
TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.1Slides by Wes J. Lloyd

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

Common Scheduling Algorithms,
Multi-level Feedback

Queue (MLFQ) Scheduler,
Proportional Share

Schedulers

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 15% off textbook code: AAC72SAVE15

 https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-

arpaci-dusseau/operating-systems-three-easy-pieces-

hardcover-version-110/hardcover/product-

15gjeeky.html?q=three+easy+pieces+operating+systems&pag

e=1&pageSize=4

 With coupon textbook is only $33.79 + tax & shipping

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.2

TEXT BOOK COUPON

1

2

https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.2Slides by Wes J. Lloyd

 Office Hours plan for Winter:

 Tuesday 2:30 - 3:30 pm Instructor Wes, Zoom

 Tue/Thur 6:00 - 7:00 pm Instructor Wes, CP 229/Zoom

 Tue 6:00 – 7:00 pm GTA Robert, Zoom/MDS 302

 Wed 1:00 – 2:00 pm GTA Robert, Zoom/MDS 302

 Instructor is available after class at 6pm in CP 229

each day

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.3

TCSS 422 – OFFICE HRS – WINTER 2026

 To help prepare for quiz 1 and the midterm

 Wednesday Jan 28, 6pm

 CP 108* and live-streamed on Zoom

 Recording will be posted

 * - note this is CP 108, not CP 106

 Sample problems will be solved

 Sample problems are posted online:

 https://faculty.washington.edu/wlloyd/courses/tcss422/

scheduler_examples_w2026.pdf

April 22, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L7.4

BONUS SESSION –

CPU SCHEDULING PROBLEMS

3

4

https://faculty.washington.edu/wlloyd/courses/tcss422/scheduler_examples_w2026.pdf
https://faculty.washington.edu/wlloyd/courses/tcss422/scheduler_examples_w2026.pdf
https://faculty.washington.edu/wlloyd/courses/tcss422/scheduler_examples_w2026.pdf

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.3Slides by Wes J. Lloyd

 Questions from 1/22

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9, Quiz 2 CPU Scheduling

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.5

OBJECTIVES – 1/27

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

January 27, 2026
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.6

ONLINE DAILY FEEDBACK SURVEY

5

6

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.4Slides by Wes J. Lloyd

January 27, 2026
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.7

 Please classify your perspective on material covered in today’s

class (35 of 46 respondents – 76.1%) :

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.38 ( - previous 7.03)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.15 ( - previous 5.08)

January 27, 2026
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.8

MATERIAL / PACE

7

8

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.5Slides by Wes J. Lloyd

 In the x86_64 architecture, ring 2 is unused. Why?

 Rings provide hierarchical protection domains

 Ring 0 has the most privilege

and interacts directly with HW

 Each subsequent ring has

less privileges and must

access inner ring’s

resources in controlled/

predefined ways

(i.e. through system APIs)

 Often OSes only use ring 0 and

ring 3

 Ring 2 allows for an additional intermediary privilege level

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.9

FEEDBACK FROM 1/22

from wikipedia

 Shared by a student taking Secure Coding Principles:

 The pwd (present working directory) is not included in the

Linux path by default to prevent a malicious command from

being downloaded and executed in place of the system

command

 Consider a malicious ‘ ls’ command, downloaded to the user’s

home directory

 User can only write to “/home/ubuntu”, not “/usr/bin”

 If “/home/ubuntu” is in path before “/usr/bin”, then users can

accidentally download and run fake commands that do

damage !

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.10

LINUX SECURITY BEST PRACTICE

9

10

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.6Slides by Wes J. Lloyd

 Why is FIFO a scheduler?

 A simple scheduler. Easy to implement.

 Run jobs in the order they arrive to completion without

preemption

 Much more user friendly than LIFO for operating systems !

 Does CPU clock speed impact the time quantum (time slice) of

a CPU – yes, faster clock speed can have shorter time slice

 How do you calculate time slice?

▪ Discussed at the end of chapter 9 lecture

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.11

FEEDBACK - 2

 What was ‘burst time’ on the round -robin example?

 This is just the job’s total required runtime

 Can schedulers use multiple policies/disciplines?

 YES- in fact they really need to actually

 This is coming up in Chapter 8 & 9

 Why is response time necessary?

 This is a scheduler metric which measures how long it takes

for a newly arriving job to receive any CPU cycles

 Especially important jobs with user interaction (GUIs etc.)

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.12

FEEDBACK - 3

11

12

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.7Slides by Wes J. Lloyd

 Questions from 1/22

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9, Quiz 2 CPU Scheduling

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.13

OBJECTIVES – 1/27

 Questions from 1/22

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9, Quiz 2 CPU Scheduling

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.14

OBJECTIVES – 1/27

13

14

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.8Slides by Wes J. Lloyd

 Questions from 1/22

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9, Quiz 2 CPU Scheduling

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.15

OBJECTIVES – 1/27

 Questions from 1/22

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9, Quiz 2 CPU Scheduling

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.16

OBJECTIVES – 1/27

15

16

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.9Slides by Wes J. Lloyd

 Questions from 1/22

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9, Quiz 2 CPU Scheduling

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.17

OBJECTIVES – 1/27

CHAPTER 7-

SCHEDULING:

INTRODUCTION

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L6.18

17

18

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.10Slides by Wes J. Lloyd

Chapter 7: Scheduling Introduction

▪ Scheduling metrics

▪ Turnaround time, Jain’s Fairness Index, Response time

▪ FIFO, SJF, STCF, RR schedulers

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.19

CHAPTER 7

 Time slice impact:

▪Turnaround time (for earlier example):
time_slice (1,2,3,4,5) = 14, 14, 13, 14, 10

▪Fairness: round robin is always fair, J=1

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.20

ROUND ROBIN: TRADEOFFS

Fast Response Time Slow Response Time

High overhead from
context switching

Low overhead from
context switching

Short Time Slice Long Time Slice

Longer turnaround time
for jobs

Shorter turnaround time
for jobs

19

20

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.11Slides by Wes J. Lloyd

 STCF scheduler

▪ A: CPU=50ms, I/O=40ms, 10ms intervals

▪ B: CPU=50ms, I/O=0ms

▪ Consider A as 10ms subjobs (CPU, then I/O)

 Without considering I/O:

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.21

SCHEDULING WITH I/O

CPU utilization= 100/140=71%

 When a job initiates an I/O request

▪ A is blocked, waits for I/O to compute, frees CPU

▪ STCF scheduler assigns B to CPU

 When I/O completes → raise interrupt

▪ Unblock A, STCF goes back to executing A: (10ms sub-job)

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.22

SCHEDULING WITH I/O - 2

Cpu utilization = 100/100=100%

21

22

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.12Slides by Wes J. Lloyd

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L6.23

Which scheduler, this far, best addresses fairness

and average response time of jobs?

First In – First Out (FIFO)

Shortest Job First (SJF)

Shortest Time to Completion First (STCF)

Round Robin (RR)

None of the Above

All of the Above

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.24

QUESTION: SCHEDULING FAIRNESS

23

24

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.13Slides by Wes J. Lloyd

 Consider Three jobs (A, B, C) that require:

timeA=400ms, timeB=100ms, and timeC=200ms

 All jobs arrive at time=0 in the sequence of A B C.

 Draw a scheduling graph to help compute the

average response time (ART) and

average turnaround time (ATT) scheduling metrics for the

FIFO scheduler.

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.25

SCHEDULING METRICS

A B C

0 400 500 700

Example:

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L6.26

A B C

0 400 500 700

Example:

25

26

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.14Slides by Wes J. Lloyd

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L6.27

 Consider Three jobs (A, B, C) that require:

timeA=400ms, timeB=100ms, and timeC=200ms

 All jobs arrive at time=0 in the sequence of A B C.

 Draw a scheduling graph to help compute the

average response time (ART) and

average turnaround time (ATT) scheduling metrics for the

SJF scheduler.

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.28

SCHEDULING METRICS

AB C

0 100 300 700

Example:

27

28

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.15Slides by Wes J. Lloyd

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L6.29

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L6.30

29

30

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.16Slides by Wes J. Lloyd

 Questions from 1/22

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9, Quiz 2 CPU Scheduling

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.31

OBJECTIVES – 1/27

WE WILL RETURN AT

4:55PM

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L6.32

31

32

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.17Slides by Wes J. Lloyd

CHAPTER 8 –

MULTI-LEVEL FEEDBACK

QUEUE (MLFQ) SCHEDULER

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L6.33

Objectives:

▪ Improve turnaround time:

 Run shorter jobs first

▪Minimize response time:

 Important for interactive jobs (UI)

Achieve without a priori knowledge of job length

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.34

MULTI-LEVEL FEEDBACK QUEUE

33

34

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.18Slides by Wes J. Lloyd

 Multiple job queues

 Adjust job priority based on

observed behavior

 Interactive Jobs

▪ Frequent I/O → keep priority high

▪ Interactive jobs require fast

response time (GUI/UI)

 Batch Jobs

▪ Require long periods of CPU

utilization

▪ Keep priority low

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.35

MLFQ - 2 Round-Robin
within a Queue

 New arriving jobs are placed into highest priority queue

 If a job uses its entire time slice, priority is reduced (↓)

▪ Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

 If a job relinquishes the CPU for I/O priority stays the same

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.36

MLFQ: DETERMINING JOB PRIORITY

MLFQ approximates SJF

35

36

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.19Slides by Wes J. Lloyd

 Three-queue scheduler, time slice=10ms

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.37

MLFQ: LONG RUNNING JOB

Priority

 Aarrival_time =0ms, A run_time=200ms,

 B run_time =20ms, Barrival_time =100ms

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.38

MLFQ: BATCH AND INTERACTIVE JOBS

Priority

Scheduling multiple jobs (ms)

37

38

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.20Slides by Wes J. Lloyd

 Continuous interactive job (B) with long running batch job (A)

▪ Low response time is good for B

▪ A continues to make progress

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.39

MLFQ: BATCH AND INTERACTIVE - 2

The MLFQ approach keeps interactive job(s) at the highest priority

 Questions from 1/22

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.40

OBJECTIVES – 1/27

39

40

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.21Slides by Wes J. Lloyd

Starvation

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.41

MLFQ: ISSUES

 Questions from 1/22

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9, Quiz 2 CPU Scheduling

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.42

OBJECTIVES – 1/27

41

42

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.22Slides by Wes J. Lloyd

 Gaming the scheduler

▪ Issue I/O operation at 99% completion of the time slice

▪ Keeps job priority fixed – never lowered

 Job behavioral change

▪ CPU/batch process becomes an interactive process

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.43

MLFQ: ISSUES - 2

Priority becomes stuck

 Priority Boost

▪ Reset all jobs to topmost queue after some time interval S

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.44

RESPONDING TO BEHAVIOR CHANGE

Starvation

43

44

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.23Slides by Wes J. Lloyd

 With priority boost

▪ Prevents starvation

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.45

RESPONDING TO BEHAVIOR CHANGE - 2

With

 Without priority boost:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 KEY: If time quantum of a higher queue is filled,

then we don’t run any jobs in lower priority queues!!!

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.46

KEY TO UNDERSTANDING MLFQ – PB

45

46

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.24Slides by Wes J. Lloyd

 Consider 3 queues:

 Q2 – HIGH PRIORITY – Time Quantum 10ms

 Q1 – MEDIUM PRIORITY – Time Quantum 20 ms

 Q0 – LOW PRIORITY – Time Quantum 40 ms

 Job A: 200ms no I/O

 Job B: 5ms then I/O

 Job C: 5ms then I/O

 Q2 fills up,

starves Q1 & Q0

 A makes no progress

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.47

STARVATION EXAMPLE

Starvation

 Improved time accounting:

▪ Track total job execution time in the queue

▪ Each job receives a fixed time allotment

▪ When allotment is exhausted, job priority is lowered

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.48

PREVENTING GAMING

47

48

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.25Slides by Wes J. Lloyd

 Consider the tradeoffs:

▪ How many queues?

▪ What is a good time slice?

▪ How often should we “Boost” priority of jobs?

▪ What about different time slices to different queues?

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.49

MLFQ: TUNING

 Oracle Solaris MLFQ implementation

▪ 60 Queues →

w/ slowly increasing time slice (high to low priority)

▪ Provides sys admins with set of editable table(s)

▪ Supports adjusting time slices, boost intervals, priority

changes, etc.

 Advice

▪ Provide OS with hints about the process

▪ Nice command → Linux

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.50

PRACTICAL EXAMPLE

49

50

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.26Slides by Wes J. Lloyd

 The refined set of MLFQ rules:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 Rule 3: When a job enters the system, it is placed at the

highest priority.

 Rule 4: Once a job uses up its time allotment at a given

level (regardless of how many times it has given up the

CPU), its priority is reduced(i.e., it moves down on queue).

 Rule 5: After some time period S, move all the jobs in the

system to the topmost queue.

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.51

MLFQ RULE SUMMARY

 Questions from 1/22

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9, Quiz 2 CPU Scheduling

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.52

OBJECTIVES – 1/27

51

52

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.27Slides by Wes J. Lloyd

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L6.53

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L6.54

53

54

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.28Slides by Wes J. Lloyd

 Question:

 Given a system with a total quantum length of 10 ms for all

jobs to run before priority is lowered in the highest queue,

what priority boost interval is required to boost jobs back to

the highest priority level to guarantee that a single long -

running (and potentially starving) job gets at least 5% of the

CPU?

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.55

EXAMPLE

 Question:

 Given a system with a quantum length of 10 ms for al l jobs in its
highest queue, what priority boost interval is required to boost jobs
back to the highest priority level to guarantee that a single long -
running (and potentially starving) job gets at least 5% of the CPU?

 Consider that a set of n jobs runs for a total of 10 ms per cycle.
These are not batch jobs, since they give up the CPU before 10ms.

▪ E.g. 2 jobs = 5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs = 1 ms ea

▪ combined n jobs use up full time quantum of highest queue (10 ms)

▪ A batch job will run for full quantum 10ms, then pushed to lower queue

▪ All other jobs run and context switch totaling the quantum per cycle

▪ If 10ms is 5% of the CPU (across queues), what must the priority boost
be ???

▪ ANSWER → Priority boost should occur every 200ms

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.56

EXAMPLE

55

56

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.29Slides by Wes J. Lloyd

 Question:

 Given a system with a total quantum length of 10 ms for al l jobs to
run before priority is lowered in the highest queue, what priority
boost interval is required to boost jobs back to the highest priority
level to guarantee that a single long -running (and potentially
starving) job gets at least 5% of the CPU?

.

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.57

EXAMPLE

 Questions from 1/22

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9, Quiz 2 CPU Scheduling

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.58

OBJECTIVES – 1/27

57

58

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.30Slides by Wes J. Lloyd

CHAPTER 9 -

PROPORTIONAL SHARE

SCHEDULER

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L6.59

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.60

OBJECTIVES – 1/27

59

60

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.31Slides by Wes J. Lloyd

 Also called fair-share scheduler

 or lottery scheduler

▪ Guarantees each job receives some percentage of CPU

time based on share of “tickets”

▪ Each job receives an allotment of tickets

▪% of tickets corresponds to potential share of a resource

▪ Can conceptually schedule any resource this way

▪ CPU, disk I/O, memory

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.61

PROPORTIONAL SHARE SCHEDULER

 Simple implementation

▪ Just need a random number generator

▪ Picks the winning ticket

▪Maintain a data structure of jobs and tickets (list)

▪ Traverse list to find the owner of the ticket

▪ Consider sorting the list for speed

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.62

LOTTERY SCHEDULER

61

62

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.32Slides by Wes J. Lloyd

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.63

LOTTERY SCHEDULER IMPLEMENTATION

1 // counter: used to track if we’ve found the winner yet

2 int counter = 0;

3

4 // winner: use some call to a random number generator to

5 // get a value, between 0 and the total # of tickets

6 int winner = getrandom(0, totaltickets);

7

8 // current: use this to walk through the list of jobs

9 node_t *current = head;

10

11 // loop until the sum of ticket values is > the winner

12 while (current) {

13 counter = counter + current->tickets;

14 if (counter > winner)

15 break; // found the winner

16 current = current->next;

17 }

18 // ’current’ is the winner: schedule it...

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.64

OBJECTIVES – 1/27

63

64

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.33Slides by Wes J. Lloyd

 Ticket currency / exchange

▪ User allocates tickets in any desired way

▪ OS converts user currency into global currency

 Example:

▪ There are 200 global tickets assigned by the OS

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.65

TICKET MECHANISMS

 Ticket transfer

▪ Temporarily hand off tickets to another process

 Ticket inflation

▪ Process can temporarily raise or lower the number of

tickets it owns

▪ If a process needs more CPU time, it can boost tickets.

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.66

TICKET MECHANISMS - 2

65

66

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.34Slides by Wes J. Lloyd

 Scheduler picks a winning ticket

▪ Load the job with the winning ticket and run it

 Example:

▪ Given 100 tickets in the pool

▪ Job A has 75 tickets: 0 - 74

▪ Job B has 25 tickets: 75 – 99

 But what do we know about probability of a coin flip?

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.67

LOTTERY SCHEDULING

Scheduled job:

 Equality of distribution (fairness) requires a lot of flips!

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.68

COIN FLIPPING

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

67

68

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.35Slides by Wes J. Lloyd

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.69

LOTTERY FAIRNESS

 With two jobs

▪ Each with the same number of tickets (t=100)

When the job length is not very long,
average unfairness can be quite severe.

 What is the best approach to assign tickets to jobs?

▪ Typical approach is to assume users know best

▪ Users are provided with tickets, which they allocate as

desired

 How should the OS automatically distribute tickets upon

job arrival?

▪What do we know about incoming jobs a priori ?

▪ Ticket assignment is really an open problem…

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.70

LOTTERY SCHEDULING CHALLENGES

69

70

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.36Slides by Wes J. Lloyd

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.71

OBJECTIVES – 1/27

Addresses statistical probability issues with

lottery scheduling

 Instead of guessing a random number to select a

job, simply count…

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.72

STRIDE SCHEDULER

71

72

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.37Slides by Wes J. Lloyd

 Jobs have a “stride” value

▪ A stride value describes the counter pace when the job should

give up the CPU

▪ Stride value is inverse in proportion to the job’s number of

tickets (more tickets = smaller stride)

 Total system tickets = 10,000

▪ Job A has 100 tickets → Astride = 10000/100 = 100 stride

▪ Job B has 50 tickets → Bstride = 10000/50 = 200 stride

▪ Job C has 250 tickets → Cstride = 10000/250 = 40 stride

 Stride scheduler tracks “pass” values for each job (A, B, C)

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.73

STRIDE SCHEDULER - 2

 Basic algorithm:

1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and

starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a

new job (go to 1)

 KEY: When the counter reaches a job’s “PASS” value,

the scheduler passes on to the next job…

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.74

STRIDE SCHEDULER - 3

73

74

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.38Slides by Wes J. Lloyd

Stride values

▪Tickets = priority to select job

▪Stride is inverse to tickets

▪Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.75

STRIDE SCHEDULER - EXAMPLE

 Three-way tie: randomly pick job A (all pass values=0)

 Set A’s pass value to A’s stride = 100

 Increment counter until > 100

 Pick a new job: two-way tie

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.76

STRIDE SCHEDULER EXAMPLE - 2

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and receives a lot of
opportunities to run…

Initial job selection
is random. All @ 0

75

76

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.39Slides by Wes J. Lloyd

 We set A’s counter (pass value) to A’s stride = 100

 Next scheduling decision between B (pass=0) and C (pass=0)

▪ Randomly choose B

 C has the lowest counter for next 3 rounds

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.77

STRIDE SCHEDULER EXAMPLE - 3

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and is selected to run
more often …

 Job counters support determining which job to run next

 Over time jobs are scheduled to run based on their

priority represented as their share of tickets…

 Tickets are analogous to job priority

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.78

STRIDE SCHEDULER EXAMPLE - 4

Tickets
C = 250
A = 100
B = 50

77

78

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.40Slides by Wes J. Lloyd

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.79

OBJECTIVES – 1/27

 Large Google datacenter study:

“Profiling a Warehouse -scale Computer” (Kanev et al.)

 Monitored 20,000 servers over 3 years

 Found 20% of CPU time spent in the Linux kernel

 5% of CPU time spent

in the CPU scheduler!

 Study highlights

importance for

high performance

OS kernels and

CPU schedulers !

S e e : h t t p s : / / d l . a c m . o r g / d o i / p d f / 1 0 . 1 1 4 5 / 2 7 4 9 4 6 9 . 2 7 5 0 3 9 2

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.80

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

79

80

https://dl.acm.org/doi/pdf/10.1145/2749469.2750392

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.41Slides by Wes J. Lloyd

 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi -Tasking System

▪ In perfect system every process of the same priority (class)

receive exactly 1/nth of the CPU time

 Each scheduling class has a runqueue

▪ Groups process of same class

▪ In class, scheduler picks task w/ lowest vruntime to run

▪ Time slice varies based on how many jobs in shared runqueue

▪ Minimum time slice prevents too many context switches

(e.g. 3 ms)

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.81

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Every thread/process has a scheduling class (policy):

 Normal classes: SCHED_OTHER (TS), SCHED_IDLE,

SCHED_BATCH

▪ TS = Time Sharing

 Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

 How to show scheduling class and priority:

 #class

ps –elfc

 #priority (nice value)

ps ax -o pid,ni,cls,pri,cmd

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.82

COMPLETELY FAIR SCHEDULER - 2

81

82

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.42Slides by Wes J. Lloyd

 Linux ≥ 2.6.23: Completely Fair Scheduler (CFS)

 Linux < 2.6.23: O(1) scheduler

 Linux maintains simple counter (vruntime) to track how long

each thread/process has run

 CFS picks process with lowest vruntime to run next

 CFS adjusts timeslice based on # of proc waiting for the CPU

 Kernel parameters that specify CFS behavior:

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.83

COMPLETELY FAIR SCHEDULER - 3

$ sudo sysctl kernel.sched_latency_ns

kernel.sched_latency_ns = 24000000

$ sudo sysctl kernel.sched_min_granularity_ns

kernel.sched_min_granularity_ns = 3000000

$ sudo sysctl kernel.sched_wakeup_granularity_ns

kernel.sched_wakeup_granularity_ns = 4000000

 Sched_min_granularity_ns (3ms)

▪ Time slice for a process: busy system (w/ full runqueue)

▪ If system has idle capacity, time slice exceed the min as long as

difference in vruntime between running process and process with

lowest vruntime is less than sched_wakeup_granularity_ns

(4ms)

 Scheduling time period is: total cycle time for iterating through a

set of processes where each is allowed to run

(like round robin)

 Example:

sched_latency_ns (24ms)

if (proc in runqueue < sched_latency_ns/sched_min_granularity)

or

sched_min_granularity * number of processes in runqueue

R e f : h t t p s : / / w w w . s y s t u t o r i a l s . c o m / s c h e d _ m i n _ g r a n u l a r i t y _ n s - s c h e d _ l a t e n c y _ n s - c f s - a f f e c t - t i m e s l i c e - p r o c e s s e s /

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.84

COMPLETELY FAIR SCHEDULER - 4

83

84

https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.43Slides by Wes J. Lloyd

 HIGH sched_min_granularity_ns (timeslice)

 sched_latency_ns

 sched_wakeup_granularity_ns

reduced context switching → less overhead

poor near-term fairness

 LOW sched_min_granularity_ns (timeslice)

 sched_latency_ns

 sched_wakreup_granularity_ns

increased context switching → more overhead

better near-term fairness

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.85

CFS TRADEOFF

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.86

COMPLETELY FAIR SCHEDULER - 5

 Runqueues are stored using a linux red-black tree

▪ Self balancing binary tree - nodes indexed by vruntime

 Leftmost node has lowest

vruntime (approx execution time)

 Walking tree to find left

most node has very low

big O complexity:
~O(log N) for N nodes

 Completed

processes removed

85

86

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.44Slides by Wes J. Lloyd

 Time slice: Linux “Nice value”

▪ Nice predates the CFS scheduler

▪ Top shows nice values

▪ Process command (nice & priority):
ps ax -o pid,ni,cmd,%cpu, pri

 Nice Values: from -20 to 19

▪ Lower is higher priority, default is 0

▪ Vruntime is a weighted time measurement

▪ Priority weights the calculation of vruntime within a

runqueue to give high priority jobs a boost.

▪ Influences job’s position in rb-tree

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.87

CFS: JOB PRIORITY

 CFS tracks cumulative job run time in vruntime variable

 The task on a given runqueue with the lowest vruntime is
scheduled next

 struct sched_entity contains vruntime parameter

▪ Describes process execution time in nanoseconds

▪ Value is not pure runtime, is weighted based on job priority

▪ Perfect scheduler →
achieve equal vruntime for all processes of same priority

 Sleeping jobs: upon return reset vruntime to lowest value in
system

▪ Jobs with frequent short sleep SUFFER !!

 Key takeaway:
identifying the next job to schedule is really fast!

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.88

COMPLETELY FAIR SCHEDULER - 6

87

88

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/28/2026

L6.45Slides by Wes J. Lloyd

 More information:

 Man page: “man sched” : Describes Linux scheduling API

 http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

 https://www.kernel.org/doc/Documentation/scheduler/sched -

design-CFS.txt

 https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

 See paper: The Linux Scheduler – a Decade of Wasted Cores

 http://www.ece.ubc.ca/~sasha/papers/eurosys16 -final29.pdf

January 27, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L6.89

COMPLETELY FAIR SCHEDULER - 7

QUESTIONS

89

90

http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

	Slide 1: TCSS 422: Operating Systems
	Slide 2: Text book coupon
	Slide 3: Tcss 422 – office hrs – Winter 2026
	Slide 4: Bonus session – cpu scheduling problems
	Slide 5: OBJECTIVES – 1/27
	Slide 6: Online daily feedback survey
	Slide 7
	Slide 8: Material / pace
	Slide 9: Feedback from 1/22
	Slide 10: Linux security best practice
	Slide 11: Feedback - 2
	Slide 12: Feedback - 3
	Slide 13: OBJECTIVES – 1/27
	Slide 14: OBJECTIVES – 1/27
	Slide 15: OBJECTIVES – 1/27
	Slide 16: OBJECTIVES – 1/27
	Slide 17: OBJECTIVES – 1/27
	Slide 18: Chapter 7-Scheduling: introduction
	Slide 19: Chapter 7
	Slide 20: Round robin: tradeoffs
	Slide 21: Scheduling with i/o
	Slide 22: Scheduling with i/o - 2
	Slide 23
	Slide 24: QUESTION: scheduling fairness
	Slide 25: Scheduling metrics
	Slide 26
	Slide 27
	Slide 28: Scheduling metrics
	Slide 29
	Slide 30
	Slide 31: OBJECTIVES – 1/27
	Slide 32: We will return at 4:55pm
	Slide 33: Chapter 8 – Multi-Level Feedback QUEUE (mlfq) SCHEDULER
	Slide 34: Multi-level feedback queue
	Slide 35: Mlfq - 2
	Slide 36: Mlfq: determining job priority
	Slide 37: MLFQ: long running job
	Slide 38: MLFQ: Batch and interactive jobs
	Slide 39: Mlfq: batch and interactive - 2
	Slide 40: OBJECTIVES – 1/27
	Slide 41: MLFQ: issues
	Slide 42: OBJECTIVES – 1/27
	Slide 43: Mlfq: issues - 2
	Slide 44: Responding to behavior change
	Slide 45: Responding to behavior change - 2
	Slide 46: Key to understanding MLFQ – PB
	Slide 47: Starvation example
	Slide 48: Preventing gaming
	Slide 49: MLFQ: TUNING
	Slide 50: Practical example
	Slide 51: Mlfq rule summary
	Slide 52: OBJECTIVES – 1/27
	Slide 53
	Slide 54
	Slide 55: example
	Slide 56: example
	Slide 57: example
	Slide 58: OBJECTIVES – 1/27
	Slide 59: Chapter 9 -Proportional Share Scheduler
	Slide 60: OBJECTIVES – 1/27
	Slide 61: Proportional share scheduler
	Slide 62: Lottery scheduler
	Slide 63: Lottery scheduler implementation
	Slide 64: OBJECTIVES – 1/27
	Slide 65: Ticket mechanisms
	Slide 66: Ticket mechanisms - 2
	Slide 67: Lottery scheduling
	Slide 68: Coin flipping
	Slide 69: Lottery fairness
	Slide 70: Lottery scheduling challenges
	Slide 71: OBJECTIVES – 1/27
	Slide 72: Stride scheduler
	Slide 73: Stride scheduler - 2
	Slide 74: Stride scheduler - 3
	Slide 75: Stride scheduler - example
	Slide 76: Stride scheduler example - 2
	Slide 77: Stride scheduler example - 3
	Slide 78: Stride scheduler example - 4
	Slide 79: OBJECTIVES – 1/27
	Slide 80: Linux: completely fair scheduler (CFS)
	Slide 81: Linux: Completely fair scheduler (CFS)
	Slide 82: Completely fair scheduler - 2
	Slide 83: Completely fair scheduler - 3
	Slide 84: Completely fair scheduler - 4
	Slide 85: Cfs TRADEOFF
	Slide 86: Completely fair scheduler - 5
	Slide 87: CFS: job priority
	Slide 88: Completely fair scheduler - 6
	Slide 89: Completely fair scheduler - 7
	Slide 90: Questions

