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 Office Hours plan for Spring (by Zoom):

 Monday 11:30am - 12:30p GTA Xinghan

 Tuesday 11:30am - 12:30p GTA Xinghan

 Wednesday 11:00am - 12:00p Instructor Wes

 Friday 12:00pm - 1:00p Wes or Xinghan

 Office hours this Friday April 18 th

▪ Xinghan

 Instructor is available after class at 6pm in CP 229 

each day

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington  -  Tacoma
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TCSS 422 – OFFICE HRS – SPRING 2025

 Please join the TCSS 422 A – Spring 2025 Discord Server

https://discord.gg/Jh5Cp8TMYn 

 Under Edit Server Profile:

Please update your ‘Server Nickname’

to your real name or UW NET ID 

THANK YOU

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington  -  Tacoma
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TCSS 422 DISCORD SERVER
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 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9 

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington  -  Tacoma
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OBJECTIVES – 4/17

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

April 17, 2025
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma
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ONLINE DAILY FEEDBACK SURVEY
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April 17, 2025
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.7

 Please classify your perspective on material covered in today’s 

class (35 of 63 respondents – 55.5%) :

 1-mostly review, 5-equal new/review, 10-mostly new

 Average –  6.88  (  -  previous 6.47) 

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average –  5.05 (  -  previous 4.83)

April 17, 2025
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma
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MATERIAL / PACE

7

8



TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.5Slides by Wes J. Lloyd

 What is your recommendation for preparing for the quizzes 

and midterm?

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington  -  Tacoma
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FEEDBACK FROM 4/15

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9 

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington  -  Tacoma
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OBJECTIVES – 4/17
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 Questions from 4/15

 Assignment 0

 C Tutorial -  Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9 

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers
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OBJECTIVES – 4/17

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 –  Active Reading Chapter 9 

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers
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OBJECTIVES – 4/17
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 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9 

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers
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OBJECTIVES – 4/17

 Switch to Lecture 5 Slides

 Slides L5.48 to L5.52 (thru STCF scheduler)

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington  -  Tacoma

L6.14

CATCH UP FROM LECTURE 5
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CHAPTER 7-

SCHEDULING:

INTRODUCTION

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.15

Chapter 7: Scheduling Introduction

▪ Scheduling metrics

▪ Turnaround time, Jain’s Fairness Index, Response time

▪ FIFO, SJF, STCF, RR schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington  -  Tacoma

L6.16

CHAPTER 7
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 Run each job awhile, then switch to another distributing the 

CPU evenly (fairly)

 Scheduling Quantum

is called a time slice

 Time slice must be

 a multiple of the

 timer interrupt

 period.

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.17

RR: ROUND ROBIN

Scheduling 
Quantum    = 5 seconds

RR is fair, but performs poorly on metrics
such as turnaround time

 ABC arrive at time=0, each run for 5 seconds

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma
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RR EXAMPLE

𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 =
𝟎 + 𝟓 + 𝟏𝟎

𝟑
= 𝟓𝒔𝒆𝒄

𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 =
𝟎 + 𝟏 + 𝟐

𝟑
= 𝟏𝒔𝒆𝒄

OVERHEAD not 

considered
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 Time slice impact:

▪Turnaround time (for earlier example): 
ts(1,2,3,4,5)=14,14,13,14,10

▪Fairness: round robin is always fair, J=1

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.19

ROUND ROBIN: TRADEOFFS

Fast Response Time Slow Response Time

High overhead from 
context switching

Low overhead from 
context switching

Short Time Slice Long Time Slice

 STCF scheduler

▪ A: CPU=50ms, I/O=40ms, 10ms intervals

▪ B: CPU=50ms, I/O=0ms

▪ Consider A as 10ms subjobs (CPU, then I/O)

 Without considering I/O:

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma
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SCHEDULING WITH I/O

CPU utilization= 100/140=71%
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 When a job initiates an I/O request

▪ A is blocked, waits for I/O to compute, frees CPU

▪ STCF scheduler assigns B to CPU

 When I/O completes → raise interrupt

▪ Unblock A, STCF goes back to executing A: (10ms sub-job)

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma
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SCHEDULING WITH I/O - 2

Cpu utilization = 100/100=100%

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington  -  Tacoma L6.22
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Which scheduler, this far, best addresses fairness 

and average response time of jobs?

First In – First Out (FIFO)

Shortest Job First (SJF)

Shortest Time to Completion First (STCF)

Round Robin (RR)

None of the Above

All of the Above

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma
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QUESTION: SCHEDULING FAIRNESS

 Consider Three jobs (A, B, C) that require:

timeA=400ms, timeB=100ms, and timeC=200ms 

 All jobs arrive at time=0 in the sequence of A B C.  

 Draw a scheduling graph to help compute the 

average response time (ART) and 

average turnaround time (ATT)  scheduling metrics for the 

FIFO scheduler. 

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington  -  Tacoma
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SCHEDULING METRICS

A B C

0         400  500     700

Example:
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 Consider Three jobs (A, B, C) that require:

timeA=400ms, timeB=100ms, and timeC=200ms 

 All jobs arrive at time=0 in the sequence of A B C.  

 Draw a scheduling graph to help compute the 

average response time (ART) and 

average turnaround time (ATT)  scheduling metrics for the 

SJF scheduler. 

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington  -  Tacoma
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SCHEDULING METRICS

AB C

0  100      300       700

Example:

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington  -  Tacoma L6.28
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April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington  -  Tacoma L6.29

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9 

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington  -  Tacoma
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OBJECTIVES – 4/17
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CHAPTER 8 – 

MULTI-LEVEL FEEDBACK 

QUEUE (MLFQ) SCHEDULER

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.31

Objectives:

▪ Improve turnaround time:

 Run shorter jobs first

▪Minimize response time:

 Important for interactive jobs (UI)

Achieve without a priori knowledge of job length

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.32

MULTI-LEVEL FEEDBACK QUEUE

31
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 Multiple job queues

 Adjust job priority based on

observed behavior

 Interactive Jobs

▪ Frequent I/O → keep priority high

▪ Interactive jobs require fast

response time (GUI/UI)

 Batch Jobs

▪ Require long periods of CPU

utilization

▪ Keep priority low

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.33

MLFQ - 2 Round-Robin
within a Queue

 New arriving jobs are placed into highest priority queue

 If a job uses its entire time slice, priority is reduced ( ↓)

▪ Jobs appears CPU-bound ( “batch” job), not interactive (GUI/UI)

 If a job relinquishes the CPU for I/O priority stays the same

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma
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MLFQ: DETERMINING JOB PRIORITY

MLFQ approximates SJF

33
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 Three-queue scheduler, time slice=10ms

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma
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MLFQ: LONG RUNNING JOB

Priority

 Aarrival_time =0ms, A run_time=200ms, 

 B run_time =20ms, Barrival_time =100ms

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma
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MLFQ: BATCH AND INTERACTIVE JOBS

Priority

Scheduling multiple jobs (ms)

35
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 Continuous interactive job (B) with long running batch job (A)

▪ Low response time is good for B

▪ A continues to make progress

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma
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MLFQ: BATCH AND INTERACTIVE - 2

The MLFQ approach keeps interactive job(s) at the highest priority

WE WILL RETURN AT 

5:05PM

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington  -  Tacoma L6.38
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 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
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OBJECTIVES – 4/17

Starvation

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma
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MLFQ: ISSUES
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 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9 

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers
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OBJECTIVES – 4/17

 Gaming the scheduler

▪ Issue I/O operation at 99% completion of the time slice

▪ Keeps job priority fixed – never lowered

 Job behavioral change

▪ CPU/batch process becomes an interactive process

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma
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MLFQ: ISSUES - 2

Priority becomes stuck
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 Priority Boost

▪ Reset all jobs to topmost queue after some time interval S

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma
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RESPONDING TO BEHAVIOR CHANGE

Starvation

 With priority boost

▪ Prevents starvation

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma
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RESPONDING TO BEHAVIOR CHANGE - 2

With

43
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 Without priority boost: 

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 KEY:  If time quantum of a higher queue is filled,

then we don’t run any jobs in lower priority queues!!!

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington  -  Tacoma
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KEY TO UNDERSTANDING MLFQ – PB

 Consider 3 queues:

 Q2 – HIGH PRIORITY – Time Quantum 10ms

 Q1 – MEDIUM PRIORITY – Time Quantum 20 ms

 Q0 – LOW PRIORITY – Time Quantum 40 ms

 Job A: 200ms no I/O

 Job B: 5ms then I/O

 Job C: 5ms then I/O

 Q2 fills up,

starves Q1 & Q0

 A makes no progress

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington  -  Tacoma
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STARVATION EXAMPLE

Starvation
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 Improved time accounting:

▪ Track total job execution time in the queue

▪ Each job receives a fixed time allotment

▪ When allotment is exhausted, job priority is lowered

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.47

PREVENTING GAMING

 Consider the tradeoffs:

▪ How many queues?

▪ What is a good time slice?

▪ How often should we “Boost” priority of jobs?

▪ What about different time slices to different queues?

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma
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MLFQ: TUNING

47
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 Oracle Solaris MLFQ implementation

▪ 60 Queues → 

w/ slowly increasing time slice (high to low priority)

▪ Provides sys admins with set of editable table(s)

▪ Supports adjusting time slices, boost intervals, priority 

changes, etc.

 Advice

▪ Provide OS with hints about the process

▪ Nice command → Linux

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma
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PRACTICAL EXAMPLE

 The refined set of MLFQ rules:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 Rule 3: When a job enters the system, it is placed at the 

highest priority.

 Rule 4: Once a job uses up its time allotment at a given 

level (regardless of how many times it has given up the 

CPU), its priority is reduced(i.e., it moves down on queue).

 Rule 5: After some time period S, move all the jobs in the 

system to the topmost queue.

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma
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MLFQ RULE SUMMARY
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 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9 

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 17, 2025
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OBJECTIVES – 4/17

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.52
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 Question:

 Given a system with a total quantum length of 10 ms for all 

jobs to run before priority is lowered in the highest queue, how 

often would you have to boost jobs back to the highest priority 

level to guarantee that a single long-running (and potentially 

starving) job gets at least 5% of the CPU?
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EXAMPLE

 Question:

 Given a system with a quantum length of 10 ms for al l  jobs  to run 
before priority is lowered in the highest queue, how often would you 
have to boost jobs back to the highest priority level to guarantee 
that a single long-running (and potentially starving) job gets at 
least 5% of the CPU?

.
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EXAMPLE
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 Question:

 Given a system with a quantum length of 10 ms for al l  jobs  in its 

highest queue, how often would you have to boost jobs back to the 

highest priority level to guarantee that a single long -running (and 

potentially starving) job gets at least 5% of the CPU?

 Some combination of n jobs runs for a total of 10 ms per cycle 

without relinquishing the CPU

▪ E.g. 2 jobs = 5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs = 1 ms ea

▪ n jobs always uses full time quantum in highest queue (10 ms)

▪ Batch jobs starts, runs for full quantum of 10ms, pushed to lower queue

▪ All other jobs run and context switch totaling the quantum per cycle

▪ If 10ms is 5% of the CPU, when must the priority boost be ???

▪ ANSWER → Priority boost should occur every 200ms
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EXAMPLE

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9 

 Chapter 7: Scheduling Introduction 

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers
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CHAPTER 9 -

PROPORTIONAL SHARE 

SCHEDULER

April 17, 2025
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 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler
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 Also called fair-share scheduler

  or lottery scheduler

▪ Guarantees each job receives some percentage of CPU 

time based on share of “tickets”

▪ Each job receives an allotment of tickets

▪% of tickets corresponds to potential share of a resource

▪ Can conceptually schedule any resource this way

▪ CPU, disk I/O, memory
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PROPORTIONAL SHARE SCHEDULER

 Simple implementation

▪ Just need a random number generator

▪ Picks the winning ticket

▪Maintain a data structure of jobs and tickets (list)

▪ Traverse list to find the owner of the ticket

▪ Consider sorting the list for speed
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LOTTERY SCHEDULER

61

62



TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.32Slides by Wes J. Lloyd

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.63

LOTTERY SCHEDULER IMPLEMENTATION

1 // counter: used to track if we’ve found the winner yet

2 int counter = 0;

3

4 // winner: use some call to a random number generator to

5 // get a value, between 0 and the total # of tickets

6 int winner = getrandom(0, totaltickets);

7

8 // current: use this to walk through the list of jobs

9 node_t *current = head;

10

11 // loop until the sum of ticket values is > the winner

12 while (current) {

13  counter = counter + current->tickets;

14  if (counter > winner)

15   break; // found the winner

16  current = current->next;

17 }

18 // ’current’ is the winner: schedule it...

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler
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 Ticket currency / exchange

▪ User allocates tickets in any desired way

▪ OS converts user currency into global currency

 Example:

▪ There are 200 global tickets assigned by the OS
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TICKET MECHANISMS

 Ticket transfer

▪ Temporarily hand off tickets to another process

 Ticket inflation

▪ Process can temporarily raise or lower the number of 

tickets it owns

▪ If a process needs more CPU time, it can boost tickets.
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TICKET MECHANISMS - 2
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 Scheduler picks a winning ticket

▪ Load the job with the winning ticket and run it

 Example:

▪ Given 100 tickets in the pool

▪ Job A has 75 tickets: 0 - 74

▪ Job B has 25 tickets: 75 – 99

 But what do we know about probability of a coin flip?
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LOTTERY SCHEDULING

Scheduled job:

 Equality of distribution (fairness) requires a lot of flips!
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COIN FLIPPING

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.
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LOTTERY FAIRNESS

 With two jobs 

▪ Each with the same number of tickets (t=100)

When the job length is not very long,
average unfairness can be quite severe.

 What is the best approach to assign tickets to jobs?

▪ Typical approach is to assume users know best

▪ Users are provided with tickets, which they allocate as 

desired

 How should the OS automatically distribute tickets upon 

job arrival?

▪What do we know about incoming jobs a priori ?

▪ Ticket assignment is really an open problem…

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.70

LOTTERY SCHEDULING CHALLENGES
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 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler
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OBJECTIVES – 4/17

Addresses statistical probability issues with 

lottery scheduling

 Instead of guessing a random number to select a 

job, simply count…
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STRIDE SCHEDULER
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 Jobs have a “stride” value

▪ A stride value describes the counter pace when the job should 

give up the CPU

▪ Stride value is inverse in proportion to the job’s number of 

tickets  (more tickets = smaller stride)

 Total system tickets = 10,000

▪ Job A has 100 tickets → Astride = 10000/100 = 100 stride

▪ Job B has 50 tickets → Bstride   = 10000/50 = 200 stride

▪ Job C has 250 tickets → Cstride = 10000/250 = 40 stride

 Stride scheduler tracks “pass” values for each job (A, B, C)
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STRIDE SCHEDULER - 2

 Basic algorithm:

1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and 

starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a 

new job (go to 1)

 KEY: When the counter reaches a job’s “PASS” value, 

the scheduler passes on to the next job…
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STRIDE SCHEDULER - 3
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Stride values

▪Tickets = priority to select job

▪Stride is inverse to tickets

▪Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200
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STRIDE SCHEDULER - EXAMPLE

 Three-way tie: randomly pick job A (all pass values=0)

 Set A’s pass value to A’s stride = 100

 Increment counter until > 100

 Pick a new job: two-way tie
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STRIDE SCHEDULER EXAMPLE - 2

Tickets
C  = 250
A  = 100
B  =   50

C has the most tickets
and receives a lot of
opportunities to run…

Initial job selection 
is random. All @ 0
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 We set A’s counter (pass value) to A’s stride = 100

 Next scheduling decision between B (pass=0) and C (pass=0)

▪ Randomly choose B

 C has the lowest counter for next 3 rounds
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STRIDE SCHEDULER EXAMPLE - 3

Tickets
C  = 250
A  = 100
B  =   50

C has the most tickets
and is selected to run
more often …

 Job counters support determining which job to run next 

 Over time jobs are scheduled to run based on their

priority represented as their share of tickets…

 Tickets are analogous to job priority
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STRIDE SCHEDULER EXAMPLE - 4

Tickets
C  = 250
A  = 100
B  =   50
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 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler
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OBJECTIVES – 4/17

 Large Google datacenter study:

“Profiling a Warehouse -scale Computer”  (Kanev et al.)

 Monitored 20,000 servers over 3 years

 Found 20% of CPU time spent in the Linux kernel

 5% of CPU time spent 

in the CPU scheduler!

 Study highlights 

importance for 

high performance 

OS kernels and

CPU schedulers !

S e e :  h t t p s : / / d l . a c m . o r g / d o i / p d f / 1 0 . 1 1 4 5 / 2 7 4 9 4 6 9 . 2 7 5 0 3 9 2  
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LINUX: COMPLETELY FAIR SCHEDULER (CFS)
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 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi -Tasking System

▪ In perfect system every process of the same priority (class) 

receive exactly 1/nth of the CPU time

 Each scheduling class has a runqueue

▪ Groups process of same class 

▪ In class, scheduler picks task w/ lowest vruntime to run

▪ Time slice varies based on how many jobs in shared runqueue

▪ Minimum time slice prevents too many context switches 

(e.g. 3 ms)
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LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Every thread/process has a scheduling class (policy):

 Normal classes: SCHED_OTHER (TS), SCHED_IDLE, 

SCHED_BATCH

▪ TS = Time Sharing

 Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

 How to show scheduling class and priority:

 #class

ps –elfc

 #priority (nice value)

ps ax -o pid,ni,cls,pri,cmd
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COMPLETELY FAIR SCHEDULER - 2
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 Linux ≥ 2.6.23: Completely Fair Scheduler (CFS)

 Linux < 2.6.23: O(1) scheduler

 Linux maintains simple counter (vruntime) to track how long 

each thread/process has run

 CFS picks process with lowest vruntime to run next

 CFS adjusts timeslice based on # of proc waiting for the CPU

 Kernel parameters that specify CFS behavior:
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COMPLETELY FAIR SCHEDULER - 3

$ sudo sysctl kernel.sched_latency_ns

kernel.sched_latency_ns = 24000000  

$ sudo sysctl kernel.sched_min_granularity_ns 

kernel.sched_min_granularity_ns = 3000000

$ sudo sysctl kernel.sched_wakeup_granularity_ns 

kernel.sched_wakeup_granularity_ns = 4000000

 Sched_min_granularity_ns  (3ms)

▪ Time slice for a process: busy system (w/ full runqueue)

▪ If system has idle capacity, time slice exceed the min as long as 

difference in vruntime between running process and process with 

lowest vruntime is less than sched_wakeup_granularity_ns 

(4ms)

 Scheduling time period is: total cycle time for iterating through a 

set of processes where each is allowed to run

(like round robin)

 Example:

sched_latency_ns  (24ms)

if (proc in runqueue  <  sched_latency_ns/sched_min_granularity )

or

sched_min_granularity  * number of processes in runqueue

R e f :  h t t p s : / / w w w . s y s t u t o r i a l s . c o m / s c h e d _ m i n _ g r a n u l a r i t y _ n s - s c h e d _ l a t e n c y _ n s - c f s - a f f e c t - t i m e s l i c e - p r o c e s s e s /  
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COMPLETELY FAIR SCHEDULER - 4
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 HIGH sched_min_granularity_ns (timeslice)

  sched_latency_ns

  sched_wakeup_granularity_ns

reduced context switching → less overhead

poor near-term fairness

 LOW  sched_min_granularity_ns (timeslice)

  sched_latency_ns

  sched_wakreup_granularity_ns

increased context switching → more overhead

better near-term fairness
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CFS TRADEOFF
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COMPLETELY FAIR SCHEDULER - 5

 Runqueues are stored using a linux red-black tree

▪ Self balancing binary tree - nodes indexed by vruntime 

 Leftmost node has lowest 

vruntime (approx execution time)  

 Walking tree to find left 

most node has very low

big O complexity:
~O(log N) for N nodes

 Completed 

processes removed
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 Time slice: Linux “Nice value”

▪ Nice predates the CFS scheduler

▪ Top shows nice values

▪ Process command (nice & priority):  
ps ax -o pid,ni,cmd,%cpu, pri

 Nice Values: from -20 to 19

▪ Lower is higher priority, default is 0

▪ Vruntime is a weighted time measurement

▪ Priority weights the calculation of vruntime within a 

runqueue to give high priority jobs a boost.

▪ Influences job’s position in rb-tree
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CFS: JOB PRIORITY

 CFS tracks cumulative job run time in vruntime variable

 The task on a given runqueue with the lowest vruntime is 
scheduled next

 struct sched_entity  contains vruntime  parameter

▪ Describes process execution time in nanoseconds

▪ Value is not pure runtime, is weighted based on job priority

▪ Perfect scheduler → 
achieve equal vruntime for all processes of same priority

 Sleeping jobs: upon return reset vruntime to lowest value in 
system

▪ Jobs with frequent short sleep SUFFER !!

 Key takeaway:
identifying the next job to schedule is really fast!
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COMPLETELY FAIR SCHEDULER - 6
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 More information:

 Man page: “man sched” : Describes Linux scheduling API

 http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html  

 https://www.kernel.org/doc/Documentation/scheduler/sched -

design-CFS.txt 

 https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

 See paper: The Linux Scheduler – a Decade of Wasted Cores

 http://www.ece.ubc.ca/~sasha/papers/eurosys16 -final29.pdf 
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COMPLETELY FAIR SCHEDULER - 7

QUESTIONS
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