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 Office Hours plan for Winter:

 Tuesday 2:30 - 3:30 pm Instructor Wes, Zoom

 Tue/Thur 6:00 - 7:00 pm Instructor Wes, CP 229/Zoom

 Tue 6:00 –  7:00 pm GTA Robert, Zoom/MDS 302

 Wed 1:00 –  2:00 pm GTA Robert, Zoom/MDS 302

 Instructor is available after class at 6pm in CP 229 

each day

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington  -  Tacoma
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TCSS 422 – OFFICE HRS – WINTER 2026

 To help prepare for quiz 1 and the midterm

 Wednesday Jan 28, 6pm

 CP 108* and live-streamed on Zoom

 Recording will be posted

 * - note this is CP 108, not CP 106

 Sample problems will be solved

 Sample problems are posted online:

 https://faculty.washington.edu/wlloyd/courses/tcss422/

scheduler_examples_w2026.pdf  

April 22, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington  -  Tacoma
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BONUS SESSION – 

CPU SCHEDULING PROBLEMS
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 Questions from 1/22

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9, Quiz 2 CPU Scheduling

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington  -  Tacoma
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OBJECTIVES – 1/27

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

January 27, 2026
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma
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ONLINE DAILY FEEDBACK SURVEY
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January 27, 2026
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.7

 Please classify your perspective on material covered in today’s 

class (35 of 46 respondents – 76.1%) :

 1-mostly review, 5-equal new/review, 10-mostly new

 Average –  7.38  (  -  previous 7.03) 

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average –  5.15 (  -  previous 5.08)

January 27, 2026
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma
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MATERIAL / PACE
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 In the x86_64 architecture, ring 2 is unused. Why?

 Rings provide hierarchical protection domains

 Ring 0 has the most privilege

and interacts directly with HW

 Each subsequent ring has

less privileges and must 

access inner ring’s 

resources in controlled/

predefined ways 

(i.e. through system APIs)

 Often OSes only use ring 0 and 

ring 3

 Ring 2 allows for an additional intermediary privilege level

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington  -  Tacoma
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FEEDBACK FROM 1/22

from wikipedia

 Shared by a student taking Secure Coding Principles:

 The pwd (present working directory) is not included in the 

Linux path by default to prevent a malicious command from 

being downloaded and executed in place of the system 

command

 Consider a malicious ‘ ls’  command, downloaded to the user’s 

home directory

 User can only write to “/home/ubuntu”, not “/usr/bin”

 If “/home/ubuntu” is in path before “/usr/bin”, then users can 

accidentally download and run fake commands that do 

damage !

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington  -  Tacoma
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LINUX SECURITY BEST PRACTICE
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 Why is FIFO a scheduler?

 A simple scheduler. Easy to implement.

 Run jobs in the order they arrive to completion without 

preemption

 Much more user friendly than LIFO for operating systems !

 Does CPU clock speed impact the time quantum (time slice) of 

a CPU – yes, faster clock speed can have shorter time slice

 How do you calculate time slice?

▪ Discussed at the end of chapter 9 lecture

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington  -  Tacoma
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FEEDBACK - 2

 What was ‘burst time’ on the round -robin example?

 This is just the job’s total required runtime

 Can schedulers use multiple policies/disciplines?

 YES- in fact they really need to actually

 This is coming up in Chapter 8 & 9

 Why is response time necessary?

 This is a scheduler metric which measures how long it takes 

for a newly arriving job to receive any CPU cycles

 Especially important jobs with user interaction (GUIs etc.)

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington  -  Tacoma
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FEEDBACK - 3
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 Questions from 1/22

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9, Quiz 2 CPU Scheduling

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington  -  Tacoma
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OBJECTIVES – 1/27

 Questions from 1/22

 Assignment 0

 C Tutorial -  Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9, Quiz 2 CPU Scheduling

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington  -  Tacoma
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OBJECTIVES – 1/27
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 Questions from 1/22

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 –  Active Reading Chapter 9, Quiz 2 CPU Scheduling

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers
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OBJECTIVES – 1/27

 Questions from 1/22

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 –  Active Reading Chapter 9, Quiz 2 CPU Scheduling

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington  -  Tacoma
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OBJECTIVES – 1/27
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 Questions from 1/22

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9, Quiz 2 CPU Scheduling

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington  -  Tacoma
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OBJECTIVES – 1/27

CHAPTER 7-

SCHEDULING:

INTRODUCTION

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L6.18
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Chapter 7: Scheduling Introduction

▪ Scheduling metrics

▪ Turnaround time, Jain’s Fairness Index, Response time

▪ FIFO, SJF, STCF, RR schedulers

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington  -  Tacoma
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CHAPTER 7

 Time slice impact:

▪Turnaround time (for earlier example): 
time_slice (1,2,3,4,5) = 14, 14, 13, 14, 10

▪Fairness: round robin is always fair, J=1

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.20

ROUND ROBIN: TRADEOFFS

Fast Response Time Slow Response Time

High overhead from 
context switching

Low overhead from 
context switching

Short Time Slice Long Time Slice

Longer turnaround time
for jobs

Shorter turnaround time
for jobs

19
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 STCF scheduler

▪ A: CPU=50ms, I/O=40ms, 10ms intervals

▪ B: CPU=50ms, I/O=0ms

▪ Consider A as 10ms subjobs (CPU, then I/O)

 Without considering I/O:

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.21

SCHEDULING WITH I/O

CPU utilization= 100/140=71%

 When a job initiates an I/O request

▪ A is blocked, waits for I/O to compute, frees CPU

▪ STCF scheduler assigns B to CPU

 When I/O completes → raise interrupt

▪ Unblock A, STCF goes back to executing A: (10ms sub-job)

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma
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SCHEDULING WITH I/O - 2

Cpu utilization = 100/100=100%

21
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January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington  -  Tacoma L6.23

Which scheduler, this far, best addresses fairness 

and average response time of jobs?

First In – First Out (FIFO)

Shortest Job First (SJF)

Shortest Time to Completion First (STCF)

Round Robin (RR)

None of the Above

All of the Above

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma
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QUESTION: SCHEDULING FAIRNESS
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 Consider Three jobs (A, B, C) that require:

timeA=400ms, timeB=100ms, and timeC=200ms 

 All jobs arrive at time=0 in the sequence of A B C.  

 Draw a scheduling graph to help compute the 

average response time (ART) and 

average turnaround time (ATT)  scheduling metrics for the 

FIFO scheduler. 

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington  -  Tacoma
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SCHEDULING METRICS

A B C

0         400  500     700

Example:

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington  -  Tacoma L6.26

A B C

0         400  500     700

Example:
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January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington  -  Tacoma L6.27

 Consider Three jobs (A, B, C) that require:

timeA=400ms, timeB=100ms, and timeC=200ms 

 All jobs arrive at time=0 in the sequence of A B C.  

 Draw a scheduling graph to help compute the 

average response time (ART) and 

average turnaround time (ATT)  scheduling metrics for the 

SJF scheduler. 

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington  -  Tacoma
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SCHEDULING METRICS

AB C

0  100      300       700

Example:
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January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington  -  Tacoma L6.29

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington  -  Tacoma L6.30
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 Questions from 1/22

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9, Quiz 2 CPU Scheduling

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington  -  Tacoma
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OBJECTIVES – 1/27

WE WILL RETURN AT 

4:55PM

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington  -  Tacoma L6.32
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CHAPTER 8 – 

MULTI-LEVEL FEEDBACK 

QUEUE (MLFQ) SCHEDULER

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L6.33

Objectives:

▪ Improve turnaround time:

 Run shorter jobs first

▪Minimize response time:

 Important for interactive jobs (UI)

Achieve without a priori knowledge of job length

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma
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MULTI-LEVEL FEEDBACK QUEUE
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 Multiple job queues

 Adjust job priority based on

observed behavior

 Interactive Jobs

▪ Frequent I/O → keep priority high

▪ Interactive jobs require fast

response time (GUI/UI)

 Batch Jobs

▪ Require long periods of CPU

utilization

▪ Keep priority low
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MLFQ - 2 Round-Robin
within a Queue

 New arriving jobs are placed into highest priority queue

 If a job uses its entire time slice, priority is reduced ( ↓)

▪ Jobs appears CPU-bound ( “batch” job), not interactive (GUI/UI)

 If a job relinquishes the CPU for I/O priority stays the same
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MLFQ: DETERMINING JOB PRIORITY

MLFQ approximates SJF
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 Three-queue scheduler, time slice=10ms
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MLFQ: LONG RUNNING JOB

Priority

 Aarrival_time =0ms, A run_time=200ms, 

 B run_time =20ms, Barrival_time =100ms
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MLFQ: BATCH AND INTERACTIVE JOBS

Priority

Scheduling multiple jobs (ms)
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 Continuous interactive job (B) with long running batch job (A)

▪ Low response time is good for B

▪ A continues to make progress
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L6.39

MLFQ: BATCH AND INTERACTIVE - 2

The MLFQ approach keeps interactive job(s) at the highest priority

 Questions from 1/22

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers
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OBJECTIVES – 1/27
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Starvation
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MLFQ: ISSUES

 Questions from 1/22

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9, Quiz 2 CPU Scheduling

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers
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OBJECTIVES – 1/27
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 Gaming the scheduler

▪ Issue I/O operation at 99% completion of the time slice

▪ Keeps job priority fixed – never lowered

 Job behavioral change

▪ CPU/batch process becomes an interactive process
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MLFQ: ISSUES - 2

Priority becomes stuck

 Priority Boost

▪ Reset all jobs to topmost queue after some time interval S
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RESPONDING TO BEHAVIOR CHANGE

Starvation
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 With priority boost

▪ Prevents starvation
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RESPONDING TO BEHAVIOR CHANGE - 2

With

 Without priority boost: 

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 KEY:  If time quantum of a higher queue is filled,

then we don’t run any jobs in lower priority queues!!!
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KEY TO UNDERSTANDING MLFQ – PB
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 Consider 3 queues:

 Q2 – HIGH PRIORITY – Time Quantum 10ms

 Q1 – MEDIUM PRIORITY – Time Quantum 20 ms

 Q0 – LOW PRIORITY – Time Quantum 40 ms

 Job A: 200ms no I/O

 Job B: 5ms then I/O

 Job C: 5ms then I/O

 Q2 fills up,

starves Q1 & Q0

 A makes no progress
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STARVATION EXAMPLE

Starvation

 Improved time accounting:

▪ Track total job execution time in the queue

▪ Each job receives a fixed time allotment

▪ When allotment is exhausted, job priority is lowered
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PREVENTING GAMING
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 Consider the tradeoffs:

▪ How many queues?

▪ What is a good time slice?

▪ How often should we “Boost” priority of jobs?

▪ What about different time slices to different queues?
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MLFQ: TUNING

 Oracle Solaris MLFQ implementation

▪ 60 Queues → 

w/ slowly increasing time slice (high to low priority)

▪ Provides sys admins with set of editable table(s)

▪ Supports adjusting time slices, boost intervals, priority 

changes, etc.

 Advice

▪ Provide OS with hints about the process

▪ Nice command → Linux
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PRACTICAL EXAMPLE
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 The refined set of MLFQ rules:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 Rule 3: When a job enters the system, it is placed at the 

highest priority.

 Rule 4: Once a job uses up its time allotment at a given 

level (regardless of how many times it has given up the 

CPU), its priority is reduced(i.e., it moves down on queue).

 Rule 5: After some time period S, move all the jobs in the 

system to the topmost queue.
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MLFQ RULE SUMMARY

 Questions from 1/22

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9, Quiz 2 CPU Scheduling

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers
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OBJECTIVES – 1/27
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 Question:

 Given a system with a total quantum length of 10 ms for all 

jobs to run before priority is lowered in the highest queue, 

what priority boost interval is required to boost jobs back to 

the highest priority level to guarantee that a single long -

running (and potentially starving) job gets at least 5% of the 

CPU?
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EXAMPLE

 Question:

 Given a system with a quantum length of 10 ms for al l  jobs  in its 
highest queue, what priority boost interval is required to boost jobs 
back to the highest priority level to guarantee that a single long -
running (and potentially starving) job gets at least 5% of the CPU?

 Consider that a set of n jobs runs for a total of 10 ms per cycle. 
These are not batch jobs, since they give up the CPU before 10ms.

▪ E.g. 2 jobs = 5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs = 1 ms ea

▪ combined n jobs use up full time quantum of highest queue (10 ms)

▪ A batch job will run for full quantum 10ms, then pushed to lower queue

▪ All other jobs run and context switch totaling the quantum per cycle

▪ If 10ms is 5% of the CPU (across queues), what must the priority boost 
be ???

▪ ANSWER → Priority boost should occur every 200ms
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EXAMPLE
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 Question:

 Given a system with a total quantum length of 10 ms for al l  jobs  to 
run before priority is lowered in the highest queue, what priority 
boost interval is required to boost jobs back to the highest priority 
level to guarantee that a single long -running (and potentially 
starving) job gets at least 5% of the CPU?

.
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EXAMPLE

 Questions from 1/22

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9, Quiz 2 CPU Scheduling

 Chapter 7: Scheduling Introduction 

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers
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OBJECTIVES – 1/27
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CHAPTER 9 -

PROPORTIONAL SHARE 

SCHEDULER

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L6.59

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler
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OBJECTIVES – 1/27
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 Also called fair-share scheduler

  or lottery scheduler

▪ Guarantees each job receives some percentage of CPU 

time based on share of “tickets”

▪ Each job receives an allotment of tickets

▪% of tickets corresponds to potential share of a resource

▪ Can conceptually schedule any resource this way

▪ CPU, disk I/O, memory
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PROPORTIONAL SHARE SCHEDULER

 Simple implementation

▪ Just need a random number generator

▪ Picks the winning ticket

▪Maintain a data structure of jobs and tickets (list)

▪ Traverse list to find the owner of the ticket

▪ Consider sorting the list for speed
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LOTTERY SCHEDULER
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LOTTERY SCHEDULER IMPLEMENTATION

1 // counter: used to track if we’ve found the winner yet

2 int counter = 0;

3

4 // winner: use some call to a random number generator to

5 // get a value, between 0 and the total # of tickets

6 int winner = getrandom(0, totaltickets);

7

8 // current: use this to walk through the list of jobs

9 node_t *current = head;

10

11 // loop until the sum of ticket values is > the winner

12 while (current) {

13  counter = counter + current->tickets;

14  if (counter > winner)

15   break; // found the winner

16  current = current->next;

17 }

18 // ’current’ is the winner: schedule it...

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler
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OBJECTIVES – 1/27
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 Ticket currency / exchange

▪ User allocates tickets in any desired way

▪ OS converts user currency into global currency

 Example:

▪ There are 200 global tickets assigned by the OS
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TICKET MECHANISMS

 Ticket transfer

▪ Temporarily hand off tickets to another process

 Ticket inflation

▪ Process can temporarily raise or lower the number of 

tickets it owns

▪ If a process needs more CPU time, it can boost tickets.
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TICKET MECHANISMS - 2
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 Scheduler picks a winning ticket

▪ Load the job with the winning ticket and run it

 Example:

▪ Given 100 tickets in the pool

▪ Job A has 75 tickets: 0 - 74

▪ Job B has 25 tickets: 75 – 99

 But what do we know about probability of a coin flip?
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LOTTERY SCHEDULING

Scheduled job:

 Equality of distribution (fairness) requires a lot of flips!
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COIN FLIPPING

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.
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LOTTERY FAIRNESS

 With two jobs 

▪ Each with the same number of tickets (t=100)

When the job length is not very long,
average unfairness can be quite severe.

 What is the best approach to assign tickets to jobs?

▪ Typical approach is to assume users know best

▪ Users are provided with tickets, which they allocate as 

desired

 How should the OS automatically distribute tickets upon 

job arrival?

▪What do we know about incoming jobs a priori ?

▪ Ticket assignment is really an open problem…
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LOTTERY SCHEDULING CHALLENGES
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 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler
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OBJECTIVES – 1/27

Addresses statistical probability issues with 

lottery scheduling

 Instead of guessing a random number to select a 

job, simply count…
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STRIDE SCHEDULER
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 Jobs have a “stride” value

▪ A stride value describes the counter pace when the job should 

give up the CPU

▪ Stride value is inverse in proportion to the job’s number of 

tickets  (more tickets = smaller stride)

 Total system tickets = 10,000

▪ Job A has 100 tickets → Astride = 10000/100 = 100 stride

▪ Job B has 50 tickets → Bstride   = 10000/50 = 200 stride

▪ Job C has 250 tickets → Cstride = 10000/250 = 40 stride

 Stride scheduler tracks “pass” values for each job (A, B, C)
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STRIDE SCHEDULER - 2

 Basic algorithm:

1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and 

starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a 

new job (go to 1)

 KEY: When the counter reaches a job’s “PASS” value, 

the scheduler passes on to the next job…
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STRIDE SCHEDULER - 3
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Stride values

▪Tickets = priority to select job

▪Stride is inverse to tickets

▪Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200
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STRIDE SCHEDULER - EXAMPLE

 Three-way tie: randomly pick job A (all pass values=0)

 Set A’s pass value to A’s stride = 100

 Increment counter until > 100

 Pick a new job: two-way tie
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STRIDE SCHEDULER EXAMPLE - 2

Tickets
C  = 250
A  = 100
B  =   50

C has the most tickets
and receives a lot of
opportunities to run…

Initial job selection 
is random. All @ 0
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 We set A’s counter (pass value) to A’s stride = 100

 Next scheduling decision between B (pass=0) and C (pass=0)

▪ Randomly choose B

 C has the lowest counter for next 3 rounds

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.77

STRIDE SCHEDULER EXAMPLE - 3

Tickets
C  = 250
A  = 100
B  =   50

C has the most tickets
and is selected to run
more often …

 Job counters support determining which job to run next 

 Over time jobs are scheduled to run based on their

priority represented as their share of tickets…

 Tickets are analogous to job priority
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STRIDE SCHEDULER EXAMPLE - 4

Tickets
C  = 250
A  = 100
B  =   50
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 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler
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OBJECTIVES – 1/27

 Large Google datacenter study:

“Profiling a Warehouse -scale Computer”  (Kanev et al.)

 Monitored 20,000 servers over 3 years

 Found 20% of CPU time spent in the Linux kernel

 5% of CPU time spent 

in the CPU scheduler!

 Study highlights 

importance for 

high performance 

OS kernels and

CPU schedulers !

S e e :  h t t p s : / / d l . a c m . o r g / d o i / p d f / 1 0 . 1 1 4 5 / 2 7 4 9 4 6 9 . 2 7 5 0 3 9 2  
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LINUX: COMPLETELY FAIR SCHEDULER (CFS)
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 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi -Tasking System

▪ In perfect system every process of the same priority (class) 

receive exactly 1/nth of the CPU time

 Each scheduling class has a runqueue

▪ Groups process of same class 

▪ In class, scheduler picks task w/ lowest vruntime to run

▪ Time slice varies based on how many jobs in shared runqueue

▪ Minimum time slice prevents too many context switches 

(e.g. 3 ms)
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LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Every thread/process has a scheduling class (policy):

 Normal classes: SCHED_OTHER (TS), SCHED_IDLE, 

SCHED_BATCH

▪ TS = Time Sharing

 Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

 How to show scheduling class and priority:

 #class

ps –elfc

 #priority (nice value)

ps ax -o pid,ni,cls,pri,cmd
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COMPLETELY FAIR SCHEDULER - 2
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 Linux ≥ 2.6.23: Completely Fair Scheduler (CFS)

 Linux < 2.6.23: O(1) scheduler

 Linux maintains simple counter (vruntime) to track how long 

each thread/process has run

 CFS picks process with lowest vruntime to run next

 CFS adjusts timeslice based on # of proc waiting for the CPU

 Kernel parameters that specify CFS behavior:
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COMPLETELY FAIR SCHEDULER - 3

$ sudo sysctl kernel.sched_latency_ns

kernel.sched_latency_ns = 24000000  

$ sudo sysctl kernel.sched_min_granularity_ns 

kernel.sched_min_granularity_ns = 3000000

$ sudo sysctl kernel.sched_wakeup_granularity_ns 

kernel.sched_wakeup_granularity_ns = 4000000

 Sched_min_granularity_ns  (3ms)

▪ Time slice for a process: busy system (w/ full runqueue)

▪ If system has idle capacity, time slice exceed the min as long as 

difference in vruntime between running process and process with 

lowest vruntime is less than sched_wakeup_granularity_ns 

(4ms)

 Scheduling time period is: total cycle time for iterating through a 

set of processes where each is allowed to run

(like round robin)

 Example:

sched_latency_ns  (24ms)

if (proc in runqueue  <  sched_latency_ns/sched_min_granularity )

or

sched_min_granularity  * number of processes in runqueue

R e f :  h t t p s : / / w w w . s y s t u t o r i a l s . c o m / s c h e d _ m i n _ g r a n u l a r i t y _ n s - s c h e d _ l a t e n c y _ n s - c f s - a f f e c t - t i m e s l i c e - p r o c e s s e s /  
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COMPLETELY FAIR SCHEDULER - 4
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 HIGH sched_min_granularity_ns (timeslice)

  sched_latency_ns

  sched_wakeup_granularity_ns

reduced context switching → less overhead

poor near-term fairness

 LOW  sched_min_granularity_ns (timeslice)

  sched_latency_ns

  sched_wakreup_granularity_ns

increased context switching → more overhead

better near-term fairness
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 Runqueues are stored using a linux red-black tree

▪ Self balancing binary tree - nodes indexed by vruntime 

 Leftmost node has lowest 

vruntime (approx execution time)  

 Walking tree to find left 

most node has very low

big O complexity:
~O(log N) for N nodes

 Completed 

processes removed
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 Time slice: Linux “Nice value”

▪ Nice predates the CFS scheduler

▪ Top shows nice values

▪ Process command (nice & priority):  
ps ax -o pid,ni,cmd,%cpu, pri

 Nice Values: from -20 to 19

▪ Lower is higher priority, default is 0

▪ Vruntime is a weighted time measurement

▪ Priority weights the calculation of vruntime within a 

runqueue to give high priority jobs a boost.

▪ Influences job’s position in rb-tree
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CFS: JOB PRIORITY

 CFS tracks cumulative job run time in vruntime variable

 The task on a given runqueue with the lowest vruntime is 
scheduled next

 struct sched_entity  contains vruntime  parameter

▪ Describes process execution time in nanoseconds

▪ Value is not pure runtime, is weighted based on job priority

▪ Perfect scheduler → 
achieve equal vruntime for all processes of same priority

 Sleeping jobs: upon return reset vruntime to lowest value in 
system

▪ Jobs with frequent short sleep SUFFER !!

 Key takeaway:
identifying the next job to schedule is really fast!
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 More information:

 Man page: “man sched” : Describes Linux scheduling API

 http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html  

 https://www.kernel.org/doc/Documentation/scheduler/sched -

design-CFS.txt 

 https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

 See paper: The Linux Scheduler – a Decade of Wasted Cores

 http://www.ece.ubc.ca/~sasha/papers/eurosys16 -final29.pdf 
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QUESTIONS
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