TCSS 422 A — Spring 2024
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Multi-level Feedback Queue ll, #
Proportional Share Schedulers,
Introduction to Concurrency

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2024]

Aprl 16,2024 School of Engineering and Technology, University of Washington

4/16/2024

TEXT BOOK COUPON

= 15% off textbook code: LULUBOOKS15
(through Friday Apr 19)

= https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-
arpaci-dusseau/operating-systems-three-easy-pieces-
hardcover-version-110/hardcover/product-
15gjeeky.html?q=three+easy+pieces+operating+systems&pa
e=1&pageSize=4

= With coupon textbook is only $33.79 + tax & shipping

TCS5422: Operating Systems [Spring 2024]

‘ il it School of Engineering and Technology, University of Washington - Tacoma

OFFICE HOURS - SPRING 2024

= **Tuesdays after class untll 7:00pm**
Hybrid (in-person/zoom)

= This session will be in person in CP 229.
=Zoom will be monitored when no student is in CP 229.

= Thursdays after class until 7:00pm - Hybrid (in-person/Zoom)

= Additional office time will be held on Thursdays after class
when there is high demand indicated by a busy Tuesday
office hour

= When Thursday Office Hours are planned, Zoom links will
be shared via Canvas

= Questions after class on Thursdays are always entertained
even when the formal office hour is not scheduled

TCSS422: Operating Systems [Spring 2024]

April 16,2024 School of Engineering and Technology, University of Washington - Tacoma.

TCSS 422 DISCORD SERVER

= Please join the TCSS 422 A - Spring 2024 Discord Server

= https://discord.gg/H7PPZ5ArFW

= Under Edit Server Profile:
Please update your ‘Server Nickname’
to your real name or UW NET ID
THANK YOU

TCS5422: Operating Systems [Spring 2024]

‘ April 16,2024 School of Engineering and Technology, University of Washington - Tacoma.

OBJECTIVES - 4/16

| = Questions from 4/11 |
= Assignment O - Due Fri Apr 19
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26
® Quiz 1 and Quiz 2
= Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

TCS5422: Operating Systems [Spring 2024]

(D) School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TCS5422A > Assignments

Sprng 2021
Home

Announcements

Joom * Upcoming Assignments
Syllabus s TCSS422 - Online Daily Feedback Survey - 4/1

: i I ™ Avallable until Apr 5 at 11:5%pm | DueApr3 at 10pm | -/1pts
Nizerccinne An.r e

TCS5422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

‘ April 16, 2024

L7.1

https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://discord.gg/H7PPZ5ArFW

TCSS 422 A — Spring 2024
School of Engineering and Technology

TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions

Question 1 05 pes

On.a scale of 1 to 10, please classify your perspective on material covered in today's
el

1 2 3 4 5 s 7T 8 3 1

i 10 e ol nevie o

Question 2 05pes

Please rate the pace of today’s dass:

1z 3 a4 s s 7 8 3 11
§ TCSS422: Computer Operating Systems [Spring 2024]
ere 202 School of Engineering and Technology, University of Washington - Tacoma 77

FEEDBACK FROM 4/11

= In the MLFQ. why does Job A In QO take longer than the 10 ms
time slice?

= This question relates to the teaser problem at the end of
Chapter 8.

= Some combination of n short jobs runs for a total of 10 ms per
cycle without relinquishing the CPU
= E.g. 2 jobs = 5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs =1 ms ea
= n jobs always uses full time quantum in highest queue (10 ms)
= Batch job ‘A’ starts, runs for full quantum of 10ms, pushed to lower

queue

= All other jobs run in top-most queue and context switch and use up
10ms so that job ‘A’ is starved after it initially runs once

= If 10ms goal is 5% of the CPU, when must the priority boost be ???
= ANSWER -> Priority boost should occur every 200ms

4/16/2024

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (31 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - 6.81 ({ - previous 7.00)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.42 (1 - previous 5.21)

TCS5422: Computer Operating Systems [Spring 2024]

‘ il it School of Engineering and Technology, University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2024]

‘ April 16,2024 School of Engineering and Technology, University of Washington - Tacoma.

FEEDBACK - 2

= How can an MLFQ scheduler account for user advice?

= We will learn about the Linux ‘nice’ command in Ch. 9

= When user runs the nice command it provides a suggestion to
the OS scheduler to increase or decrease process priority

= User processes have a maximum priority, and OS processes
can still obtain priority greater than any user process priority

= TRUE/FALSE Questlon:
= Round robin is the scheduler that best addresses fairness and
average response time of jobs.

TCS5422: Operating Systems [Spring 2024]
‘ April 16,2024 School of Engineering and Technology, University of Washington - Tacoma 17.10

OBJECTIVES - 4/16

= Questions from 4/11
| = Assignment O - Due Fri Apr 19 |
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26
® Quiz 1 and Quiz 2
= Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

TCS5422: Operating Systems [Spring 2024]
‘ (D) School of Engineering and Technology, University of Washington - Tacoma v

10

ASSIGNMENT O - DUE FRI APR 19

= Due Friday April 19 @ 11:59pm
= Grace period: submission ok until Sun Apr 21 @ 11:59 PM
= Late submissions thru Tuesday Apr 23 @ 11:59pm

7CS5422: Operating Systems [Spring 2024]
‘ (5D School of Engineering and Technology, University of Washington - Tacoma v

11

Slides by Wes J. Lloyd

12

L7.2

TCSS 422 A — Spring 2024
School of Engineering and Technology

4/16/2024

OBJECTIVES - 4/16

= Questions from 4/11
= Assignment O - Due Fri Apr 19
| C Tutorlal - Polnters, Strllg_, Exec In C - Due Frl Apr 26 |
® Quiz 1 and Quiz 2
= Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

TCSS422: Operating Systems [Spring 2024]

‘ e School of Engineering and Technology, University of Washington - Tacoma.

17.13

OBJECTIVES - 4/16

= Questions from 4/11
= Assignment O - Due Fri Apr 19
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

= Quiz1 and Quiz 2
= Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

TCS5422: Operating Systems [Spring 2024]

il it School of Engineering and Technology, University of Washington - Tacoma

17.14

13

14

QuiZz 1

® Posted in Canvas
= Due Thursday April 25" at 11:59pm

= Link:

qulz/TCSS422_s2024_quiz_1.pdf

= Active reading on Chapter 9 - Proportional Share Schedulers

= https://faculty.washington.edu/wlloyd/courses/tcss422/

TCSS422: Operating Systems [Spring 2024]

‘ April 16,2024 School of Engineering and Technology, University of Washington - Tacoma.

17.15

QuIZ 2

= Canvas Quiz - Practice CPU Scheduling Problems

= Posted in Canvas
= Unlimited attempts permitted
= Due Tuesday April 30t at 11:59pm

= https://canvas.uw.edu/courses/1728244/qulzzes/2030525

TCS5422: Operating Systems [Spring 2024]

An| 162028 School of Engineering and Technology, University of Washington - Tacoma

17.16

15

COMING SOON...

= Assignment #1
=To be posted soon

= Midterm Exam
= Thursday May 2nd
=In Class

TCS5422: Operating Systems [Spring 2024]

‘ (D) School of Engineering and Technology, University of Washington - Tacoma

17.17

17

Slides by Wes J. Lloyd

16

OBJECTIVES - 4/16

= Questions from 4/11
= Assignment O - Due Fri Apr 19
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26
® Quiz 1 and Quiz 2
= Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler

= Examples |
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

TC55422: Operating Systems [Spring 2024]

(5D School of Engineering and Technology, University of Washington - Tacoma

17.18

18

L7.3

http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_s2024_quiz_1.pdf
http://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_s2024_quiz_1.pdf
http://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_s2024_quiz_1.pdf
http://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_s2024_quiz_1.pdf
https://canvas.uw.edu/courses/1728244/quizzes/2030525

TCSS 422 A — Spring 2024
School of Engineering and Technology

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium
priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units.

en the priority boost fires, the current job is preempted, and the next scheduled job is run in

tound yobin order; SANITY CHECK: Consider the timing graph
Job Arrival Time Job Length ;r—axi;' sl;ozllllq Zot exceed the combined job
A . o length of all jobs.

B & MR

c 10 ¥ 140

(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.
Draw vertical lines for key events and be sure to label the X-axis times as in the example
Please draw clearly. An unreadable graph will loose points

a »

HIGH }D,\BC:-_ CAE‘\/ % Cﬁi

4/16/2024

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium
priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units.
When the priority boost fires, the current job is preempted, and the next scheduled job is runin
round-robin order.

Job Arrival Time sblength TImt shiee 15 JpB +ime.
A T=0

B T=0 16 ?\s}ﬁm\w Befoge C/j
c T=0 % Rgﬂgﬁ\o "T\ﬁq

(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.

Draw vertical lines for key events and be sure to label the X-axis times as in the example
Please draw clearly. An unreadable graph will loose points

PR (46} P8 i

[
Y G T R
| 8 F

o 3 6 Tz 13 2 2%

weo | PeR| uy (B8 BB By
| H \ : ! ‘)
LOW } ; H L y. . ;% ®)
o 3T AR Lt E e
19
EXAMPLE
= Question:

= Given a system with a quantum length of 10 ms for all jobs in its
highest queue, how often would you have to boost job A (the first
job to arrive and run) back to the highest priority level to guarantee
that job A, a long-running (and potentially starving) job gets at

EXAMPLE

= Question:

= Given a system with a quantum length of 10 ms for all jobs in its
highest queue, how often would you have to boost job A (the first
job to arrive and run) back to the highest priority level to guarantee
that job A, a long-running (and potentially starving) job gets at
least 5% of the CPU assuming that on priority boost job execution
resets to the front of the queue?

B

05 PR-1p

(] P
i B (0 _ 200 s
405
TCS5422: Operating Systems [Spring 2024]
‘ April 16,2024 School of Engineering and Technology, University of Washington - Tacoma .22

22

t 5% o CPU assuming that on priority boost job execution
resets to theyfront of the queue?
e 222 2 .05 Pp = 10mS
[
o 75=200ms
o~ N
\0(1\5
o
7 £
- ——
I v

= Question:

= Given a system with a quantum length of 10 ms for all jobs in its
highest queue, how often would you have to boost jobs back to the
highest priority level to guarantee that a single long-running (and
potentially starving) job gets at least 5% of the CPU?

Some combination of n short jobs runs for a total of 10 ms per
cycle without relinquishing the CPU

= E.g. 2 jobs = 5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs =1 ms ea

= n jobs always uses full time quantum in highest queue (10 ms)

= Batch jobs starts, runs for full quantum of 10ms, pushed to lower queue
= All other jobs run and context switch totaling the quantum per cycle

= If 10ms is 5% of the CPU, when must the priority boost be ???

= ANSWER -> Priorlty boost should occur every 200ms

TCS5422: Operating Systems [Spring 2024]
‘ (D) School of Engineering and Technology, University of Washington - Tacoma b2

OBJECTIVES - 4/16

= Questions from 4/11
= Assignment O - Due Fri Apr 19
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26
® Quiz 1 and Quiz 2
= Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers
|_"= Lottery scheduler |
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

7CS5422: Operating Systems [Spring 2024]
‘ (5D School of Engineering and Technology, University of Washington - Tacoma b2

23

Slides by Wes J. Lloyd

24

TCSS 422 A — Spring 2024
School of Engineering and Technology

CHAPTER 9 -
PROPORTIONAL SHARE
SCHEDULER

: TCSS422: Operating Systems [Spring 2024]
LIS School of Engineering and Technology, University of Washington -

25

LOTTERY SCHEDULER

= Simple implementation

= Just need a random number generator
Picks the winning ticket

= Maintain a data structure of jobs and tickets (list)
= Traverse list to find the owner of the ticket

= Consider sorting the list for speed

TCSS422: Operating Systems [Spring 2024]

‘ April 16,2024 School of Engineering and Technology, University of Washington - Tacoma

17.27

27

OBJECTIVES - 4/16

® Questions from 4/11
= Assignment O - Due Fri Apr 19
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26
® Quiz 1 and Quiz 2
= Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
|_= Ticket mechanisms |
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

TCS5422: Operating Systems [Spring 2024]

‘ (D) School of Engineering and Technology, University of Washington - Tacoma

17.29

29

Slides by Wes J. Lloyd

PROPORTIONAL SHARE SCHEDULER

= Also called fair-share scheduler
or lottery scheduler

= Guarantees each job receives some percentage of CPU
time based on share of “tickets”

= Each job receives an allotment of tickets
= % of tickets corresponds to potential share of a resource

= Can conceptually schedule any resource this way
CPU, disk 1/0, memory

‘ April 16,2024

TCS5422: Operating Systems [Spring 2024] 1726
School of Engineering and Technology, University of Washington - Tacoma i

26

LOTTERY SCHEDULER IMPLEMENTATION

- N
[ok) [sebB Y\ Jobic
head —— 700 > Tcsa > Tixaso > NULL
N / _
2 counter = 0;
2
i
5
: winner = getrandon(0, totaltickats);
s
5 nods_t ~current. - neads
o
2 {current) {
1 Counter = counter + current->tickets;
1 (countes 5 winner)
1 ;
iy current = curzent-snext;
18
‘ April 16,2024

TCS5422: Operating Systems [Spring 2024] 1728
School of Engineering and Technology, University of Washington - Tacoma

28

TICKET MECHANISMS

= Ticket currency / exchange
= User allocates tickets in any desired way
= 0S converts user currency into global currency

= Example:
=There are 200 global tickets assigned by the 0S

User A > 500 (A's currency) to Al > 50 (global currency)
> 500 (A's currency) to A2 2 50 (global currency)

User B > 10(B's currency) to B1 - 100 (global currency)

‘ April 16, 2024

TCS3422: Operating Systems [Spring 2024] 30
School of Engineering and Technology, University of Washington - Tacoma

30

TCSS 422 A — Spring 2024 4/16/2024
School of Engineering and Technology

TICKET MECHANISMS - 2 LOTTERY SCHEDULING
= Ticket transfer = Scheduler picks a winning ticket
= Temporarily hand off tickets to another process = Load the job with the winning ticket and run it
= Ticket inflation = Example:
= Process can temporarily raise or lower the number of = Given 100 tickets in the pool
tickets it owns = Job A has 75 tickets: 0 - 74

= If a process needs more CPU time, it can boost tickets. = Job B has 25 tickets: 75 - 99

Scheduler’s winning tickets: 63 85 70 39 76 17 29 41 36 39 10 99 68 83 63
Scheduledjob: &4 B A A B A A A A A A B A B A

= But what do we know about probability of a coin flip?

TCS5422: Operating Systems [Spring 2024] TCS5422: Operating Systems (Spring 2024]
l fnal School of Engineering and Technology, University of Washington - Tacoma 1731 il it School of Engineering and Technology, University of Washington - Tacoma 1732

31 32

LOTTERY FAIRNESS

COIN FLIPPING

= Equality of distribution (fairness) requires a lot of flips! = With two jobs
100 = Each with the same number of tickets (t=100)
o, N ineets T,

Unfaimess {Average)

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

1 1000

10 100
Job Langlh

incressng b of con ases When the job length is not very lo
average unfairness can be

TCS5422: Operating Systems [(Spring 2024] TCS5422: Operating Systems (Spring 2024]
l April 16,2024 School of Engineering and Technology, University of Washington - Tacoma 1733 April 16,2024 School of Engineering and Technology, University of Washington - Tacoma

33 34

LOTTERY SCHEDULING CHALLENGES

= What is the best approach to assign tickets to jobs?
= Typical approach is to assume users know best
= Users are provided with tickets, which they allocate as

e - WE WILL RETURN AT | &
[j}:’%wa?:\ic::g the OS automatically distribute tickets upon 4:50PM %

= What do we know about incoming jobs a priori ?
= Ticket assignment is really an open problem...

TCSS422: Operating Systems [Spring 2024] - TCSS422: Operating Systems [Spring 2024]
l (D) School of Engineering and Technology, Universty of Washington - Tacoma s TR School of Engineering and Technology, University of Washington -

35 36

Slides by Wes J. Lloyd L7.6

TCSS 422 A — Spring 2024
School of Engineering and Technology

4/16/2024

OBJECTIVES - 4/16

= Questions from 4/11
= Assignment O - Due Fri Apr 19
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26
Quiz 1 and Quiz 2
Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
icket mechanisms
tride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

TCSS422: Operating Systems [Spring 2024]
‘ fnal School of Engineering and Technology, University of Washington - Tacoma 1737

STRIDE SCHEDULER

= Addresses statistical probability issues with
lottery scheduling

= Instead of guessing a random number to select a
job, simply count...

TCS5422: Operating Systems [Spring 2024]
‘ il it School of Engineering and Technology, University of Washington - Tacoma 17.38

37

38

STRIDE SCHEDULER - 2

= Jobs have a “stride” value
= A stride value describes the counter pace when the job should
give up the CPU

= Stride value is inverse in proportion to the job’s number of
tickets (more tickets = smaller stride)

= Total system tickets = 10,000
= Job A has 100 tickets > Ao = 10000/100 = 100 stride
= Job B has 50 tickets 2> B4 = 10000/50 = 200 stride
= Job C has 250 tickets > C,y,qe = 10000/250 = 40 stride

= Stride scheduler tracks “pass” values for each job (A, B, C)

TCSS422: Operating Systems [Spring 2024]
‘ April 16,2024 School of Engineering and Technology, University of Washington - Tacoma 1739

STRIDE SCHEDULER - 3

= Basic algorithm:
1. Stride scheduler picks job with the lowest pass value
2. Scheduler increments job’s pass value by its stride and
starts running
3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a
new job (go to 1)

= KEY: When the counter reaches a job’s “PASS” value,
the scheduler passes on to the next job...

TCS5422: Operating Systems [Spring 2024]
‘ An| 162028 School of Engineering and Technology, University of Washington - Tacoma 4o

39

STRIDE SCHEDULER - EXAMPLE

= Stride values
=Tickets = priority to select job
=Stride is inverse to tickets
=Lower stride = more chances to run (higher priorit

Priority
C stride = 40
A stride = 100
B stride = 200

TCS5422: Operating Systems [Spring 2024]
‘ (D) School of Engineering and Technology, University of Washington - Tacoma e

41

Slides by Wes J. Lloyd

40

STRIDE SCHEDULER EXAMPLE - 2

= Three-way tie: randomly pick job A (all pass values=0)
= Set A’s pass value to A’'s stride = 100

= Increment counter until > 100 (%)

" Pick a new job: two-way tie A =100

Pass(A) Pass(£) Pass(C) Who Runs? B =50
(stride=100) (stride=200) (stride=40)

. Initial job selection

0 0 0 A
100 4] 0 is random. All @ 0
100 200 0 [
100 200 40 < 4 C has the most tickets
100 200 80 c and receives a lot of
100 200 120 A opportunities to run...
200 200 120 c
200 200 160 C
200 200 200
[e o ey rwanrgn s

42

TCSS 422 A — Spring 2024

School of

Engineering and Technology

STRIDE SCHEDULER EXAMPLE - 3

= We set A’s counter (pass value) to A's stride = 100
= Next scheduling decision between B (pass=0) and C (pass=0)
= Randomly choose B

Tickets
= C has the lowest counter for next 3 rounds C =250
Pass(A) Pass(t) Pass(C) Whe Runs? A =100
(stride=100) (stride=200) (stride=40) B = 50
0 0 0 A
100 0 0
100 200 0 c
100 200 40 c ﬁ C has the most tickets
100 200 80 C and is selected to run
100 200 120 A more often ...
200 200 120 c
200 200 160 c
200 200 200 X
‘ LAzl At ;gg;\zi%‘E):;r:;’:\gnzy::nz"zEf\:r::‘ugg\:ulzl:!versilvaf Washington - Tacoma 1743

43

Which of the following is NOT a problem with

proportional share schedulers?

How tickets should be distributed to incoming
jobs | A

Lottery scheduler is only eventually fair | B

Glven 2 users A and B who both receive a 50%
timeshare of the system, the runtime for User A's | (C
Jobs is dependent an the runtime of User B

Allof the above | [[)

None of the abave | [E

- B TCSS422: Operating Systems [Spring 2024]
pril 16, 2024

L7498
|

45

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

Large Google datacenter study:

“Profiling a Warehouse-scale Computer” (Kanev et al.)
Monitored 20,000 servers over 3 years

Found 20% of CPU time spent in the Linux kernel

5% of CPU time spent
in the CPU scheduler!

35,
30|

= Study highlights

N karmel
importance for

Cycles In kemel code (%)

high performance 5 kemel/sened
0S kernels and fffffffffff
CPU schedulers ! S FLEEIT TS

Figure 5: Kernel time, especially time spent in the scheduler,
is a significant fraction of WSC cycles.

Se0: nitaas 1145/2740488.2750302
TCS5422: Operating Systems [Spring 2024]
‘ (D) School of Engineering and Technology, University of Washington - Tacoma a7

Slides by Wes J. Lloyd

= Job counters support determining which job to run next
= Over time jobs are scheduled to run based on their
priority represented as their share of tickets... Tickets
= Tickets are analogous to Job priorlt: € =250
A =100
Pass(A) Pass(2) Pass(C) Whe Runs? B = 50
(stride=100) (stride=200) (stride=40)
0 0 0 A
100 0 0
100 200 0 c
100 200 40 c
100 200 80 c
100 200 120 A
200 200 120 c
200 200 160 c
200 200 200 X
[oo IS oot e S0 s T

44

OBJECTIVES - 4/16

= Questions from 4/11
= Assignment O - Due Fri Apr 19
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26
Quiz 1 and Quiz 2
Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
|__= Linux Completely Falr Scheduler |
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

‘ April 16,2024

TCS5422: Operating Systems [Spring 2024] 746
School of Engineering and Technology, University of Washington - Tacoma

46

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

= Loosely based on the stride scheduler

= CFS models system as a Perfect Multi-Tasking System
= In a perfect system every process of the same priority (class)
receives exactly 1/nth of the CPU time

= Each scheduling class has a runqueue
= Groups processes of the same class
= In the class, scheduler picks task w/ lowest vruntime to run
= Time slice varies based on how many jobs in shared runqueue
= Minimum time slice prevents too many context switches
(e.g. 3 ms)

7CS5422: Operating Systems [Spring 2024]
‘ (5D School of Engineering and Technology, University of Washington - Tacoma 1748

48

https://dl.acm.org/doi/pdf/10.1145/2749469.2750392

TCSS 422 A — Spring 2024
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER - 2

= Every thread/process has a scheduling class (policy):
= Normal classes: SCHED_OTHER (TS), SCHED_IDLE,
SCHED_BATCH
= TS = Time Sharing
= Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)
= How to show scheduling class and priority:

" fclass
ps -elfc

= §priority (nice value)
Ps ax -o pid,ni,cls,pri,cmd

TCSS422: Operating Systems [Spring 2024]
‘ fnal School of Engineering and Technology, University of Washington - Tacoma 1749

49

COMPLETELY FAIR SCHEDULER - 4

= Sched_min_granularity_ns (3ms)
= Time slice for a process: busy system (w/ full runqueue)
= If system has idle capacity, time slice exceeds the min as long as
difference in vruntime between running process and process with
lowest vruntime is less than sched wakeup_granularity ns
(4ms)
Scheduling time period is: total cycle time for iterating through a
set of processes where each is allowed to run
(like round robin)
= Example:
sched_latency_ns (24ms)
if (proc in runqueue < sched_latency_ns/sched_min_granularity)
or
sched_min_granularity * number of processes in runqueue

Ret: https://www.systutorlals.oom/sohad_min_granularity_ns-sahsd_latency_ns-ofs-attsot-timesiios-aracessss/

TCSS422: Operating Systems [Spring 2024] 751
School of Engineering and Technology, University of Washington - Tacoma

‘ April 16,2024

51

COMPLETELY FAIR SCHEDULER - 5

= Runqueues are stored using a Linux red-black tree
= Self balancing binary tree - nodes indexed by vruntime
= Leftmost node has lowest
vruntime (approx execution time
= Walking tree to find left
most node has very low
big O complexity:
~0(log N) for N nodes
= Completed processes °
are removed

Nodes represent

sched_entity(s)

indexed by their
virtual runtime:

virtual runtime

Most need of CPU Least need of CPU

TCS5422: Operating Systems [Spring 2024] 53
School of Engineering and Technology, University of Washington - Tacoma

‘ April 16, 2024

4/16/2024

COMPLETELY FAIR SCHEDULER - 3

= Linux 2 2.6.23: Completely Fair Scheduler (CFS)
= Linux < 2.6.23: 0(1) scheduler

= Linux maintains simple counter (vruntime) to track how long
each thread/process has run

= CFS picks process with lowest vruntime to run next

= CFS adjusts timeslice based on # of proc waiting for the CPU
= Kernel parameters that specify CFS behavior:
$ sudo sysct] kernel.sched_latency_ns
kernel.sched_latency_ns = 24000000
$ sudo sysctl kernel.sched_min_granularity_ns
kernel.sched_min_granularity_ns = 3000000
$ sudo sysct] kernel.sched_wakeup_granularity_ns
kernel.sched_wakeup_granularity_ns = 4000000

TCS5422: Operating Systems [Spring 2024]

il it School of Engineering and Technology, University of Washington - Tacoma 17.50
= HIGH sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakeup_granularity_ns
CFS features reduced context switching > less overhead
poor near-term fairness
= LOW sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakreup_granularity_ns
CFS features increased context switching > more overhead
better near-term fairness
\ Apil 16, 2024 St o ognemr s Tt Unhersly of Washingion - Tacomal us2

CFS: JOB PRIORITY

= Time slice: Linux “Nice value”
= Nice predates the CFS scheduler
= Top shows nice values

= Process command (nice & priority):
ps ax -o pid,ni,cmd, $cpu, pri
= Nice Values: from -20 to 19
= Lower is higher priority, default is O
=vruntime is a weighted time measurement

= Priority weights the calculation of vruntime within a
runqueue to give high priority jobs a boost.
Influences job’s position in rb-tree

TCS3422: Operating Systems [Spring 2024] 54
School of Engineering and Technology, University of Washington - Tacoma

‘ April 16, 2024

53

Slides by Wes J. Lloyd

54

L7.9

https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/

TCSS 422 A — Spring 2024

4/16/2024
School of Engineering and Technology

COMPLETELY FAIR SCHEDULER - 6

COMPLETELY FAIR SCHEDULER - 7

= CFS tracks cumulative job run time with the vruntime variable O R (iereiaE
= The task on a given runqueue with the lowest vruntime is scheduled)
next
= struct sched_entity contains vruntime parameter
= Describes process execution time in nanoseconds
= Value is not pure runtime, is weighted based on job priority
" GOAL; Perfect scheduler > = https://www.kernel.org/doc/Documentation/scheduler/sched-
achieve equal vruntime for all processes of same priority design-CFS.txt
= Sleeping jobs: upon return a temporary vruntime can be used to = https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
increase temporarily the priority of the task

= When tasks wait for I/0 they should receive a comparable share of
the CPU as if they were performing compute ops when run again

= Man page: “man sched” : Describes Linux scheduling API

" http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

= See paper: The Linux Scheduler - a Decade of Wasted Cores

= Key takeaway: = http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf
Identifylng the next Job to schedule Is really fast!

TCS5422: Operating Systems [Spring 2024] TCS5422: Operating Systems (Spring 2024]
‘ fnal School of Engineering and Technology, University of Washington - Tacoma 1755 il it School of Engineering and Technology, University of Washington - Tacoma 17.58

55 56

OBJECTIVES - 4/16

= Questions from 4/11

= Assignment O - Due Fri Apr 19

= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26
Quiz 1 and Quiz 2

Chapter 8: Multi-level Feedback Queue

:g::,:r;%e;he Scheduler CHAPTER 26 =
L] c.hf:tttirryg:sc:reodﬁ;iunal Share Schedulers CO N CU R R EN CY
AN INTRODUCTION

= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
|_= Introduction |

= Race condition
= Critical section

‘ April 16,2024

5422: Operating Systems [Spring 2024) 57 April 16, 2024 TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma. 3 School of Engineering and Technology, University of Washington -

THREADS THREADS - 2

= Enables a single process (program) to have multiple “workers”

Process Multithreaded Process * This is parallel programming...
Process Stat < Theead | | Theesd
registers, SP, etc... e] [Stet i : PP
= Supports independent path(s) of execution within a program
" « S with shared memory ...
Single - Multiple
Threaded vases SHARED Threaded
Hiocess - % || Process = Each thread has its own Thread Control Block (TCB)
v A « = PC, registers, SP, and stack
EDD = Threads share code segment, memory, and heap are shared
©Alfred Park, http://randu.org/tutorials/threads
= What Is an embarrassingly parallel program?
TCS5422: Operating Systems [Spring 2024] TCS$422: Operating Systems [Spring 2024]
‘ COEREE) School of Engineering and Technology, University of Washington -Tacoma 1780 ‘ CEDEE) Schaol of Engineering and Technology, University of Washington - Tacoma 170

59 60

Slides by Wes J. Lloyd L7.10

http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

TCSS 422 A — Spring 2024

4/16/2024
School of Engineering and Technology

PROCESS AND THREAD METADATA

= Thread Control Block vs. Process Control Block

Thread identification
Thread state
CPU information:
Program counter
Register contents

Process identification
Process status
Process state:
Process status word
Register contents

Main memory
Thread priority Resoutces
Pointer to process that created this thread Process priority
Painters to all other threads created by this thread Accounting
TCSS422: Operating Systems [Spring 2024]
‘ fnal School of Engineering and Technology, University of Washington - Tacoma 1761

61

THREAD CREATION EXAMPLE

#include <stdio.h>
#include <assert.h>
#include <pthread.h>

void smythread(void rarg) {
printf("$s\n", (char +) arg);
return NULL;

)

int
main(int arge, char +argv(l) {

pthread_t pl, p2;

int re;

printf("main: begin\n");
L, mythread,
, mythread,
to finish

assert (rc == 0);
assert (rc == 0);

ead_join(pl, NULL); assert(rc == 0);
ead_join(p2, NULL); assert(rc == 0);
printf ("main: end\n");

return 0;

‘ April 16,2024

TCSS422: Operating Systems [Spring 2024] 1763
School of Engineering and Technology, University of Washington - Tacoma

63

POSSIBLE ORDERINGS OF EVENTS - 2

wtmem | twewst | wem:

Starts running

Prints ‘main: begin’

Creates Thread 1
Runs
Prints ‘A"
Returns
Creates Thread 2
Runs
Prints ‘B
Returns
Waits for T1 Returns immediately
Waits for T2 Returns immediately
Prints ‘main: end’
[romsoame |10 oo b0 ssinon s

65

Slides by Wes J. Lloyd

= Every thread has it’s own stack / PC
0KB The cad nt: 0KB
Program Code | where mstrochons e Pragram Code
1K8 The b . 1K8B
e heap segment:
- Heap conksing malioc'd data Heap
K8 dynamic data structures 2K8
i grows dowrward)
(free)
ifree)
Stack (2)
(it grenws upwerd)
The stack segment: (free)
158 contains Iocal variables 15K8
Stack (1) arguments to routines, stack (1)
16KB return walues, etc. 16KB
A single-Threaded Two threaded
Address Space Address Space
TCS5422: Operating Systems [Spring 2024]
‘ il it School of Engineering and Technology, University of Washington - Tacoma L7.62

62

POSSIBLE ORDERINGS OF EVENTS

mtmem | twess | em:

Starts running

‘Prlnts ‘main: begin’
Creates Thread 1

Creates Thread 2
Waits for T1.
Runs
Prints ‘A"
Returns
» Waits for T2
Runs
Prints ‘B’
Returns
» Prints ‘main: end’
[omsoame [1um oo smm oo uingion maoms

64

POSSIBLE ORDERINGS OF EVENTS - 3

[wmem | vt | em:

Starts running
Prints ‘main: begin’
Creates Thread 1

Creates Thread 2

What if execution order of

e events in the program matters?

Runs
Prints ‘A"
Returns
Waits for T2 Immediately returns
Prints ‘main: end’
IR .

66

TCSS 422 A — Spring 2024
School of Engineering and Technology

COUNTER EXAMPLE

= Counter example

= A + B : ordering

= |s the counter example embarrassingly parallel?

= What does the parallel counter program require?

= Counter: incrementing global variable by two threads

TCSS422: Operating Systems [Spring 2024]

‘ e School of Engineering and Technology, University of Washington - Tacoma

17.67

4/16/2024

PROCESSES VS. THREADS

= What’s the difference between forks and threads?
= Forks: duplicate a process
= Think of CLONING - There will be two identical processes at the end
= Threads: no duplication of code/heap, lightweight execution threads

woda data. ez | code data fles
[||| [oerostos [wooron]

3=

Process Process

5 S S
— — thepad — < Co—tthre
‘ < e
Stack
gl Ahraded procass mudtteadod process
TCS5422: Operating Systems [Spring 2024]
‘ il it School of Engineering and Technology, University of Washington - Tacoma L7.68

67

ad

OBJECTIVES - 4/16

= Questions from 4/11
= Assignment O - Due Fri Apr 19
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26
Quiz 1 and Quiz 2
Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Intr ion
= R ndition
= Critical section

TCSS422: Operating Systems [Spring 2024]

‘ April 16,2024 School of Engineering and Technology, University of Washington - Tacoma.

17.69

RACE CONDITION

= What is happening with our counter?
= When counter=50, ider code: = +1
= If synchronized, counter will = 52

(after instruction)

(o3 Threadl Thread2 PC %eax counter
1 section 00 0 50
o 105 50 50
108 51 50
100 0 50
mov 0x80¢9alc, teax 105 50 50
add & 108 51 50
mo sale 113 51 51
—w.-s TTs state
restors T1's state 108 51 50
mov %eax, 0x3043alc 13 s [s1
TCS5422: Operating Systems [Spring 2024]
‘ April 16,2024 School of Engineering and Technology, University of Washington - Tacoma 170

69

OBJECTIVES - 4/16

= Questions from 4/11
= Assignment O - Due Fri Apr 19
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26
Quiz 1 and Quiz 2
Chapter 8: Multi-level Feedback Queue
= Gaming the Scheduler
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition

I = Critical sectlon I

TCS5422: Operating Systems [Spring 2024]

‘ (D) School of Engineering and Technology, University of Washington - Tacoma

.

70

CRITICAL SECTION

= Code that accesses a shared variable must not be
concurrently executed by more than one thread

= Multiple active threads inside a critical section produce a

= Atomic execution (all code executed as a unit) must be
ensured in critical sections

= These sections must be mutually exclusive

TC55422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma -

‘ April 16, 2024

71

Slides by Wes J. Lloyd

72

L7.12

TCSS 422 A — Spring 2024

School of Engineering and Technology

LOCKS

lock_t mutexs

1

2

3 Q mutex):

¢ Darance - mimme s]
5

unlock (smutex) ;

= Counter example revisited

= To demonstrate how critical section(s) can be executed
“atomically-as a unit” Chapter 27 & beyond introduce locks

Critical section

TCSS422: Operating Systems [Spring 2024]
l e School of Engineering and Technology, University of Washington - Tacoma

.73

4/16/2024

73

Slides by Wes J. Lloyd

QUESTIONS

74

L7.13

	Slide 1: TCSS 422: Operating Systems
	Slide 2: Text book coupon
	Slide 3: Office hours – Spring 2024
	Slide 4: TCSS 422 Discord server
	Slide 5: OBJECTIVES – 4/16
	Slide 6: Online daily feedback survey
	Slide 7
	Slide 8: Material / pace
	Slide 9: Feedback from 4/11
	Slide 10: Feedback - 2
	Slide 11: OBJECTIVES – 4/16
	Slide 12: Assignment 0 - Due Fri Apr 19
	Slide 13: OBJECTIVES – 4/16
	Slide 14: OBJECTIVES – 4/16
	Slide 15: Quiz 1
	Slide 16: Quiz 2
	Slide 17: Coming soon...
	Slide 18: OBJECTIVES – 4/16
	Slide 19
	Slide 20
	Slide 21: example
	Slide 22: example
	Slide 23: example
	Slide 24: OBJECTIVES – 4/16
	Slide 25: Chapter 9 -Proportional Share Scheduler
	Slide 26: Proportional share scheduler
	Slide 27: Lottery scheduler
	Slide 28: Lottery scheduler implementation
	Slide 29: OBJECTIVES – 4/16
	Slide 30: Ticket mechanisms
	Slide 31: Ticket mechanisms - 2
	Slide 32: Lottery scheduling
	Slide 33: Coin flipping
	Slide 34: Lottery fairness
	Slide 35: Lottery scheduling challenges
	Slide 36: We will return at 4:50pm
	Slide 37: OBJECTIVES – 4/16
	Slide 38: Stride scheduler
	Slide 39: Stride scheduler - 2
	Slide 40: Stride scheduler - 3
	Slide 41: Stride scheduler - example
	Slide 42: Stride scheduler example - 2
	Slide 43: Stride scheduler example - 3
	Slide 44: Stride scheduler example - 4
	Slide 45
	Slide 46: OBJECTIVES – 4/16
	Slide 47: Linux: completely fair scheduler (CFS)
	Slide 48: Linux: Completely fair scheduler (CFS)
	Slide 49: Completely fair scheduler - 2
	Slide 50: Completely fair scheduler - 3
	Slide 51: Completely fair scheduler - 4
	Slide 52: Cfs TRADEOFF
	Slide 53: Completely fair scheduler - 5
	Slide 54: CFS: job priority
	Slide 55: Completely fair scheduler - 6
	Slide 56: Completely fair scheduler - 7
	Slide 57: OBJECTIVES – 4/16
	Slide 58: Chapter 26 -Concurrency: An introduction
	Slide 59: Threads
	Slide 60: Threads - 2
	Slide 61: Process and thread metadata
	Slide 62: Shared Address space
	Slide 63: Thread creation example
	Slide 64: Possible Orderings of events
	Slide 65: Possible Orderings of events - 2
	Slide 66: Possible orderings of events - 3
	Slide 67: Counter example
	Slide 68: Processes vs. threads
	Slide 69: OBJECTIVES – 4/16
	Slide 70: Race condition
	Slide 71: OBJECTIVES – 4/16
	Slide 72: Critical section
	Slide 73: locks
	Slide 74: Questions

