
TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.1Slides by Wes J. Lloyd

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

Common Scheduling Algorithms,
Multi-level Feedback

Queue (MLFQ) Scheduler,
Proportional Share

Schedulers

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 10% off textbook code: WRITING10 (through Friday Apr 18)

 https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-

arpaci-dusseau/operating-systems-three-easy-pieces-

hardcover-version-110/hardcover/product-

15gjeeky.html?q=three+easy+pieces+operating+systems&pag

e=1&pageSize=4

 With coupon textbook is only $35.78 + tax & shipping

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.2

TEXT BOOK COUPON

1

2

https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.2Slides by Wes J. Lloyd

 Office Hours plan for Spring (by Zoom):

 Monday 11:30am - 12:30p GTA Xinghan

 Tuesday 11:30am - 12:30p GTA Xinghan

 Wednesday 11:00am - 12:00p Instructor Wes

 Friday 12:00pm - 1:00p Wes or Xinghan

 Office hours this Friday April 18 th

▪ Xinghan

 Instructor is available after class at 6pm in CP 229

each day

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.3

TCSS 422 – OFFICE HRS – SPRING 2025

 Please join the TCSS 422 A – Spring 2025 Discord Server

https://discord.gg/Jh5Cp8TMYn

 Under Edit Server Profile:

Please update your ‘Server Nickname’

to your real name or UW NET ID

THANK YOU

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.4

TCSS 422 DISCORD SERVER

3

4

https://discord.gg/Jh5Cp8TMYn

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.3Slides by Wes J. Lloyd

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.5

OBJECTIVES – 4/17

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

April 17, 2025
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.6

ONLINE DAILY FEEDBACK SURVEY

5

6

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.4Slides by Wes J. Lloyd

April 17, 2025
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.7

 Please classify your perspective on material covered in today’s

class (35 of 63 respondents – 55.5%) :

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.88 ( - previous 6.47)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.05 ( - previous 4.83)

April 17, 2025
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.8

MATERIAL / PACE

7

8

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.5Slides by Wes J. Lloyd

 What is your recommendation for preparing for the quizzes

and midterm?

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.9

FEEDBACK FROM 4/15

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.10

OBJECTIVES – 4/17

9

10

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.6Slides by Wes J. Lloyd

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.11

OBJECTIVES – 4/17

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.12

OBJECTIVES – 4/17

11

12

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.7Slides by Wes J. Lloyd

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.13

OBJECTIVES – 4/17

 Switch to Lecture 5 Slides

 Slides L5.48 to L5.52 (thru STCF scheduler)

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.14

CATCH UP FROM LECTURE 5

13

14

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.8Slides by Wes J. Lloyd

CHAPTER 7-

SCHEDULING:

INTRODUCTION

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.15

Chapter 7: Scheduling Introduction

▪ Scheduling metrics

▪ Turnaround time, Jain’s Fairness Index, Response time

▪ FIFO, SJF, STCF, RR schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.16

CHAPTER 7

15

16

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.9Slides by Wes J. Lloyd

 Run each job awhile, then switch to another distributing the

CPU evenly (fairly)

 Scheduling Quantum

is called a time slice

 Time slice must be

 a multiple of the

 timer interrupt

 period.

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.17

RR: ROUND ROBIN

Scheduling
Quantum = 5 seconds

RR is fair, but performs poorly on metrics
such as turnaround time

 ABC arrive at time=0, each run for 5 seconds

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.18

RR EXAMPLE

𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 =
𝟎 + 𝟓 + 𝟏𝟎

𝟑
= 𝟓𝒔𝒆𝒄

𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 =
𝟎 + 𝟏 + 𝟐

𝟑
= 𝟏𝒔𝒆𝒄

OVERHEAD not

considered

17

18

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.10Slides by Wes J. Lloyd

 Time slice impact:

▪Turnaround time (for earlier example):
ts(1,2,3,4,5)=14,14,13,14,10

▪Fairness: round robin is always fair, J=1

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.19

ROUND ROBIN: TRADEOFFS

Fast Response Time Slow Response Time

High overhead from
context switching

Low overhead from
context switching

Short Time Slice Long Time Slice

 STCF scheduler

▪ A: CPU=50ms, I/O=40ms, 10ms intervals

▪ B: CPU=50ms, I/O=0ms

▪ Consider A as 10ms subjobs (CPU, then I/O)

 Without considering I/O:

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.20

SCHEDULING WITH I/O

CPU utilization= 100/140=71%

19

20

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.11Slides by Wes J. Lloyd

 When a job initiates an I/O request

▪ A is blocked, waits for I/O to compute, frees CPU

▪ STCF scheduler assigns B to CPU

 When I/O completes → raise interrupt

▪ Unblock A, STCF goes back to executing A: (10ms sub-job)

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.21

SCHEDULING WITH I/O - 2

Cpu utilization = 100/100=100%

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.22

21

22

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.12Slides by Wes J. Lloyd

Which scheduler, this far, best addresses fairness

and average response time of jobs?

First In – First Out (FIFO)

Shortest Job First (SJF)

Shortest Time to Completion First (STCF)

Round Robin (RR)

None of the Above

All of the Above

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.23

QUESTION: SCHEDULING FAIRNESS

 Consider Three jobs (A, B, C) that require:

timeA=400ms, timeB=100ms, and timeC=200ms

 All jobs arrive at time=0 in the sequence of A B C.

 Draw a scheduling graph to help compute the

average response time (ART) and

average turnaround time (ATT) scheduling metrics for the

FIFO scheduler.

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.24

SCHEDULING METRICS

A B C

0 400 500 700

Example:

23

24

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.13Slides by Wes J. Lloyd

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.25

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.26

25

26

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.14Slides by Wes J. Lloyd

 Consider Three jobs (A, B, C) that require:

timeA=400ms, timeB=100ms, and timeC=200ms

 All jobs arrive at time=0 in the sequence of A B C.

 Draw a scheduling graph to help compute the

average response time (ART) and

average turnaround time (ATT) scheduling metrics for the

SJF scheduler.

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.27

SCHEDULING METRICS

AB C

0 100 300 700

Example:

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.28

27

28

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.15Slides by Wes J. Lloyd

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.29

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.30

OBJECTIVES – 4/17

29

30

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.16Slides by Wes J. Lloyd

CHAPTER 8 –

MULTI-LEVEL FEEDBACK

QUEUE (MLFQ) SCHEDULER

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.31

Objectives:

▪ Improve turnaround time:

 Run shorter jobs first

▪Minimize response time:

 Important for interactive jobs (UI)

Achieve without a priori knowledge of job length

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.32

MULTI-LEVEL FEEDBACK QUEUE

31

32

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.17Slides by Wes J. Lloyd

 Multiple job queues

 Adjust job priority based on

observed behavior

 Interactive Jobs

▪ Frequent I/O → keep priority high

▪ Interactive jobs require fast

response time (GUI/UI)

 Batch Jobs

▪ Require long periods of CPU

utilization

▪ Keep priority low

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.33

MLFQ - 2 Round-Robin
within a Queue

 New arriving jobs are placed into highest priority queue

 If a job uses its entire time slice, priority is reduced (↓)

▪ Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

 If a job relinquishes the CPU for I/O priority stays the same

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.34

MLFQ: DETERMINING JOB PRIORITY

MLFQ approximates SJF

33

34

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.18Slides by Wes J. Lloyd

 Three-queue scheduler, time slice=10ms

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.35

MLFQ: LONG RUNNING JOB

Priority

 Aarrival_time =0ms, A run_time=200ms,

 B run_time =20ms, Barrival_time =100ms

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.36

MLFQ: BATCH AND INTERACTIVE JOBS

Priority

Scheduling multiple jobs (ms)

35

36

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.19Slides by Wes J. Lloyd

 Continuous interactive job (B) with long running batch job (A)

▪ Low response time is good for B

▪ A continues to make progress

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.37

MLFQ: BATCH AND INTERACTIVE - 2

The MLFQ approach keeps interactive job(s) at the highest priority

WE WILL RETURN AT

5:05PM

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.38

37

38

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.20Slides by Wes J. Lloyd

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.39

OBJECTIVES – 4/17

Starvation

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.40

MLFQ: ISSUES

39

40

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.21Slides by Wes J. Lloyd

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.41

OBJECTIVES – 4/17

 Gaming the scheduler

▪ Issue I/O operation at 99% completion of the time slice

▪ Keeps job priority fixed – never lowered

 Job behavioral change

▪ CPU/batch process becomes an interactive process

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.42

MLFQ: ISSUES - 2

Priority becomes stuck

41

42

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.22Slides by Wes J. Lloyd

 Priority Boost

▪ Reset all jobs to topmost queue after some time interval S

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.43

RESPONDING TO BEHAVIOR CHANGE

Starvation

 With priority boost

▪ Prevents starvation

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.44

RESPONDING TO BEHAVIOR CHANGE - 2

With

43

44

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.23Slides by Wes J. Lloyd

 Without priority boost:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 KEY: If time quantum of a higher queue is filled,

then we don’t run any jobs in lower priority queues!!!

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.45

KEY TO UNDERSTANDING MLFQ – PB

 Consider 3 queues:

 Q2 – HIGH PRIORITY – Time Quantum 10ms

 Q1 – MEDIUM PRIORITY – Time Quantum 20 ms

 Q0 – LOW PRIORITY – Time Quantum 40 ms

 Job A: 200ms no I/O

 Job B: 5ms then I/O

 Job C: 5ms then I/O

 Q2 fills up,

starves Q1 & Q0

 A makes no progress

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.46

STARVATION EXAMPLE

Starvation

45

46

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.24Slides by Wes J. Lloyd

 Improved time accounting:

▪ Track total job execution time in the queue

▪ Each job receives a fixed time allotment

▪ When allotment is exhausted, job priority is lowered

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.47

PREVENTING GAMING

 Consider the tradeoffs:

▪ How many queues?

▪ What is a good time slice?

▪ How often should we “Boost” priority of jobs?

▪ What about different time slices to different queues?

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.48

MLFQ: TUNING

47

48

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.25Slides by Wes J. Lloyd

 Oracle Solaris MLFQ implementation

▪ 60 Queues →

w/ slowly increasing time slice (high to low priority)

▪ Provides sys admins with set of editable table(s)

▪ Supports adjusting time slices, boost intervals, priority

changes, etc.

 Advice

▪ Provide OS with hints about the process

▪ Nice command → Linux

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.49

PRACTICAL EXAMPLE

 The refined set of MLFQ rules:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 Rule 3: When a job enters the system, it is placed at the

highest priority.

 Rule 4: Once a job uses up its time allotment at a given

level (regardless of how many times it has given up the

CPU), its priority is reduced(i.e., it moves down on queue).

 Rule 5: After some time period S, move all the jobs in the

system to the topmost queue.

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.50

MLFQ RULE SUMMARY

49

50

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.26Slides by Wes J. Lloyd

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.51

OBJECTIVES – 4/17

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.52

51

52

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.27Slides by Wes J. Lloyd

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.53

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.54

53

54

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.28Slides by Wes J. Lloyd

 Question:

 Given a system with a total quantum length of 10 ms for all

jobs to run before priority is lowered in the highest queue, how

often would you have to boost jobs back to the highest priority

level to guarantee that a single long-running (and potentially

starving) job gets at least 5% of the CPU?

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.55

EXAMPLE

 Question:

 Given a system with a quantum length of 10 ms for al l jobs to run
before priority is lowered in the highest queue, how often would you
have to boost jobs back to the highest priority level to guarantee
that a single long-running (and potentially starving) job gets at
least 5% of the CPU?

.

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.56

EXAMPLE

55

56

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.29Slides by Wes J. Lloyd

 Question:

 Given a system with a quantum length of 10 ms for al l jobs in its

highest queue, how often would you have to boost jobs back to the

highest priority level to guarantee that a single long -running (and

potentially starving) job gets at least 5% of the CPU?

 Some combination of n jobs runs for a total of 10 ms per cycle

without relinquishing the CPU

▪ E.g. 2 jobs = 5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs = 1 ms ea

▪ n jobs always uses full time quantum in highest queue (10 ms)

▪ Batch jobs starts, runs for full quantum of 10ms, pushed to lower queue

▪ All other jobs run and context switch totaling the quantum per cycle

▪ If 10ms is 5% of the CPU, when must the priority boost be ???

▪ ANSWER → Priority boost should occur every 200ms

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.57

EXAMPLE

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.58

OBJECTIVES – 4/17

57

58

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.30Slides by Wes J. Lloyd

CHAPTER 9 -

PROPORTIONAL SHARE

SCHEDULER

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.59

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.60

OBJECTIVES – 4/17

59

60

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.31Slides by Wes J. Lloyd

 Also called fair-share scheduler

 or lottery scheduler

▪ Guarantees each job receives some percentage of CPU

time based on share of “tickets”

▪ Each job receives an allotment of tickets

▪% of tickets corresponds to potential share of a resource

▪ Can conceptually schedule any resource this way

▪ CPU, disk I/O, memory

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.61

PROPORTIONAL SHARE SCHEDULER

 Simple implementation

▪ Just need a random number generator

▪ Picks the winning ticket

▪Maintain a data structure of jobs and tickets (list)

▪ Traverse list to find the owner of the ticket

▪ Consider sorting the list for speed

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.62

LOTTERY SCHEDULER

61

62

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.32Slides by Wes J. Lloyd

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.63

LOTTERY SCHEDULER IMPLEMENTATION

1 // counter: used to track if we’ve found the winner yet

2 int counter = 0;

3

4 // winner: use some call to a random number generator to

5 // get a value, between 0 and the total # of tickets

6 int winner = getrandom(0, totaltickets);

7

8 // current: use this to walk through the list of jobs

9 node_t *current = head;

10

11 // loop until the sum of ticket values is > the winner

12 while (current) {

13 counter = counter + current->tickets;

14 if (counter > winner)

15 break; // found the winner

16 current = current->next;

17 }

18 // ’current’ is the winner: schedule it...

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.64

OBJECTIVES – 4/17

63

64

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.33Slides by Wes J. Lloyd

 Ticket currency / exchange

▪ User allocates tickets in any desired way

▪ OS converts user currency into global currency

 Example:

▪ There are 200 global tickets assigned by the OS

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.65

TICKET MECHANISMS

 Ticket transfer

▪ Temporarily hand off tickets to another process

 Ticket inflation

▪ Process can temporarily raise or lower the number of

tickets it owns

▪ If a process needs more CPU time, it can boost tickets.

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.66

TICKET MECHANISMS - 2

65

66

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.34Slides by Wes J. Lloyd

 Scheduler picks a winning ticket

▪ Load the job with the winning ticket and run it

 Example:

▪ Given 100 tickets in the pool

▪ Job A has 75 tickets: 0 - 74

▪ Job B has 25 tickets: 75 – 99

 But what do we know about probability of a coin flip?

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.67

LOTTERY SCHEDULING

Scheduled job:

 Equality of distribution (fairness) requires a lot of flips!

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.68

COIN FLIPPING

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

67

68

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.35Slides by Wes J. Lloyd

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.69

LOTTERY FAIRNESS

 With two jobs

▪ Each with the same number of tickets (t=100)

When the job length is not very long,
average unfairness can be quite severe.

 What is the best approach to assign tickets to jobs?

▪ Typical approach is to assume users know best

▪ Users are provided with tickets, which they allocate as

desired

 How should the OS automatically distribute tickets upon

job arrival?

▪What do we know about incoming jobs a priori ?

▪ Ticket assignment is really an open problem…

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.70

LOTTERY SCHEDULING CHALLENGES

69

70

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.36Slides by Wes J. Lloyd

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.71

OBJECTIVES – 4/17

Addresses statistical probability issues with

lottery scheduling

 Instead of guessing a random number to select a

job, simply count…

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.72

STRIDE SCHEDULER

71

72

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.37Slides by Wes J. Lloyd

 Jobs have a “stride” value

▪ A stride value describes the counter pace when the job should

give up the CPU

▪ Stride value is inverse in proportion to the job’s number of

tickets (more tickets = smaller stride)

 Total system tickets = 10,000

▪ Job A has 100 tickets → Astride = 10000/100 = 100 stride

▪ Job B has 50 tickets → Bstride = 10000/50 = 200 stride

▪ Job C has 250 tickets → Cstride = 10000/250 = 40 stride

 Stride scheduler tracks “pass” values for each job (A, B, C)

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.73

STRIDE SCHEDULER - 2

 Basic algorithm:

1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and

starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a

new job (go to 1)

 KEY: When the counter reaches a job’s “PASS” value,

the scheduler passes on to the next job…

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.74

STRIDE SCHEDULER - 3

73

74

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.38Slides by Wes J. Lloyd

Stride values

▪Tickets = priority to select job

▪Stride is inverse to tickets

▪Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.75

STRIDE SCHEDULER - EXAMPLE

 Three-way tie: randomly pick job A (all pass values=0)

 Set A’s pass value to A’s stride = 100

 Increment counter until > 100

 Pick a new job: two-way tie

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.76

STRIDE SCHEDULER EXAMPLE - 2

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and receives a lot of
opportunities to run…

Initial job selection
is random. All @ 0

75

76

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.39Slides by Wes J. Lloyd

 We set A’s counter (pass value) to A’s stride = 100

 Next scheduling decision between B (pass=0) and C (pass=0)

▪ Randomly choose B

 C has the lowest counter for next 3 rounds

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.77

STRIDE SCHEDULER EXAMPLE - 3

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and is selected to run
more often …

 Job counters support determining which job to run next

 Over time jobs are scheduled to run based on their

priority represented as their share of tickets…

 Tickets are analogous to job priority

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.78

STRIDE SCHEDULER EXAMPLE - 4

Tickets
C = 250
A = 100
B = 50

77

78

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.40Slides by Wes J. Lloyd

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.79

OBJECTIVES – 4/17

 Large Google datacenter study:

“Profiling a Warehouse -scale Computer” (Kanev et al.)

 Monitored 20,000 servers over 3 years

 Found 20% of CPU time spent in the Linux kernel

 5% of CPU time spent

in the CPU scheduler!

 Study highlights

importance for

high performance

OS kernels and

CPU schedulers !

S e e : h t t p s : / / d l . a c m . o r g / d o i / p d f / 1 0 . 1 1 4 5 / 2 7 4 9 4 6 9 . 2 7 5 0 3 9 2

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.80

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

79

80

https://dl.acm.org/doi/pdf/10.1145/2749469.2750392

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.41Slides by Wes J. Lloyd

 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi -Tasking System

▪ In perfect system every process of the same priority (class)

receive exactly 1/nth of the CPU time

 Each scheduling class has a runqueue

▪ Groups process of same class

▪ In class, scheduler picks task w/ lowest vruntime to run

▪ Time slice varies based on how many jobs in shared runqueue

▪ Minimum time slice prevents too many context switches

(e.g. 3 ms)

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.81

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Every thread/process has a scheduling class (policy):

 Normal classes: SCHED_OTHER (TS), SCHED_IDLE,

SCHED_BATCH

▪ TS = Time Sharing

 Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

 How to show scheduling class and priority:

 #class

ps –elfc

 #priority (nice value)

ps ax -o pid,ni,cls,pri,cmd

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.82

COMPLETELY FAIR SCHEDULER - 2

81

82

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.42Slides by Wes J. Lloyd

 Linux ≥ 2.6.23: Completely Fair Scheduler (CFS)

 Linux < 2.6.23: O(1) scheduler

 Linux maintains simple counter (vruntime) to track how long

each thread/process has run

 CFS picks process with lowest vruntime to run next

 CFS adjusts timeslice based on # of proc waiting for the CPU

 Kernel parameters that specify CFS behavior:

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.83

COMPLETELY FAIR SCHEDULER - 3

$ sudo sysctl kernel.sched_latency_ns

kernel.sched_latency_ns = 24000000

$ sudo sysctl kernel.sched_min_granularity_ns

kernel.sched_min_granularity_ns = 3000000

$ sudo sysctl kernel.sched_wakeup_granularity_ns

kernel.sched_wakeup_granularity_ns = 4000000

 Sched_min_granularity_ns (3ms)

▪ Time slice for a process: busy system (w/ full runqueue)

▪ If system has idle capacity, time slice exceed the min as long as

difference in vruntime between running process and process with

lowest vruntime is less than sched_wakeup_granularity_ns

(4ms)

 Scheduling time period is: total cycle time for iterating through a

set of processes where each is allowed to run

(like round robin)

 Example:

sched_latency_ns (24ms)

if (proc in runqueue < sched_latency_ns/sched_min_granularity)

or

sched_min_granularity * number of processes in runqueue

R e f : h t t p s : / / w w w . s y s t u t o r i a l s . c o m / s c h e d _ m i n _ g r a n u l a r i t y _ n s - s c h e d _ l a t e n c y _ n s - c f s - a f f e c t - t i m e s l i c e - p r o c e s s e s /

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.84

COMPLETELY FAIR SCHEDULER - 4

83

84

https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.43Slides by Wes J. Lloyd

 HIGH sched_min_granularity_ns (timeslice)

 sched_latency_ns

 sched_wakeup_granularity_ns

reduced context switching → less overhead

poor near-term fairness

 LOW sched_min_granularity_ns (timeslice)

 sched_latency_ns

 sched_wakreup_granularity_ns

increased context switching → more overhead

better near-term fairness

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.85

CFS TRADEOFF

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.86

COMPLETELY FAIR SCHEDULER - 5

 Runqueues are stored using a linux red-black tree

▪ Self balancing binary tree - nodes indexed by vruntime

 Leftmost node has lowest

vruntime (approx execution time)

 Walking tree to find left

most node has very low

big O complexity:
~O(log N) for N nodes

 Completed

processes removed

85

86

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.44Slides by Wes J. Lloyd

 Time slice: Linux “Nice value”

▪ Nice predates the CFS scheduler

▪ Top shows nice values

▪ Process command (nice & priority):
ps ax -o pid,ni,cmd,%cpu, pri

 Nice Values: from -20 to 19

▪ Lower is higher priority, default is 0

▪ Vruntime is a weighted time measurement

▪ Priority weights the calculation of vruntime within a

runqueue to give high priority jobs a boost.

▪ Influences job’s position in rb-tree

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.87

CFS: JOB PRIORITY

 CFS tracks cumulative job run time in vruntime variable

 The task on a given runqueue with the lowest vruntime is
scheduled next

 struct sched_entity contains vruntime parameter

▪ Describes process execution time in nanoseconds

▪ Value is not pure runtime, is weighted based on job priority

▪ Perfect scheduler →
achieve equal vruntime for all processes of same priority

 Sleeping jobs: upon return reset vruntime to lowest value in
system

▪ Jobs with frequent short sleep SUFFER !!

 Key takeaway:
identifying the next job to schedule is really fast!

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.88

COMPLETELY FAIR SCHEDULER - 6

87

88

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.45Slides by Wes J. Lloyd

 More information:

 Man page: “man sched” : Describes Linux scheduling API

 http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

 https://www.kernel.org/doc/Documentation/scheduler/sched -

design-CFS.txt

 https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

 See paper: The Linux Scheduler – a Decade of Wasted Cores

 http://www.ece.ubc.ca/~sasha/papers/eurosys16 -final29.pdf

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.89

COMPLETELY FAIR SCHEDULER - 7

QUESTIONS

89

90

http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

	Slide 1: TCSS 422: Operating Systems
	Slide 2: Text book coupon
	Slide 3: Tcss 422 – office hrs – Spring 2025
	Slide 4: TCSS 422 Discord server
	Slide 5: OBJECTIVES – 4/17
	Slide 6: Online daily feedback survey
	Slide 7
	Slide 8: Material / pace
	Slide 9: Feedback from 4/15
	Slide 10: OBJECTIVES – 4/17
	Slide 11: OBJECTIVES – 4/17
	Slide 12: OBJECTIVES – 4/17
	Slide 13: OBJECTIVES – 4/17
	Slide 14: Catch up from lecture 5
	Slide 15: Chapter 7-Scheduling: introduction
	Slide 16: Chapter 7
	Slide 17: RR: Round robin
	Slide 18: RR EXAMPLE
	Slide 19: Round robin: tradeoffs
	Slide 20: Scheduling with i/o
	Slide 21: Scheduling with i/o - 2
	Slide 22
	Slide 23: QUESTION: scheduling fairness
	Slide 24: Scheduling metrics
	Slide 25
	Slide 26
	Slide 27: Scheduling metrics
	Slide 28
	Slide 29
	Slide 30: OBJECTIVES – 4/17
	Slide 31: Chapter 8 – Multi-Level Feedback QUEUE (mlfq) SCHEDULER
	Slide 32: Multi-level feedback queue
	Slide 33: Mlfq - 2
	Slide 34: Mlfq: determining job priority
	Slide 35: MLFQ: long running job
	Slide 36: MLFQ: Batch and interactive jobs
	Slide 37: Mlfq: batch and interactive - 2
	Slide 38: We will return at 5:05pm
	Slide 39: OBJECTIVES – 4/17
	Slide 40: MLFQ: issues
	Slide 41: OBJECTIVES – 4/17
	Slide 42: Mlfq: issues - 2
	Slide 43: Responding to behavior change
	Slide 44: Responding to behavior change - 2
	Slide 45: Key to understanding MLFQ – PB
	Slide 46: Starvation example
	Slide 47: Preventing gaming
	Slide 48: MLFQ: TUNING
	Slide 49: Practical example
	Slide 50: Mlfq rule summary
	Slide 51: OBJECTIVES – 4/17
	Slide 52
	Slide 53
	Slide 54
	Slide 55: example
	Slide 56: example
	Slide 57: example
	Slide 58: OBJECTIVES – 4/17
	Slide 59: Chapter 9 -Proportional Share Scheduler
	Slide 60: OBJECTIVES – 4/17
	Slide 61: Proportional share scheduler
	Slide 62: Lottery scheduler
	Slide 63: Lottery scheduler implementation
	Slide 64: OBJECTIVES – 4/17
	Slide 65: Ticket mechanisms
	Slide 66: Ticket mechanisms - 2
	Slide 67: Lottery scheduling
	Slide 68: Coin flipping
	Slide 69: Lottery fairness
	Slide 70: Lottery scheduling challenges
	Slide 71: OBJECTIVES – 4/17
	Slide 72: Stride scheduler
	Slide 73: Stride scheduler - 2
	Slide 74: Stride scheduler - 3
	Slide 75: Stride scheduler - example
	Slide 76: Stride scheduler example - 2
	Slide 77: Stride scheduler example - 3
	Slide 78: Stride scheduler example - 4
	Slide 79: OBJECTIVES – 4/17
	Slide 80: Linux: completely fair scheduler (CFS)
	Slide 81: Linux: Completely fair scheduler (CFS)
	Slide 82: Completely fair scheduler - 2
	Slide 83: Completely fair scheduler - 3
	Slide 84: Completely fair scheduler - 4
	Slide 85: Cfs TRADEOFF
	Slide 86: Completely fair scheduler - 5
	Slide 87: CFS: job priority
	Slide 88: Completely fair scheduler - 6
	Slide 89: Completely fair scheduler - 7
	Slide 90: Questions

