition
= Critical section

TCSS422: Operating Systems [Spring 2025]

Fymil| 22, 2007 School of Engineering and Technology, University of Washington - Tacoma

L7.30 |

30

Slides by Wes J. Lloyd L7.15

TCSS 422 A — Spring 2025

School of Engineering and Technology

CHAPTER 9 -
PROPORTIONAL SHARE
SCHEDULER

TCSS422: Operating Systems [Spring 2025]

Sprliaaianzy School of Engineering and Technology, University of Washington -

PROPORTIONAL SHARE SCHEDULER

® Also called fair-share scheduler

or lottery scheduler

= Guarantees each job receives some percentage of CPU
time based on share of “tickets”

= Each job receives an allotment of tickets
= % of tickets corresponds to potential share of a resource

= Can conceptually schedule any resource this way
= CPU, disk I/0, memory

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma L7.32

April 22, 2025

32

Slides by Wes J. Lloyd

4/22/2025

L7.16

TCSS 422 A — Spring 2025
School of Engineering and Technology

LOTTERY SCHEDULER

= Simple implementation

= Just need a random number generator
Picks the winning ticket

= Maintain a data structure of jobs and tickets (list)

= Traverse list to find the owner of the ticket

= Consider sorting the list for speed

TCSS422: Operating Systems [Spring 2025]

April 22,2025 School of Engineering and Technology, University of Washington - Tacoma

L7.33 |

33

LOTTERY SCHEDULER IMPLEMENTATION

head
1 counter: u t k if we’ve found the ne et
2 int counter =
3
4 win a umk
5 get a and tal
6 int winner = getrandom(0, totaltickets);
7
8 current: use this to walk through the list of jobs
9 node_t *current = head;
10
11 oop until the sum of ticket values is > the winner
12 while (current) {
13 counter = counter + current->tickets;
14 f (counter > winner)
15 break; found the winne
16 current = current->next;
17 }
18 ’current’ s the winner: schedule

TCSS422: Operating Systems [Spring 2025]

Fymil| 22, 2007 School of Engineering and Technology, University of Washington - Tacoma

L7.34 |

34

Slides by Wes J. Lloyd

4/22/2025

L7.17

TCSS 422 A — Spring 2025 4/22/2025
School of Engineering and Technology

OBJECTIVES - 4/22

® Questions from 4/17
= Assighment O - Due Fri Apr 26
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 30
Quiz 1 and Quiz 2
Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
| = Ticket mechanisms |
= Stride scheduler
= Linux Completely Fair Scheduler
® Chapter 26: Concurrency: An Introduction
= |Introduction
= Race condition
= Critical section

TCSS422: Operating Systems [Spring 2025]

April 22,2025 School of Engineering and Technology, University of Washington - Tacoma

L7.35

35

TICKET MECHANISMS

= Ticket currency / exchange
= User allocates tickets in any desired way
= OS converts user currency into global currency

= Example:
=There are 200 global tickets assigned by the 0S

User A > 500 (A's currency) to A1 = 50 (global currency)
= 500 (A's currency) to A2 2> 50 (global currency)

User B = I10(B's currency) to BL = 100 (global currency)

TCSS422: Operating Systems [Spring 2025]

Fymil| 22, 2007 School of Engineering and Technology, University of Washington - Tacoma

L7.36

36

Slides by Wes J. Lloyd L7.18

TCSS 422 A — Spring 2025
School of Engineering and Technology

TICKET MECHANISMS - 2

® Ticket transfer
= Temporarily hand off tickets to another process

® Ticket inflation

= Process can temporarily raise or lower the number of
tickets it owns

= |f a process needs more CPU time, it can boost tickets.

TCSS422: Operating Systems [Spring 2025]

April 22,2025 School of Engineering and Technology, University of Washington - Tacoma

L7.37

37

LOTTERY SCHEDULING

® Scheduler picks a winning ticket
= Load the job with the winning ticket and run it

= Example:

= Given 100 tickets in the pool
Job A has 75 tickets: 0 - 74
Job B has 25 tickets: 75 - 99

Scheduler’s winning tickets: 63 85 70 39 76 17 29 41 36 39 10 99 68 83 63
Scheduledjob: A B A A B A A A A A A B AB A

= But what do we know about probability of a coin flip?

TCSS422: Operating Systems [Spring 2025]

Fymil| 22, 2007 School of Engineering and Technology, University of Washington - Tacoma

L7.38

38

Slides by Wes J. Lloyd

4/22/2025

L7.19

TCSS 422 A — Spring 2025 4/22/2025
School of Engineering and Technology

COIN FLIPPING

m Equality of distribution (fairness) requires a lot of flips!

100

90
80
70
60
50 1
40

All heads

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

Increasing number of coin tosses

TCSS422: Operating Systems [Spring 2025]

April 22,2025 School of Engineering and Technology, University of Washington - Tacoma

L7.39 |

39

LOTTERY FAIRNESS

= With two jobs
= Each with the same number of tickets (t=100)

LT T e PP
0.84
0.6

0.4

Unfairness (Average)

0.24

0.0 T T 1
1 10 100 1000

Job Length

When the job length is not very long,
average unfairness can be

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 22, 2025

40

Slides by Wes J. Lloyd L7.20

TCSS 422 A — Spring 2025 4/22/2025
School of Engineering and Technology

LOTTERY SCHEDULING CHALLENGES

® What is the best approach to assign tickets to jobs?
= Typical approach is to assume users know best

= Users are provided with tickets, which they allocate as
desired

® How should the OS automatically distribute tickets upon
job arrival?

= What do we know about incoming jobs a priori ?
= Ticket assignment is really an open problem...

TCSS422: Operating Systems [Spring 2025]

April 22,2025 School of Engineering and Technology, University of Washington - Tacoma

L7.41 |

41

OBJECTIVES - 4/22

= Questions from 4/17
® Assighment O - Due Fri Apr 26
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 30
Quiz 1 and Quiz 2
Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
® Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
| = Stride scheduler |
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= |[ntroduction
= Race condition
= Critical section

TCSS422: Operating Systems [Spring 2025]

Fymil| 22, 2007 School of Engineering and Technology, University of Washington - Tacoma

L7.42 |

42

Slides by Wes J. Lloyd L7.21

TCSS 422 A — Spring 2025
School of Engineering and Technology

STRIDE SCHEDULER

= Addresses statistical probability issues with
lottery scheduling

® |nstead of guessing a random number to select a
job, simply count...

TCSS422: Operating Systems [Spring 2025]

April 22,2025 School of Engineering and Technology, University of Washington - Tacoma

L7.43

43

STRIDE SCHEDULER - 2

® Jobs have a “stride” value

= A stride value describes the counter pace when the job should
give up the CPU

= Stride value is inverse in proportion to the job’s number of
tickets (more tickets = smaller stride)

® Total system tickets = 10,000
= Job A has 100 tickets > A qe = 10000/100 = 100 stride
= Job B has 50 tickets 2 B4 = 10000/50 = 200 stride
= Job C has 250 tickets - C,,;4. = 10000/250 = 40 stride

® Stride scheduler tracks “pass” values for each job (A, B, C)

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma L7.44

April 22, 2025

44

Slides by Wes J. Lloyd

4/22/2025

L7.22

TCSS 422 A — Spring 2025
School of Engineering and Technology

STRIDE SCHEDULER - 3

® Basic algorithm:
1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and
starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a
new job (go to 1)

= KEY: When the counter reaches a job’s “PASS” value,
the scheduler passes on to the next job...

TCSS422: Operating Systems [Spring 2025]

April 22,2025 School of Engineering and Technology, University of Washington - Tacoma

L7.45

45

STRIDE SCHEDULER - EXAMPLE

= Stride values
=Tickets = priority to select job
=Stride is inverse to tickets
=Lower stride = more chances to run (higher priority)

Priority
C stride = 40
A stride = 100
B stride = 200

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 22, 2025 L7.46

46

Slides by Wes J. Lloyd

4/22/2025

L7.23

TCSS 422 A — Spring 2025

4/22/2025
School of Engineering and Technology

STRIDE SCHEDULER EXAMPLE - 2

= Three-way tie: randomly pick job A (all pass values=0)
m Set A’s pass value to A’s stride = 100

. Tickets
= Increment counter until > 100 C =250
= Pick a new job: two-way tie A =100
Pass(A) Pass(E) Pass(C) Who Runs? B = 50
(stride=100) (stride=200) (stride=40)
0 0 0 A « Initial job selection
100 0 0 is random. All @ 0
100 200 0 C
100 200 40 c « C has the most tickets
100 200 80 C and receives a lot of
100 200 120 A opportunities to run...
200 200 120 C
200 200 160 C
200 200 200
April 22, 2025 TCSS422: Operating Systems [Spring 2025]

L7.47

School of Engineering and Technology, University of Washington - Tacoma

47

STRIDE SCHEDULER EXAMPLE - 3

m We set A’s counter (pass value) to A’s stride = 100
® Next scheduling decision between B (pass=0) and C (pass=0)

n
Randomly choose B Tickets
= C has the lowest counter for next 3 rounds C =250
Pass(A) Pass(2) Pass(C) Who Runs? A =100
(stride=100) (stride=200) (stride=40) B = 50
0 0 0 A
100 0 0
100 200 0 C
100 200 40 C « C has the most tickets
100 200 80 C and is selected to run
100 200 120 A more often ...
200 200 120 C
200 200 160 C
200 200 200
April 22, 2025 TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma L7.48

48

Slides by Wes J. Lloyd L7.24

TCSS 422 A — Spring 2025 4/22/2025
School of Engineering and Technology

STRIDE SCHEDULER EXAMPLE - 4

= Job counters support determining which job to run next
® Qver time jobs are scheduled to run based on their

priority represented as their share of tickets... Tickets
= Tickets are analogous to job priority g = igg
Pass(A) Pass(2) Pass(C) Who Runs? B =50
(stride=100) (stride=200) (stride=40)
0 0 0 A
100 0 0
100 200 0 C
100 200 40 C
100 200 80 C
100 200 120 A
200 200 120 C
200 200 160 C
200 200 200
- TCSS422: O ting Syst [Spring 2025]
April 22,2025 School of E:geiI:e:er:'igngyanedn]I;chl:\llToggy, University of Washington - Tacoma L7.49

49

Which of the following is NOT a problem with

proportional share schedulers?

How tickets should be distributed to incoming

jobs A

Lottery scheduler is only eventually fair B

Given 2 users A and B who both receive a 50%
timeshare of the system, the runtime for User A's C
jobs is dependent on the runtime of User B's.

All of the above D

None of the above E

~ TCSS422: Operating Systems [Spring 2025]
o PR ienetomsosan sty f o sl

50

Slides by Wes J. Lloyd L7.25

TCSS 422 A — Spring 2025
School of Engineering and Technology

WE WILL RETURN AT
5:02PM

TCSS422: Operating Systems [Spring 2025]

Sprliaaianzy School of Engineering and Technology, University of Washington -

OBJECTIVES - 4/22

= Questions from 4/17
® Assighment O - Due Fri Apr 26
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 30
Quiz 1 and Quiz 2
Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
® Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler _
| = Linux COmEIetelx Fair Scheduler |
® Chapter 26: Concurrency: An Introduction
= |[ntroduction
= Race condition
= Critical section

TCSS422: Operating Systems [Spring 2025]

Fymil| 22, 2007 School of Engineering and Technology, University of Washington - Tacoma

L7.52

52

Slides by Wes J. Lloyd

4/22/2025

L7.26

TCSS 422 A — Spring 2025 4/22/2025
School of Engineering and Technology

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

= | arge Google datacenter study:
“Profiling a Warehouse-scale Computer” (Kanev et al.)

= Monitored 20,000 servers over 3 years
= Found 20% of CPU time spent in the Linux kernel

= 5% of CPU time spent ¥
in the CPU scheduler! 3

8 25
= Study highlights g -
importance for <
high performance 3 1 kemnel/sched
0S kernels and o

CPU schedulers !

Figure 5: Kernel time, especially time spent in the scheduler,
is a significant fraction of WSC cycles.
See: https://dl.acm.org/dol/pdi/10.1145/2749469.2750392
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 22, 2025 L7.53

53

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

® | oosely based on the stride scheduler

® CFS models system as a Perfect Multi-Tasking System

= In a perfect system every process of the same priority (class)
receives exactly 1/nth of the CPU time

® Each scheduling class has a runqueue
= Groups processes of the same class
= In the class, scheduler picks task w/ lowest vruntime to run
= Time slice varies based on how many jobs in shared runqueue

= Minimum time slice prevents too many context switches
(e.g. 3 ms)

TCSS422: Operating Systems [Spring 2025]

Fymil| 22, 2007 School of Engineering and Technology, University of Washington - Tacoma

L7.54

54

Slides by Wes J. Lloyd L7.27

https://dl.acm.org/doi/pdf/10.1145/2749469.2750392

TCSS 422 A — Spring 2025

4/22/2025
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER - 2

m Every thread/process has a scheduling class (policy):

= Normal classes: SCHED_OTHER (TS), SCHED_IDLE,
SCHED_BATCH

= TS = Time Sharing (most user processes have this class)
= Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

= How to show scheduling class and priority:
" #class
ps —-elfc

" priority (nice value)
pPs ax -o pid,ni,cls,pri,cmd

April 22, 2025 TCSS422: Operating Systems [Spring 2025]

L7.
School of Engineering and Technology, University of Washington - Tacoma 55

55

COMPLETELY FAIR SCHEDULER - 3

® Linux 2 2.6.23: Completely Fair Scheduler (CFS)
B Linux < 2.6.23: O(1) scheduler

= Linux maintains simple counter (vruntime) to track how long
each thread/process has run

= CFS picks process with lowest vruntime to run next

®m CFS adjusts timeslice based on # of proc waiting for the CPU

= Kernel parameters that specify CFS behavior:
$ sudo sysctl kernel.sched_latency_ns
kernel.sched_latency_ns = 24000000
$ sudo sysctl kernel.sched_min_granularity_ns
kernel.sched_min_granularity_ns = 3000000
$ sudo sysctl kernel.sched_wakeup_granularity_ns
kernel.sched_wakeup_granularity_ns = 4000000

" TCSS422: Operating Systems [Spring 2025]
Fymil| 22, 2007 School of Engineering and Technology, University of Washington - Tacoma

L7.56

56

Slides by Wes J. Lloyd L7.28

TCSS 422 A — Spring 2025 4/22/2025
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER - 4

= Sched_min_granularity_ns (3ms)
= Time slice for a process: busy system (w/ full runqueue)
= |f system has idle capacity, time slice exceeds the min as long as
difference in vruntime between running process and process with
lowest vruntime is less than sched_wakeup granularity ns
(4ms)
® Scheduling time period is: total cycle time for iterating through a
set of processes where each is allowed to run
(like round robin)
= Example:
sched_latency_ns (24ms)
if (proc in runqueue < sched_Tlatency_ns/sched_min_granularity)
or
sched_min_granularity_ns * number of processes in runqueue

Ref: https://www.systutorlals.com/sched_mIn_granularlty_ns-sched_latency_ns-cfs-affect-timeslice-processes/

TCSS422: Operating Systems [Spring 2025]

April 22,2025 School of Engineering and Technology, University of Washington - Tacoma

L7.57

57

CFS TRADEOFF

= HIGH sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakeup_granularity_ns

CFS features reduced context switching - less overhead
poor near-term fairness

= LOW sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakreup_granularity_ns

CFS features increased context switching - more overhead
better near-term fairness

TCSS422: Operating Systems [Spring 2025]

Fymil| 22, 2007 School of Engineering and Technology, University of Washington - Tacoma

L7.58

58

Slides by Wes J. Lloyd L7.29

https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/

TCSS 422 A — Spring 2025
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER -5

® Runqueues are stored using a Linux red-black tree
= Self balancing binary tree - nodes indexed by vruntime
m | eftmost node has lowest
vruntime (approx execution time
= Walking tree to find left
most node has very low
big O complexity:
~0(log N) for N nodes
® Completed processes o
are removed

virtual runtime

Nodes represent

sched_entity(s)

indexed by their
wirtual runtime

Mg ED [

Most need of CPU Least need of CPU

TCSS422: Operating Systems [Spring 2025]

L7.
School of Engineering and Technology, University of Washington - Tacoma 59

April 22, 2025

59

CFS: JOB PRIORITY

® Time slice: Linux “Nice value”
= Nice predates the CFS scheduler
= Top shows nice values

= Process command (hice & priority)':
Ps ax -o pid,ni,cmd, %cpu, pri

= Nice Values: from -20 to 19
= Lower is higher priority, default is O
*vruntime is a weighted time measurement

* Priority weights the calculation of vruntime within a
runqueue to give high priority jobs a boost.
Influences job’s position in rb-tree

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma L7.60

April 22, 2025

60

Slides by Wes J. Lloyd

4/22/2025

L7.30

TCSS 422 A — Spring 2025
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER - 6

= CFS tracks cumulative job run time with the vruntime variable

= The task on a given runqueue with the lowest vruntime is scheduled
next

= struct sched_entity contains vruntime parameter
= Describes process execution time in nanoseconds
= Value is not pure runtime, is weighted based on job priority

= GOAL: Perfect scheduler >
achieve equal vruntime for all processes of same priority

® Sleeping jobs: upon return a temporary vruntime can be used to
increase temporarily the priority of the task

® When tasks wait for I/0 they should receive a comparable share of
the CPU as if they were performing compute ops when run again

= Key takeaway:
identifying the next job to schedule is really fast!

TCSS422: Operating Systems [Spring 2025]

April 22,2025 School of Engineering and Technology, University of Washington - Tacoma

L7.61

61

COMPLETELY FAIR SCHEDULER - 7

® More information:

= Man page: “man sched” : Describes Linux scheduling API
= http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

= https://www.kernel.org/doc/Documentation/scheduler/sched-

design-CFS.txt
= https://en.wikipedia.org/wiki/Completely_ Fair_Scheduler

m See paper: The Linux Scheduler - a Decade of Wasted Cores
" http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma L7.62

April 22, 2025

62

Slides by Wes J. Lloyd

4/22/2025

L7.31

http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

TCSS 422 A — Spring 2025 4/22/2025
School of Engineering and Technology

BEYOND CFS - EEVDF SCHEDULER

= Earliest Eligible Virtual Deadline First (EEVDF) Scheduler
= Linux kernel version 6.6, October 29, 2023
= First described in a research article in 1995

= Like CFS, EEVDF aims to distribute CPU time equally among all
runnable tasks with the same priority.

= EEVDF assigns a virtual runtime to each task, creating a “lag” value
that is used to determine whether a task has received its fair share
of CPU time

= A task with a positive lag is owed CPU time
= A task with negative lag has exceeded its timeshare

= EEVDF calculates a virtual deadline (VD) for each task with lag
greater or equal to zero

= Task with the earliest virtual deadline is selected to run next

= Virtual deadlines enable latency-sensitive tasks with shorter-time
slices to be prioritized more than CFS which helps improve
responsiveness

More info: https://docs.kernel.org/scheduler/sched-eevdf.html

TCSS422: Operating Systems [Spring 2025]

April 22,2025 School of Engineering and Technology, University of Washington - Tacoma

L7.63 |

63

OBJECTIVES - 4/22

Questions from 4/17

Assignment O - Due Fri Apr 26

C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 30
Quiz 1 and Quiz 2

Chapter 8: Multi-level Feedback Queue

= Gaming the Scheduler

= Examples

® Chapter 9: Proportional Share Schedulers
= Lottery scheduler

= Ticket mechanisms

= Stride scheduler

= Linux Completely Fair Scheduler

Chapter 26: Concurrency: An Introduction
| = Introduction |

= Race condition

= Critical section

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma L7.64

April 22, 2025

64

Slides by Wes J. Lloyd L7.32

https://docs.kernel.org/scheduler/sched-eevdf.html

TCSS 422 A — Spring 2025
School of Engineering and Technology

April 22, 2025

CHAPTER 26 -
CONCURRENCY:
AN INTRODUCTION

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington -

THREADS

Single
Threaded
Process

Multithreaded Process

Process

Process State: PC,

Process State: PC, Thread | | Thread | | Thread
registers, 5P, etc... State | | State State

registers, SP, etc...

Code Segment Code Segment

Data Segment

Heap

Data Segi SHARED m
ol MDD

¥
t 000
——

©Alfred Park, http://randu.org/tutorials/threads

Multiple
Threaded
Process

pe

L7.66

| April 22, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

66

Slides by Wes J. Lloyd

4/22/2025

L7.33

TCSS 422 A — Spring 2025 4/22/2025
School of Engineering and Technology

THREADS - 2

= Enables a single process (program) to have multiple “workers”
= This is parallel programming...

®m Supports independent path(s) of execution within a program
with shared memory ...

® Each thread has its own Thread Control Block (TCB)
= PC, registers, SP, and stack

® Threads share code segment, memory, and heap are shared

= What is an embarrassingly parallel program?

TCSS422: Operating Systems [Spring 2025]

April 22,2025 School of Engineering and Technology, University of Washington - Tacoma

L7.67 |

67

PROCESS AND THREAD METADATA

= Thread Control Block vs. Process Control Block

Thread identification Process identification

Thread state Process status

CPU information: Process state:
Program counter Process status word
Register contents Register contents
W Main memory

Thread priority Resources

Pointer to process that created this thread Process priority

Pointers to all other threads created by this thread Accounting

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma L7.68

April 22, 2025

68

Slides by Wes J. Lloyd L7.34

TCSS 422 A — Spring 2025

School of Engineering and Technology

0KB

1KB

2KB

15KB
16KB

SHARED ADDRESS SPACE

m Every thread has it’s own stack / PC

The code segment: 0KB
Program Code where instructions live Program Code
he h 1KB
The heap segment: H
Heap contains malloc'd data KB eap
dynamic data structures
(it grows downward)
(free)
(free)
Stack (2)
(it grows upward)
The stack segment: (free)
contains local variables 15KB
Stack (l) arguments to routines, Stack (l)
return values, etc. 16KB

Two threaded
Address Space

A Single-Threaded
Address Space

April 22, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L7.69

69

THREAD CREATION EXAMPLE

tinclude <stdio.h>
#include <assert.h>
#include <pthread.h>

void smythread({wveoid ~arg) |
printf("$s\n", (char +) arg);
return NULL;

t

int
main{int argc, char ~argv[])} {
pthread_t pl, p2;
int rc;
printf ("main: begin\n");
rc = pthread create(&pl, NULL, mythread, "A"); assert(rc == 0);
rc = pthread create(&p2, NULL, mythread, "B"); assert(rc == 0);
// join waits for the threads to finish
rc = pthread join(pl, NULL); assert(rc == 0);
rc = pthread_join(p2, NULL); assert(rc == 0);
printf ("main: end\n");
return 0;

April 22, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L7.70

70

Slides by Wes J. Lloyd

4/22/2025

L7.35

TCSS 422 A — Spring 2025 4/22/2025
School of Engineering and Technology

POSSIBLE ORDERINGS OF EVENTS

Starts running
»Prints ‘main: begin’
Creates Thread 1

Creates Thread 2

Waits for T1
Runs

» Prints ‘A’

Returns

» Waits for T2

Runs
Prints ‘B’

Returns
» Prints ‘main: end’

" TCSS422: Operating Systems [Spring 2025]
| April 22,2025 School of Engineering and Technology, University of Washington - Tacoma

L7.71

71

POSSIBLE ORDERINGS OF EVENTS - 2

Starts running

Prints ‘main: begin’

—Creates Thread 1 7]
Runs
Prints ‘A’
Returns
—= Creates Thread 2 ==
Runs
Prints ‘B’
Returns
_Waits for T1 Returns immediately _
Waits for T2 Returns immediately

Prints ‘main: end’

TCSS422: Operating Systems [Spring 2025]

Fymil| 22, 2007 School of Engineering and Technology, University of Washington - Tacoma

L7.72

72

Slides by Wes J. Lloyd L7.36

TCSS 422 A — Spring 2025

4/22/2025
School of Engineering and Technology

POSSIBLE ORDERINGS OF EVENTS - 3

Starts running

Prints ‘main: begin’
—

Creates Thread 1

Creates Thread 2

What if execution order of
g cvents in the program matters?

Runs
Prints ‘A’
Returns
—
Waits for T2 Immediately returns
Prints ‘main: end’
April 22, 2025 TCSS422: Operating Systems [Spring 2025]

L7.73

School of Engineering and Technology, University of Washington - Tacoma

73

COUNTER EXAMPLE

® Counter example

= A + B :ordering

® Counter: incrementing global variable by two threads

= |s the counter example embarrassingly parallel?

= What does the parallel counter program require?

April 22, 2025 TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma L7.74

74

Slides by Wes J. Lloyd L7.37

TCSS 422 A — Spring 2025
School of Engineering and Technology

PROCESSES VS. THREADS

= What's the difference between forks and threads?
= Forks: duplicate a process
= Think of CLONING - There will be two identical processes at the end
= Threads: no duplication of code/heap, lightweight execution threads

| cooe || gma [ties | | cote || data || mes |
Process Process 1| i
Process State: PC, Process State: PC, |I'ﬂ£|$h‘:lf’i| | stack | W§|5|f‘3’$||r€l9$rﬂf’$||rﬂﬂsh€lm|
registers, SP, etc... registers, SP, etc...
slack || slack || Elmcik |
,
 Heap Hep el 5
thead — l::: € +—— thraad
¥ ¥ c <
Stack Stack

single-headed procaess mudtithreadad pracess

TCSS422: Operating Systems [Spring 2025]

L7.7!
School of Engineering and Technology, University of Washington - Tacoma 5

April 22, 2025

75

OBJECTIVES - 4/22

= Questions from 4/17
® Assighment O - Due Fri Apr 26
® C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 30
Quiz 1 and Quiz 2
Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
® Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= |ntroduction
= Race condition]
= Critical section

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L7.76

April 22, 2025

76

Slides by Wes J. Lloyd

4/22/2025

L7.38

TCSS 422 A — Spring 2025 4/22/2025
School of Engineering and Technology

RACE CONDITION

= What is happening with our counter?
= When counter=50, consider code: counter = counter + 1

= |f synchronized, counter will = 52
(after instruction)
— os Threadl Thread2 PC %eax counter =
- before critical section 100 0 50 L
mov 0x804%alc, %eax 105 50 50
add $0x1, %eax 108 51 50
— -
— save T1’s state =
restore T2's state 100 0 50
— mov 0x8049%alc, %eax 105 50 50 —
add $0xl1, %eax 108 51 50
mov %eax, 0x8048%alc 113 51 51
— -
[save I2's state I
- restore Tl's state 108 51 50 L
mov %eax, 0x8049%alc 113 51
— -

TCSS422: Operating Systems [Spring 2025]

April 22,2025 School of Engineering and Technology, University of Washington - Tacoma

L7.77 |

77

OBJECTIVES - 4/22

Questions from 4/17
Assignment O - Due Fri Apr 26
C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 30
Quiz 1 and Quiz 2
Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
® Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= |[ntroduction
= Race condition
| = Critical section |

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 22, 2025 L7.78 |

78

Slides by Wes J. Lloyd L7.39

TCSS 422 A — Spring 2025 4/22/2025
School of Engineering and Technology

CRITICAL SECTION

® Code that accesses a shared variable must not be
concurrently executed by more than one thread

= Multiple active threads inside a critical section produce a
race condition.

= Atomic execution (all code executed as a unit) must be
ensured in critical sections
= These sections must be mutually exclusive

TCSS422: Operating Systems [Spring 2025]

April 22,2025 School of Engineering and Technology, University of Washington - Tacoma

L7.79

79

LOCKS

" To demonstrate how critical section(s) can be executed
“atomically-as a unit” Chapter 27 & beyond introduce locks

lock_t mutex;

lock (smutex) :
balance = balance + 1; | Critical section
unlock (&mutex) ;

U W b

= Counter example revisited

TCSS422: Operating Systems [Spring 2025]

Fymil| 22, 2007 School of Engineering and Technology, University of Washington - Tacoma

L7.80

80

Slides by Wes J. Lloyd L7.40

TCSS 422 A — Spring 2025 4/22/2025
School of Engineering and Technology

QUESTIONS

81

Slides by Wes J. Lloyd L7.41

	Slide 1: TCSS 422: Operating Systems
	Slide 2: Text book coupon
	Slide 3: Tcss 422 – office hrs – Spring 2025
	Slide 4: Bonus session – cpu scheduling problems
	Slide 5: TCSS 422 Discord server
	Slide 6: OBJECTIVES – 4/22
	Slide 7: Online daily feedback survey
	Slide 8
	Slide 9: Material / pace
	Slide 10: Feedback from 4/17
	Slide 11: Feedback - 2
	Slide 12: Review
	Slide 13: Feedback - 3
	Slide 14: Feedback - 4
	Slide 15: OBJECTIVES – 4/22
	Slide 16: Assignment 0 - Due Fri Apr 26
	Slide 17: OBJECTIVES – 4/22
	Slide 18: OBJECTIVES – 4/22
	Slide 19: Quiz 1
	Slide 20: Quiz 2
	Slide 21: Coming soon...
	Slide 22: Catch up from lecture 6
	Slide 23: OBJECTIVES – 4/22
	Slide 24
	Slide 25
	Slide 26
	Slide 27: example
	Slide 28: example
	Slide 29: example
	Slide 30: OBJECTIVES – 4/22
	Slide 31: Chapter 9 -Proportional Share Scheduler
	Slide 32: Proportional share scheduler
	Slide 33: Lottery scheduler
	Slide 34: Lottery scheduler implementation
	Slide 35: OBJECTIVES – 4/22
	Slide 36: Ticket mechanisms
	Slide 37: Ticket mechanisms - 2
	Slide 38: Lottery scheduling
	Slide 39: Coin flipping
	Slide 40: Lottery fairness
	Slide 41: Lottery scheduling challenges
	Slide 42: OBJECTIVES – 4/22
	Slide 43: Stride scheduler
	Slide 44: Stride scheduler - 2
	Slide 45: Stride scheduler - 3
	Slide 46: Stride scheduler - example
	Slide 47: Stride scheduler example - 2
	Slide 48: Stride scheduler example - 3
	Slide 49: Stride scheduler example - 4
	Slide 50
	Slide 51: We will return at 5:02pm
	Slide 52: OBJECTIVES – 4/22
	Slide 53: Linux: completely fair scheduler (CFS)
	Slide 54: Linux: Completely fair scheduler (CFS)
	Slide 55: Completely fair scheduler - 2
	Slide 56: Completely fair scheduler - 3
	Slide 57: Completely fair scheduler - 4
	Slide 58: Cfs TRADEOFF
	Slide 59: Completely fair scheduler - 5
	Slide 60: CFS: job priority
	Slide 61: Completely fair scheduler - 6
	Slide 62: Completely fair scheduler - 7
	Slide 63: Beyond CFS  EEVDF Scheduler
	Slide 64: OBJECTIVES – 4/22
	Slide 65: Chapter 26 -Concurrency: An introduction
	Slide 66: Threads
	Slide 67: Threads - 2
	Slide 68: Process and thread metadata
	Slide 69: Shared Address space
	Slide 70: Thread creation example
	Slide 71: Possible Orderings of events
	Slide 72: Possible Orderings of events - 2
	Slide 73: Possible orderings of events - 3
	Slide 74: Counter example
	Slide 75: Processes vs. threads
	Slide 76: OBJECTIVES – 4/22
	Slide 77: Race condition
	Slide 78: OBJECTIVES – 4/22
	Slide 79: Critical section
	Slide 80: locks
	Slide 81: Questions

