
TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.1Slides by Wes J. Lloyd

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

Multi-level Feedback Queue II,
Proportional Share Schedulers,

Introduction to Concurrency

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 15% off textbook code: LULUBOOKS15

(through Friday Apr 19)

 https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-

arpaci-dusseau/operating-systems-three-easy-pieces-

hardcover-version-110/hardcover/product-

15gjeeky.html?q=three+easy+pieces+operating+systems&pag

e=1&pageSize=4

 With coupon textbook is only $33.79 + tax & shipping

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.2

TEXT BOOK COUPON

1

2

https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.2Slides by Wes J. Lloyd

 Tuesdays after class until 7:00pm
Hybrid (In-person/Zoom)

▪ This session will be in person in CP 229.

▪ Zoom will be monitored when no student is in CP 229.

 Thursdays after class until 7:00pm – Hybrid (In-person/Zoom)

▪ Additional office time will be held on Thursdays after class
when there is high demand indicated by a busy Tuesday
office hour

▪When Thursday Office Hours are planned, Zoom links will
be shared via Canvas

▪ Questions after class on Thursdays are always entertained
even when the formal office hour is not scheduled

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.3

OFFICE HOURS – SPRING 2024

 Please join the TCSS 422 A – Spring 2024 Discord Server

https://discord.gg/H7PPZ5ArFW

 Under Edit Server Profile:

Please update your ‘Server Nickname’

to your real name or UW NET ID

THANK YOU

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.4

TCSS 422 DISCORD SERVER

3

4

https://discord.gg/H7PPZ5ArFW

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.3Slides by Wes J. Lloyd

 Questions from 4/11

 Assignment 0 - Due Fri Apr 19

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Quiz 1 and Quiz 2

 Chapter 8: Multi- level Feedback Queue

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Introduction

▪ Race condition

▪ Critical section

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.5

OBJECTIVES – 4/16

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

April 16, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.6

ONLINE DAILY FEEDBACK SURVEY

5

6

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.4Slides by Wes J. Lloyd

April 16, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L7.7

 Please classify your perspective on material covered in today’s

class (31 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.81 (- previous 7.00)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.42 (- previous 5.21)

April 16, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.8

MATERIAL / PACE

7

8

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.5Slides by Wes J. Lloyd

 In the MLFQ, why does job A in Q0 take longer than the 10 ms
time slice?

 This question relates to the teaser problem at the end of
Chapter 8.

 Some combination of n short jobs runs for a total of 10 ms per
cycle without relinquishing the CPU

▪ E.g. 2 jobs = 5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs = 1 ms ea

▪ n jobs always uses full time quantum in highest queue (10 ms)

▪ Batch job ‘A’ starts, runs for full quantum of 10ms, pushed to lower
queue

▪ All other jobs run in top-most queue and context switch and use up
10ms so that job ‘A’ is starved after it initially runs once

▪ If 10ms goal is 5% of the CPU, when must the priority boost be ???

▪ ANSWER → Priority boost should occur every 200ms

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.9

FEEDBACK FROM 4/11

 How can an MLFQ scheduler account for user advice?

 We will learn about the Linux ‘nice’ command in Ch. 9

 When user runs the nice command it provides a suggestion to

the OS scheduler to increase or decrease process priority

 User processes have a maximum priority, and OS processes

can still obtain priority greater than any user process priority

 TRUE/FALSE Question:

 Round robin is the scheduler that best addresses fairness and

average response time of jobs.

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.10

FEEDBACK - 2

9

10

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.6Slides by Wes J. Lloyd

 Questions from 4/11

 Assignment 0 - Due Fri Apr 19

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Quiz 1 and Quiz 2

 Chapter 8: Multi- level Feedback Queue

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Introduction

▪ Race condition

▪ Critical section

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.11

OBJECTIVES – 4/16

 Due Friday April 19 @ 11:59pm

 Grace period: submission ok until Sun Apr 21 @ 11:59 PM

 Late submissions thru Tuesday Apr 23 @ 11:59pm

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.12

ASSIGNMENT 0 - DUE FRI APR 19

11

12

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.7Slides by Wes J. Lloyd

 Questions from 4/11

 Assignment 0 - Due Fri Apr 19

 C Tutorial - Pointers, Str ings, Exec in C - Due Fri Apr 26

 Quiz 1 and Quiz 2

 Chapter 8: Multi- level Feedback Queue

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Introduction

▪ Race condition

▪ Critical section

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.13

OBJECTIVES – 4/16

 Questions from 4/11

 Assignment 0 - Due Fri Apr 19

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Quiz 1 and Quiz 2

 Chapter 8: Multi- level Feedback Queue

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Introduction

▪ Race condition

▪ Critical section

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.14

OBJECTIVES – 4/16

13

14

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.8Slides by Wes J. Lloyd

 Active reading on Chapter 9 – Proportional Share Schedulers

 Posted in Canvas

 Due Thursday April 25 th at 11:59pm

 Link:

 https://faculty.washington.edu/wlloyd/courses/tcss422/

quiz/TCSS422_s2024_quiz_1.pdf

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.15

QUIZ 1

 Canvas Quiz – Practice CPU Scheduling Problems

 Posted in Canvas

 Unlimited attempts permitted

 Due Tuesday April 30 th at 11:59pm

 Link:

 https://canvas.uw.edu/courses/1728244/quizzes/2030525

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.16

QUIZ 2

15

16

http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_s2024_quiz_1.pdf
http://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_s2024_quiz_1.pdf
http://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_s2024_quiz_1.pdf
http://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_s2024_quiz_1.pdf
https://canvas.uw.edu/courses/1728244/quizzes/2030525

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.9Slides by Wes J. Lloyd

 Assignment #1

▪ To be posted soon

 Midterm Exam

▪ Thursday May 2nd

▪ In Class

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.17

COMING SOON...

 Questions from 4/11

 Assignment 0 - Due Fri Apr 19

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Quiz 1 and Quiz 2

 Chapter 8: Multi- level Feedback Queue

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Introduction

▪ Race condition

▪ Critical section

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.18

OBJECTIVES – 4/16

17

18

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.10Slides by Wes J. Lloyd

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L7.19

SANITY CHECK: Consider the timing graph
x-axis should not exceed the combined job
length of all jobs.

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L7.20

19

20

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.11Slides by Wes J. Lloyd

 Question:

 Given a system with a quantum length of 10 ms for al l jobs in its
highest queue, how often would you have to boost job A (the first
job to arrive and run) back to the highest priority level to guarantee
that job A, a long-running (and potentially starving) job gets at
least 5% of the CPU assuming that on priority boost job execution
resets to the front of the queue?

.

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.21

EXAMPLE

 Question:

 Given a system with a quantum length of 10 ms for al l jobs in its
highest queue, how often would you have to boost job A (the first
job to arrive and run) back to the highest priority level to guarantee
that job A, a long-running (and potentially starving) job gets at
least 5% of the CPU assuming that on priority boost job execution
resets to the front of the queue?

.

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.22

EXAMPLE

21

22

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.12Slides by Wes J. Lloyd

 Question:

 Given a system with a quantum length of 10 ms for al l jobs in its

highest queue, how often would you have to boost jobs back to the

highest priority level to guarantee that a single long -running (and

potentially starving) job gets at least 5% of the CPU?

 Some combination of n short jobs runs for a total of 10 ms per

cycle without relinquishing the CPU

▪ E.g. 2 jobs = 5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs = 1 ms ea

▪ n jobs always uses full time quantum in highest queue (10 ms)

▪ Batch jobs starts, runs for full quantum of 10ms, pushed to lower queue

▪ All other jobs run and context switch totaling the quantum per cycle

▪ If 10ms is 5% of the CPU, when must the priority boost be ???

▪ ANSWER → Priority boost should occur every 200ms

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.23

EXAMPLE

 Questions from 4/11

 Assignment 0 - Due Fri Apr 19

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Quiz 1 and Quiz 2

 Chapter 8: Multi- level Feedback Queue

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Introduction

▪ Race condition

▪ Critical section

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.24

OBJECTIVES – 4/16

23

24

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.13Slides by Wes J. Lloyd

CHAPTER 9 -

PROPORTIONAL SHARE

SCHEDULER

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L7.25

 Also called fair-share scheduler

 or lottery scheduler

▪ Guarantees each job receives some percentage of CPU

time based on share of “tickets”

▪ Each job receives an allotment of tickets

▪% of tickets corresponds to potential share of a resource

▪ Can conceptually schedule any resource this way

▪ CPU, disk I/O, memory

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.26

PROPORTIONAL SHARE SCHEDULER

25

26

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.14Slides by Wes J. Lloyd

 Simple implementation

▪ Just need a random number generator

▪ Picks the winning ticket

▪Maintain a data structure of jobs and tickets (list)

▪ Traverse list to find the owner of the ticket

▪ Consider sorting the list for speed

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.27

LOTTERY SCHEDULER

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.28

LOTTERY SCHEDULER IMPLEMENTATION

1 // counter: used to track if we’ve found the winner yet

2 int counter = 0;

3

4 // winner: use some call to a random number generator to

5 // get a value, between 0 and the total # of tickets

6 int winner = getrandom(0, totaltickets);

7

8 // current: use this to walk through the list of jobs

9 node_t *current = head;

10

11 // loop until the sum of ticket values is > the winner

12 while (current) {

13 counter = counter + current->tickets;

14 if (counter > winner)

15 break; // found the winner

16 current = current->next;

17 }

18 // ’current’ is the winner: schedule it...

27

28

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.15Slides by Wes J. Lloyd

 Questions from 4/11

 Assignment 0 - Due Fri Apr 19

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Quiz 1 and Quiz 2

 Chapter 8: Multi- level Feedback Queue

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Introduction

▪ Race condition

▪ Critical section

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.29

OBJECTIVES – 4/16

 Ticket currency / exchange

▪ User allocates tickets in any desired way

▪ OS converts user currency into global currency

 Example:

▪ There are 200 global tickets assigned by the OS

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.30

TICKET MECHANISMS

29

30

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.16Slides by Wes J. Lloyd

 Ticket transfer

▪ Temporarily hand off tickets to another process

 Ticket inflation

▪ Process can temporarily raise or lower the number of

tickets it owns

▪ If a process needs more CPU time, it can boost tickets.

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.31

TICKET MECHANISMS - 2

 Scheduler picks a winning ticket

▪ Load the job with the winning ticket and run it

 Example:

▪ Given 100 tickets in the pool

▪ Job A has 75 tickets: 0 - 74

▪ Job B has 25 tickets: 75 – 99

 But what do we know about probability of a coin flip?

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.32

LOTTERY SCHEDULING

Scheduled job:

31

32

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.17Slides by Wes J. Lloyd

 Equality of distribution (fairness) requires a lot of flips!

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.33

COIN FLIPPING

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.34

LOTTERY FAIRNESS

 With two jobs

▪ Each with the same number of tickets (t=100)

When the job length is not very long,
average unfairness can be quite severe.

33

34

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.18Slides by Wes J. Lloyd

 What is the best approach to assign tickets to jobs?

▪ Typical approach is to assume users know best

▪ Users are provided with tickets, which they allocate as

desired

 How should the OS automatically distribute tickets upon

job arrival?

▪What do we know about incoming jobs a priori ?

▪ Ticket assignment is really an open problem…

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.35

LOTTERY SCHEDULING CHALLENGES

WE WILL RETURN AT

4:50PM

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L7.36

35

36

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.19Slides by Wes J. Lloyd

 Questions from 4/11

 Assignment 0 - Due Fri Apr 19

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Quiz 1 and Quiz 2

 Chapter 8: Multi- level Feedback Queue

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Introduction

▪ Race condition

▪ Critical section

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.37

OBJECTIVES – 4/16

Addresses statistical probability issues with

lottery scheduling

 Instead of guessing a random number to select a

job, simply count…

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.38

STRIDE SCHEDULER

37

38

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.20Slides by Wes J. Lloyd

 Jobs have a “stride” value

▪ A stride value describes the counter pace when the job should

give up the CPU

▪ Stride value is inverse in proportion to the job’s number of

tickets (more tickets = smaller stride)

 Total system tickets = 10,000

▪ Job A has 100 tickets → Astride = 10000/100 = 100 stride

▪ Job B has 50 tickets → Bstride = 10000/50 = 200 stride

▪ Job C has 250 tickets → Cstride = 10000/250 = 40 stride

 Stride scheduler tracks “pass” values for each job (A, B, C)

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.39

STRIDE SCHEDULER - 2

 Basic algorithm:

1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and

starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a

new job (go to 1)

 KEY: When the counter reaches a job’s “PASS” value,

the scheduler passes on to the next job…

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.40

STRIDE SCHEDULER - 3

39

40

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.21Slides by Wes J. Lloyd

Stride values

▪Tickets = priority to select job

▪Stride is inverse to tickets

▪Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.41

STRIDE SCHEDULER - EXAMPLE

 Three-way tie: randomly pick job A (all pass values=0)

 Set A’s pass value to A’s stride = 100

 Increment counter until > 100

 Pick a new job: two-way tie

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.42

STRIDE SCHEDULER EXAMPLE - 2

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and receives a lot of
opportunities to run…

Initial job selection
is random. All @ 0

41

42

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.22Slides by Wes J. Lloyd

 We set A’s counter (pass value) to A’s stride = 100

 Next scheduling decision between B (pass=0) and C (pass=0)

▪ Randomly choose B

 C has the lowest counter for next 3 rounds

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.43

STRIDE SCHEDULER EXAMPLE - 3

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and is selected to run
more often …

 Job counters support determining which job to run next

 Over time jobs are scheduled to run based on their

priority represented as their share of tickets…

 Tickets are analogous to job priority

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.44

STRIDE SCHEDULER EXAMPLE - 4

Tickets
C = 250
A = 100
B = 50

43

44

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.23Slides by Wes J. Lloyd

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L7.45

 Questions from 4/11

 Assignment 0 - Due Fri Apr 19

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Quiz 1 and Quiz 2

 Chapter 8: Multi- level Feedback Queue

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Introduction

▪ Race condition

▪ Critical section

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.46

OBJECTIVES – 4/16

45

46

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.24Slides by Wes J. Lloyd

 Large Google datacenter study:

“Profiling a Warehouse -scale Computer” (Kanev et al.)

 Monitored 20,000 servers over 3 years

 Found 20% of CPU time spent in the Linux kernel

 5% of CPU time spent

in the CPU scheduler!

 Study highlights

importance for

high performance

OS kernels and

CPU schedulers !

S e e : h t t p s : / / d l . a c m . o r g / d o i / p d f / 1 0 . 1 1 4 5 / 2 7 4 9 4 6 9 . 2 7 5 0 3 9 2

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.47

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi -Tasking System

▪ In a perfect system every process of the same priority (class)

receives exactly 1/n th of the CPU time

 Each scheduling class has a runqueue

▪ Groups processes of the same class

▪ In the class, scheduler picks task w/ lowest vruntime to run

▪ Time slice varies based on how many jobs in shared runqueue

▪ Minimum time slice prevents too many context switches

(e.g. 3 ms)

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.48

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

47

48

https://dl.acm.org/doi/pdf/10.1145/2749469.2750392

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.25Slides by Wes J. Lloyd

 Every thread/process has a scheduling class (policy):

 Normal classes: SCHED_OTHER (TS), SCHED_IDLE,

SCHED_BATCH

▪ TS = Time Sharing

 Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

 How to show scheduling class and priority:

 #class

ps –elfc

 #priority (nice value)

ps ax -o pid,ni,cls,pri,cmd

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.49

COMPLETELY FAIR SCHEDULER - 2

 Linux ≥ 2.6.23: Completely Fair Scheduler (CFS)

 Linux < 2.6.23: O(1) scheduler

 Linux maintains simple counter (vruntime) to track how long

each thread/process has run

 CFS picks process with lowest vruntime to run next

 CFS adjusts timeslice based on # of proc waiting for the CPU

 Kernel parameters that specify CFS behavior:

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.50

COMPLETELY FAIR SCHEDULER - 3

$ sudo sysctl kernel.sched_latency_ns

kernel.sched_latency_ns = 24000000

$ sudo sysctl kernel.sched_min_granularity_ns

kernel.sched_min_granularity_ns = 3000000

$ sudo sysctl kernel.sched_wakeup_granularity_ns

kernel.sched_wakeup_granularity_ns = 4000000

49

50

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.26Slides by Wes J. Lloyd

 Sched_min_granularity_ns (3ms)

▪ Time slice for a process: busy system (w/ full runqueue)

▪ If system has idle capacity, time slice exceeds the min as long as

difference in vruntime between running process and process with

lowest vruntime is less than sched_wakeup_granularity_ns

(4ms)

 Scheduling time period is: total cycle time for iterating through a

set of processes where each is allowed to run

(like round robin)

 Example:

sched_latency_ns (24ms)

if (proc in runqueue < sched_latency_ns/sched_min_granularity)

or

sched_min_granularity * number of processes in runqueue

R e f : h t t p s : / / w w w . s y s t u t o r i a l s . c o m / s c h e d _ m i n _ g r a n u l a r i t y _ n s - s c h e d _ l a t e n c y _ n s - c f s - a f f e c t - t i m e s l i c e - p r o c e s s e s /

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.51

COMPLETELY FAIR SCHEDULER - 4

 HIGH sched_min_granularity_ns (timeslice)

 sched_latency_ns

 sched_wakeup_granularity_ns

CFS features reduced context switching → less overhead

poor near-term fairness

 LOW sched_min_granularity_ns (timeslice)

 sched_latency_ns

 sched_wakreup_granularity_ns

CFS features increased context switching → more overhead

better near-term fairness

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.52

CFS TRADEOFF

51

52

https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.27Slides by Wes J. Lloyd

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.53

COMPLETELY FAIR SCHEDULER - 5

 Runqueues are stored using a Linux red-black tree

▪ Self balancing binary tree - nodes indexed by vruntime

 Leftmost node has lowest

vruntime (approx execution time)

 Walking tree to find left

most node has very low

big O complexity:
~O(log N) for N nodes

 Completed processes

are removed

 Time slice: Linux “Nice value”

▪ Nice predates the CFS scheduler

▪ Top shows nice values

▪ Process command (nice & priority):
ps ax -o pid,ni,cmd,%cpu, pri

 Nice Values: from -20 to 19

▪ Lower is higher priority, default is 0

▪ vruntime is a weighted time measurement

▪ Priority weights the calculation of vruntime within a

runqueue to give high priority jobs a boost.

▪ Influences job’s position in rb-tree

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.54

CFS: JOB PRIORITY

53

54

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.28Slides by Wes J. Lloyd

 CFS tracks cumulative job run time with the vruntime variable

 The task on a given runqueue with the lowest vruntime is scheduled
next

 struct sched_entity contains vruntime parameter

▪ Describes process execution time in nanoseconds

▪ Value is not pure runtime, is weighted based on job priority

▪ GOAL: Perfect scheduler →
achieve equal vruntime for all processes of same priority

 Sleeping jobs: upon return a temporary vruntime can be used to
increase temporarily the priority of the task

 When tasks wait for I/O they should receive a comparable share of
the CPU as if they were performing compute ops when run again

 Key takeaway:
identifying the next job to schedule is really fast!

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.55

COMPLETELY FAIR SCHEDULER - 6

 More information:

 Man page: “man sched” : Describes Linux scheduling API

 http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

 https://www.kernel.org/doc/Documentation/scheduler/sched -

design-CFS.txt

 https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

 See paper: The Linux Scheduler – a Decade of Wasted Cores

 http://www.ece.ubc.ca/~sasha/papers/eurosys16 -final29.pdf

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.56

COMPLETELY FAIR SCHEDULER - 7

55

56

http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.29Slides by Wes J. Lloyd

 Questions from 4/11

 Assignment 0 - Due Fri Apr 19

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Quiz 1 and Quiz 2

 Chapter 8: Multi- level Feedback Queue

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Introduction

▪ Race condition

▪ Critical section

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.57

OBJECTIVES – 4/16

CHAPTER 26 -

CONCURRENCY:

AN INTRODUCTION

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L7.58

57

58

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.30Slides by Wes J. Lloyd

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.59

THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED

 Enables a single process (program) to have multiple “workers”

▪ This is parallel programming…

 Supports independent path(s) of execution within a program

with shared memory …

 Each thread has its own Thread Control Block (TCB)

▪ PC, registers, SP, and stack

 Threads share code segment, memory, and heap are shared

 What is an embarrassingly parallel program?

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.60

THREADS - 2

59

60

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.31Slides by Wes J. Lloyd

 Thread Control Block vs. Process Control Block

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.61

PROCESS AND THREAD METADATA

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.62

SHARED ADDRESS SPACE

 Every thread has it’s own stack / PC

61

62

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.32Slides by Wes J. Lloyd

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.63

THREAD CREATION EXAMPLE

int main() Thread 1 Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2

Runs

Prints ‘B’

Returns

Prints ‘main: end’

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.64

POSSIBLE ORDERINGS OF EVENTS

63

64

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.33Slides by Wes J. Lloyd

int main() Thread 1 Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Runs

Prints ‘A’

Returns

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1 Returns immediately

Waits for T2 Returns immediately

Prints ‘main: end’

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.65

POSSIBLE ORDERINGS OF EVENTS - 2

int main() Thread 1 Thread 2

Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.66

POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
events in the program matters?

65

66

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.34Slides by Wes J. Lloyd

 Counter example

 A + B : ordering

 Counter: incrementing global variable by two threads

 Is the counter example embarrassingly parallel?

 What does the parallel counter program require?

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.67

COUNTER EXAMPLE

 What’s the dif ference between forks and threads?

▪ Forks: duplicate a process

▪ Think of CLONING - There will be two identical processes at the end

▪ Threads: no duplication of code/heap, lightweight execution threads

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.68

PROCESSES VS. THREADS

67

68

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.35Slides by Wes J. Lloyd

 Questions from 4/11

 Assignment 0 - Due Fri Apr 19

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Quiz 1 and Quiz 2

 Chapter 8: Multi- level Feedback Queue

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Introduction

▪ Race condition

▪ Critical section

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.69

OBJECTIVES – 4/16

 What is happening with our counter?

▪ When counter=50, consider code: counter = counter + 1

▪ If synchronized, counter will = 52

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.70

RACE CONDITION

69

70

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.36Slides by Wes J. Lloyd

 Questions from 4/11

 Assignment 0 - Due Fri Apr 19

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Quiz 1 and Quiz 2

 Chapter 8: Multi- level Feedback Queue

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

 Chapter 26: Concurrency: An Introduction

▪ Introduction

▪ Race condition

▪ Critical section

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.71

OBJECTIVES – 4/16

 Code that accesses a shared variable must not be

concurrently executed by more than one thread

 Multiple active threads inside a critical section produce a

race condition .

 Atomic execution (all code executed as a unit) must be

ensured in critical sections

▪ These sections must be mutually exclusive

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.72

CRITICAL SECTION

71

72

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/16/2024

L7.37Slides by Wes J. Lloyd

 To demonstrate how critical section(s) can be executed

“atomically -as a unit” Chapter 27 & beyond introduce locks

 Counter example revisited

April 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L7.73

LOCKS

QUESTIONS

73

74

	Slide 1: TCSS 422: Operating Systems
	Slide 2: Text book coupon
	Slide 3: Office hours – Spring 2024
	Slide 4: TCSS 422 Discord server
	Slide 5: OBJECTIVES – 4/16
	Slide 6: Online daily feedback survey
	Slide 7
	Slide 8: Material / pace
	Slide 9: Feedback from 4/11
	Slide 10: Feedback - 2
	Slide 11: OBJECTIVES – 4/16
	Slide 12: Assignment 0 - Due Fri Apr 19
	Slide 13: OBJECTIVES – 4/16
	Slide 14: OBJECTIVES – 4/16
	Slide 15: Quiz 1
	Slide 16: Quiz 2
	Slide 17: Coming soon...
	Slide 18: OBJECTIVES – 4/16
	Slide 19
	Slide 20
	Slide 21: example
	Slide 22: example
	Slide 23: example
	Slide 24: OBJECTIVES – 4/16
	Slide 25: Chapter 9 -Proportional Share Scheduler
	Slide 26: Proportional share scheduler
	Slide 27: Lottery scheduler
	Slide 28: Lottery scheduler implementation
	Slide 29: OBJECTIVES – 4/16
	Slide 30: Ticket mechanisms
	Slide 31: Ticket mechanisms - 2
	Slide 32: Lottery scheduling
	Slide 33: Coin flipping
	Slide 34: Lottery fairness
	Slide 35: Lottery scheduling challenges
	Slide 36: We will return at 4:50pm
	Slide 37: OBJECTIVES – 4/16
	Slide 38: Stride scheduler
	Slide 39: Stride scheduler - 2
	Slide 40: Stride scheduler - 3
	Slide 41: Stride scheduler - example
	Slide 42: Stride scheduler example - 2
	Slide 43: Stride scheduler example - 3
	Slide 44: Stride scheduler example - 4
	Slide 45
	Slide 46: OBJECTIVES – 4/16
	Slide 47: Linux: completely fair scheduler (CFS)
	Slide 48: Linux: Completely fair scheduler (CFS)
	Slide 49: Completely fair scheduler - 2
	Slide 50: Completely fair scheduler - 3
	Slide 51: Completely fair scheduler - 4
	Slide 52: Cfs TRADEOFF
	Slide 53: Completely fair scheduler - 5
	Slide 54: CFS: job priority
	Slide 55: Completely fair scheduler - 6
	Slide 56: Completely fair scheduler - 7
	Slide 57: OBJECTIVES – 4/16
	Slide 58: Chapter 26 -Concurrency: An introduction
	Slide 59: Threads
	Slide 60: Threads - 2
	Slide 61: Process and thread metadata
	Slide 62: Shared Address space
	Slide 63: Thread creation example
	Slide 64: Possible Orderings of events
	Slide 65: Possible Orderings of events - 2
	Slide 66: Possible orderings of events - 3
	Slide 67: Counter example
	Slide 68: Processes vs. threads
	Slide 69: OBJECTIVES – 4/16
	Slide 70: Race condition
	Slide 71: OBJECTIVES – 4/16
	Slide 72: Critical section
	Slide 73: locks
	Slide 74: Questions

