
TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.1Slides by Wes J. Lloyd

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

Common Scheduling Algorithms,
Multi-level Feedback

Queue (MLFQ) Scheduler,
Proportional Share

Schedulers

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 10% off textbook code: WRITING10 (through Friday Apr 18)

 https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-

arpaci-dusseau/operating-systems-three-easy-pieces-

hardcover-version-110/hardcover/product-

15gjeeky.html?q=three+easy+pieces+operating+systems&pag

e=1&pageSize=4

 With coupon textbook is only $35.78 + tax & shipping

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.2

TEXT BOOK COUPON

 Office Hours plan for Spring (by Zoom):

 Monday 11:30am - 12:30p GTA Xinghan

 Tuesday 11:30am - 12:30p GTA Xinghan

 Wednesday 11:00am - 12:00p Instructor Wes

 Friday 12:00pm - 1:00p Wes or Xinghan

 Office hours this Fr iday April 18 th

▪ Xinghan

 Instructor is available after class at 6pm in CP 229

each day

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.3

TCSS 422 – OFFICE HRS – SPRING 2025

 Please join the TCSS 422 A – Spring 2025 Discord Server

https://discord.gg/Jh5Cp8TMYn

 Under Edit Server Profile:

Please update your ‘Server Nickname’

to your real name or UW NET ID

THANK YOU

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.4

TCSS 422 DISCORD SERVER

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.5

OBJECTIVES – 4/17

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

April 17, 2025
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.6

ONLINE DAILY FEEDBACK SURVEY

1 2

3 4

5 6

https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://discord.gg/Jh5Cp8TMYn

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.2Slides by Wes J. Lloyd

April 17, 2025
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.7

 Please classify your perspective on material covered in today’s

class (35 of 63 respondents – 55.5%) :

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.88 ( - previous 6.47)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.05 ( - previous 4.83)

April 17, 2025
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.8

MATERIAL / PACE

 What is your recommendation for preparing for the quizzes

and midterm?

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.9

FEEDBACK FROM 4/15

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.10

OBJECTIVES – 4/17

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.11

OBJECTIVES – 4/17

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.12

OBJECTIVES – 4/17

7 8

9 10

11 12

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.3Slides by Wes J. Lloyd

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.13

OBJECTIVES – 4/17

 Switch to Lecture 5 Slides

 Slides L5.48 to L5.52 (thru STCF scheduler)

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.14

CATCH UP FROM LECTURE 5

CHAPTER 7-

SCHEDULING:

INTRODUCTION

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.15

Chapter 7: Scheduling Introduction

▪ Scheduling metrics

▪ Turnaround time, Jain’s Fairness Index, Response time

▪ FIFO, SJF, STCF, RR schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.16

CHAPTER 7

 Run each job awhile, then switch to another distributing the

CPU evenly (fair ly)

 Scheduling Quantum

is called a time slice

 Time slice must be

 a multiple of the

 timer interrupt

 period.

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.17

RR: ROUND ROBIN

Scheduling
Quantum = 5 seconds

RR is fair, but performs poorly on metrics
such as turnaround time

 ABC arrive at time=0, each run for 5 seconds

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.18

RR EXAMPLE

𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 =
𝟎 + 𝟓 + 𝟏𝟎

𝟑
= 𝟓𝒔𝒆𝒄

𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 =
𝟎 + 𝟏 + 𝟐

𝟑
= 𝟏𝒔𝒆𝒄

OVERHEAD not
considered

13 14

15 16

17 18

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.4Slides by Wes J. Lloyd

 Time slice impact:

▪Turnaround time (for earlier example):
ts(1,2,3,4,5)=14,14,13,14,10

▪Fairness: round robin is always fair, J=1

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.19

ROUND ROBIN: TRADEOFFS

Fast Response Time Slow Response Time

High overhead from
context switching

Low overhead from
context switching

Short Time Slice Long Time Slice  STCF scheduler

▪ A: CPU=50ms, I/O=40ms, 10ms intervals

▪ B: CPU=50ms, I/O=0ms

▪ Consider A as 10ms subjobs (CPU, then I/O)

 Without considering I/O:

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.20

SCHEDULING WITH I/O

CPU utilization= 100/140=71%

 When a job initiates an I/O request

▪ A is blocked, waits for I/O to compute, frees CPU

▪ STCF scheduler assigns B to CPU

 When I/O completes → raise interrupt

▪ Unblock A, STCF goes back to executing A: (10ms sub-job)

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.21

SCHEDULING WITH I/O - 2

Cpu utilization = 100/100=100%

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.22

Which scheduler, this far, best addresses fairness

and average response time of jobs?

 First In – First Out (FIFO)

Shortest Job First (SJF)

Shortest Time to Completion First (STCF)

Round Robin (RR)

None of the Above

All of the Above

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.23

QUESTION: SCHEDULING FAIRNESS

 Consider Three jobs (A, B, C) that require:

timeA=400ms, timeB=100ms, and timeC=200ms

 All jobs arrive at time=0 in the sequence of A B C.

 Draw a scheduling graph to help compute the

average response time (ART) and

average turnaround time (ATT) scheduling metrics for the

FIFO scheduler.

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.24

SCHEDULING METRICS

A B C

0 400 500 700

Example:

19 20

21 22

23 24

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.5Slides by Wes J. Lloyd

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.25 April 17, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.26

 Consider Three jobs (A, B, C) that require:

timeA=400ms, timeB=100ms, and timeC=200ms

 All jobs arrive at time=0 in the sequence of A B C.

 Draw a scheduling graph to help compute the

average response time (ART) and

average turnaround time (ATT) scheduling metrics for the

SJF scheduler.

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.27

SCHEDULING METRICS

AB C

0 100 300 700

Example:

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.28

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.29

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.30

OBJECTIVES – 4/17

25 26

27 28

29 30

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.6Slides by Wes J. Lloyd

CHAPTER 8 –

MULTI-LEVEL FEEDBACK

QUEUE (MLFQ) SCHEDULER

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.31

Objectives:

▪ Improve turnaround time:

 Run shorter jobs first

▪Minimize response time:

 Important for interactive jobs (UI)

Achieve without a priori knowledge of job length

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.32

MULTI-LEVEL FEEDBACK QUEUE

 Multiple job queues

 Adjust job priority based on

observed behavior

 Interactive Jobs

▪ Frequent I/O → keep priority high

▪ Interactive jobs require fast

response time (GUI/UI)

 Batch Jobs

▪ Require long periods of CPU

utilization

▪ Keep priority low

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.33

MLFQ - 2 Round-Robin
within a Queue

 New arriving jobs are placed into highest priority queue

 If a job uses its entire time slice, priority is reduced (↓)

▪ Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

 If a job relinquishes the CPU for I/O priority stays the same

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.34

MLFQ: DETERMINING JOB PRIORITY

MLFQ approximates SJF

 Three-queue scheduler, time slice=10ms

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.35

MLFQ: LONG RUNNING JOB

Priority

 Aarrival_time =0ms, A run_time=200ms,

 B run_time =20ms, Barrival_time =100ms

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.36

MLFQ: BATCH AND INTERACTIVE JOBS

Priority

Scheduling multiple jobs (ms)

31 32

33 34

35 36

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.7Slides by Wes J. Lloyd

 Continuous interactive job (B) with long running batch job (A)

▪ Low response time is good for B

▪ A continues to make progress

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.37

MLFQ: BATCH AND INTERACTIVE - 2

The MLFQ approach keeps interactive job(s) at the highest priority

WE WILL RETURN AT

5:05PM

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.38

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.39

OBJECTIVES – 4/17

Starvation

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.40

MLFQ: ISSUES

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.41

OBJECTIVES – 4/17

 Gaming the scheduler

▪ Issue I/O operation at 99% completion of the time slice

▪ Keeps job priority fixed – never lowered

 Job behavioral change

▪ CPU/batch process becomes an interactive process

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.42

MLFQ: ISSUES - 2

Priority becomes stuck

37 38

39 40

41 42

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.8Slides by Wes J. Lloyd

 Priority Boost

▪ Reset all jobs to topmost queue after some time interval S

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.43

RESPONDING TO BEHAVIOR CHANGE

Starvation

 With priority boost

▪ Prevents starvation

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.44

RESPONDING TO BEHAVIOR CHANGE - 2

With

 Without priority boost:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 KEY: If time quantum of a higher queue is filled,

then we don’t run any jobs in lower priority queues!!!

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.45

KEY TO UNDERSTANDING MLFQ – PB

 Consider 3 queues:

 Q2 – HIGH PRIORITY – Time Quantum 10ms

 Q1 – MEDIUM PRIORITY – Time Quantum 20 ms

 Q0 – LOW PRIORITY – Time Quantum 40 ms

 Job A: 200ms no I/O

 Job B: 5ms then I/O

 Job C: 5ms then I/O

 Q2 fills up,

starves Q1 & Q0

 A makes no progress

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.46

STARVATION EXAMPLE

Starvation

 Improved time accounting:

▪ Track total job execution time in the queue

▪ Each job receives a fixed time allotment

▪ When allotment is exhausted, job priority is lowered

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.47

PREVENTING GAMING

 Consider the tradeoffs:

▪ How many queues?

▪ What is a good time slice?

▪ How often should we “Boost” priority of jobs?

▪ What about different time slices to different queues?

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.48

MLFQ: TUNING

43 44

45 46

47 48

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.9Slides by Wes J. Lloyd

 Oracle Solaris MLFQ implementation

▪ 60 Queues →

w/ slowly increasing time slice (high to low priority)

▪ Provides sys admins with set of editable table(s)

▪ Supports adjusting time slices, boost intervals, priority

changes, etc.

 Advice

▪ Provide OS with hints about the process

▪ Nice command → Linux

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.49

PRACTICAL EXAMPLE

 The refined set of MLFQ rules:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 Rule 3: When a job enters the system, it is placed at the

highest priority.

 Rule 4: Once a job uses up its time allotment at a given

level (regardless of how many times it has given up the

CPU), its priority is reduced(i.e., it moves down on queue).

 Rule 5: After some time period S, move all the jobs in the

system to the topmost queue.

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.50

MLFQ RULE SUMMARY

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.51

OBJECTIVES – 4/17

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.52

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.53 April 17, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.54

49 50

51 52

53 54

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.10Slides by Wes J. Lloyd

 Question:

 Given a system with a total quantum length of 10 ms for a l l

jobs to run before priority is lowered in the highest queue, how

often would you have to boost jobs back to the highest priority

level to guarantee that a single long -running (and potentially

starving) job gets at least 5% of the CPU?

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.55

EXAMPLE

 Question:

 Given a system with a quantum length of 10 ms fo r a l l jobs to run
before priority is lowered in the highest queue, how often would you
have to boost jobs back to the highest priority level to guarantee
that a single long-running (and potent ially starving) job gets at
least 5% of the CPU?

.

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.56

EXAMPLE

 Quest ion:

 Given a system with a quantum length of 10 ms fo r a l l jobs in its

highest queue, how often would you have to boost jobs back to the

highest priority level to guarantee that a single long -running (and

potent ially starving) job gets at least 5% of the CPU?

 Some combination of n jobs runs for a total of 10 ms per cycle

without relinquishing the CPU

▪ E.g. 2 jobs = 5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs = 1 ms ea

▪ n jobs always uses full time quantum in highest queue (10 ms)

▪ Batch jobs starts, runs for full quantum of 10ms, pushed to lower queue

▪ All other jobs run and context switch totaling the quantum per cycle

▪ If 10ms is 5% of the CPU, when must the priority boost be ???

▪ ANSWER → Priority boost should occur every 200ms

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.57

EXAMPLE

 Questions from 4/15

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.58

OBJECTIVES – 4/17

CHAPTER 9 -

PROPORTIONAL SHARE

SCHEDULER

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L6.59

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.60

OBJECTIVES – 4/17

55 56

57 58

59 60

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.11Slides by Wes J. Lloyd

 Also called fair -share scheduler

 or lottery scheduler

▪ Guarantees each job receives some percentage of CPU

time based on share of “tickets”

▪ Each job receives an allotment of tickets

▪% of tickets corresponds to potential share of a resource

▪ Can conceptually schedule any resource this way

▪ CPU, disk I/O, memory

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.61

PROPORTIONAL SHARE SCHEDULER

 Simple implementation

▪ Just need a random number generator

▪ Picks the winning ticket

▪Maintain a data structure of jobs and tickets (list)

▪ Traverse list to find the owner of the ticket

▪ Consider sorting the list for speed

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.62

LOTTERY SCHEDULER

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.63

LOTTERY SCHEDULER IMPLEMENTATION

1 // counter: used to track if we’ve found the winner yet

2 int counter = 0;

3

4 // winner: use some call to a random number generator to

5 // get a value, between 0 and the total # of tickets

6 int winner = getrandom(0, totaltickets);

7

8 // current: use this to walk through the list of jobs

9 node_t *current = head;

10

11 // loop until the sum of ticket values is > the winner

12 while (current) {

13 counter = counter + current->tickets;

14 if (counter > winner)

15 break; // found the winner

16 current = current->next;

17 }

18 // ’current’ is the winner: schedule it...

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.64

OBJECTIVES – 4/17

 Ticket currency / exchange

▪ User allocates tickets in any desired way

▪ OS converts user currency into global currency

 Example:

▪ There are 200 global tickets assigned by the OS

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.65

TICKET MECHANISMS

 Ticket transfer

▪ Temporarily hand off tickets to another process

 Ticket inflation

▪ Process can temporarily raise or lower the number of

tickets it owns

▪ If a process needs more CPU time, it can boost tickets.

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.66

TICKET MECHANISMS - 2

61 62

63 64

65 66

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.12Slides by Wes J. Lloyd

 Scheduler picks a winning ticket

▪ Load the job with the winning ticket and run it

 Example:

▪ Given 100 tickets in the pool

▪ Job A has 75 tickets: 0 - 74

▪ Job B has 25 tickets: 75 – 99

 But what do we know about probability of a coin flip?

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.67

LOTTERY SCHEDULING

Scheduled job:

 Equality of distribution (fairness) requires a lot of flips!

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.68

COIN FLIPPING

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.69

LOTTERY FAIRNESS

 With two jobs

▪ Each with the same number of tickets (t=100)

When the job length is not very long,
average unfairness can be quite severe.

 What is the best approach to assign tickets to jobs?

▪ Typical approach is to assume users know best

▪ Users are provided with tickets, which they allocate as

desired

 How should the OS automatically distribute tickets upon

job arrival?

▪What do we know about incoming jobs a priori ?

▪ Ticket assignment is really an open problem…

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.70

LOTTERY SCHEDULING CHALLENGES

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.71

OBJECTIVES – 4/17

Addresses statistical probability issues with

lottery scheduling

 Instead of guessing a random number to select a

job, simply count…

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.72

STRIDE SCHEDULER

67 68

69 70

71 72

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.13Slides by Wes J. Lloyd

 Jobs have a “stride” value

▪ A stride value describes the counter pace when the job should

give up the CPU

▪ Stride value is inverse in proportion to the job’s number of

tickets (more tickets = smaller stride)

 Total system tickets = 10,000

▪ Job A has 100 tickets → Astride = 10000/100 = 100 stride

▪ Job B has 50 tickets → Bstride = 10000/50 = 200 stride

▪ Job C has 250 tickets → Cstride = 10000/250 = 40 stride

 Stride scheduler tracks “pass” values for each job (A, B, C)

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.73

STRIDE SCHEDULER - 2

 Basic algorithm:

1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and

starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a

new job (go to 1)

 KEY: When the counter reaches a job’s “PASS” value,

the scheduler passes on to the next job…

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.74

STRIDE SCHEDULER - 3

Stride values

▪Tickets = priority to select job

▪Stride is inverse to tickets

▪Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.75

STRIDE SCHEDULER - EXAMPLE

 Three-way tie: randomly pick job A (all pass values=0)

 Set A’s pass value to A’s stride = 100

 Increment counter until > 100

 Pick a new job: two-way tie

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.76

STRIDE SCHEDULER EXAMPLE - 2

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and receives a lot of
opportunities to run…

Initial job selection
is random. All @ 0

 We set A’s counter (pass value) to A’s stride = 100

 Next scheduling decision between B (pass=0) and C (pass=0)

▪ Randomly choose B

 C has the lowest counter for next 3 rounds

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.77

STRIDE SCHEDULER EXAMPLE - 3

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and is selected to run
more often …

 Job counters support determining which job to run next

 Over time jobs are scheduled to run based on their

priority represented as their share of t ickets…

 Tickets are analogous to job pr iority

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.78

STRIDE SCHEDULER EXAMPLE - 4

Tickets
C = 250
A = 100
B = 50

73 74

75 76

77 78

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.14Slides by Wes J. Lloyd

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.79

OBJECTIVES – 4/17

 Large Google datacenter study:

“Profiling a Warehouse -scale Computer” (Kanev et al.)

 Monitored 20,000 servers over 3 years

 Found 20% of CPU time spent in the Linux kernel

 5% of CPU time spent

in the CPU scheduler!

 Study highlights

importance for

high performance

OS kernels and

CPU schedulers !

S e e : h t t p s : / / d l . a c m . o r g / d o i / p d f / 1 0 . 1 1 4 5 / 2 7 4 9 4 6 9 . 2 7 5 0 3 9 2

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.80

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi -Tasking System

▪ In perfect system every process of the same priority (class)

receive exactly 1/n th of the CPU time

 Each scheduling class has a runqueue

▪ Groups process of same class

▪ In class, scheduler picks task w/ lowest vruntime to run

▪ Time slice varies based on how many jobs in shared runqueue

▪ Minimum time slice prevents too many context switches

(e.g. 3 ms)

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.81

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Every thread/process has a scheduling class (policy):

 Normal classes: SCHED_OTHER (TS), SCHED_IDLE,

SCHED_BATCH

▪ TS = Time Sharing

 Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

 How to show scheduling class and priority:

 #class

ps –elfc

 #priority (nice value)

ps ax -o pid,ni,cls,pri,cmd

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.82

COMPLETELY FAIR SCHEDULER - 2

 Linux ≥ 2.6.23: Completely Fair Scheduler (CFS)

 Linux < 2.6.23: O(1) scheduler

 Linux maintains simple counter (vruntime) to track how long

each thread/process has run

 CFS picks process with lowest vruntime to run next

 CFS adjusts timeslice based on # of proc waiting for the CPU

 Kernel parameters that specify CFS behavior:

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.83

COMPLETELY FAIR SCHEDULER - 3

$ sudo sysctl kernel.sched_latency_ns

kernel.sched_latency_ns = 24000000

$ sudo sysctl kernel.sched_min_granularity_ns

kernel.sched_min_granularity_ns = 3000000

$ sudo sysctl kernel.sched_wakeup_granularity_ns

kernel.sched_wakeup_granularity_ns = 4000000

 Sched_min_granularity_ns (3ms)

▪ Time slice for a process: busy system (w/ full runqueue)

▪ If system has idle capacity, time slice exceed the min as long as

difference in vruntime between running process and process with

lowest vruntime is less than sched_wakeup_granularity_ns

(4ms)

 Scheduling t ime period is: total cycle t ime for iterat ing through a

set of processes where each is allowed to run

(l ike round robin)

 Example:

sched_latency_ns (24ms)

i f (proc in runqueue < sched_latency_ns/sched_min_granularity)

or

sched_min_granularity * number of processes in runqueue

R e f : h t t p s : / / w w w . sy s t u t o r i a l s . c om / s c h e d_ m i n _ g r a n u l a r i t y_ n s - s c h e d _ l a t e nc y _ n s - c f s - a f f e c t - t i m e s l i c e - p r o c e s s e s /

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.84

COMPLETELY FAIR SCHEDULER - 4

79 80

81 82

83 84

https://dl.acm.org/doi/pdf/10.1145/2749469.2750392
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/17/2025

L6.15Slides by Wes J. Lloyd

 HIGH sched_min_granularity_ns (timeslice)

 sched_latency_ns

 sched_wakeup_granularity_ns

reduced context switching → less overhead

poor near-term fairness

 LOW sched_min_granularity_ns (timeslice)

 sched_latency_ns

 sched_wakreup_granularity_ns

increased context switching → more overhead

better near-term fairness

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.85

CFS TRADEOFF

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.86

COMPLETELY FAIR SCHEDULER - 5

 Runqueues are stored using a linux red-black tree

▪ Self balancing binary tree - nodes indexed by vruntime

 Leftmost node has lowest
vruntime (approx execution time)

 Walking tree to find left

most node has very low

big O complexity:
~O(log N) for N nodes

 Completed

processes removed

 Time slice: Linux “Nice value”

▪ Nice predates the CFS scheduler

▪ Top shows nice values

▪ Process command (nice & priority):
ps ax -o pid,ni,cmd,%cpu, pri

 Nice Values: from -20 to 19

▪ Lower is higher priority, default is 0

▪ Vruntime is a weighted time measurement

▪ Priority weights the calculation of vruntime within a

runqueue to give high priority jobs a boost.

▪ Influences job’s position in rb-tree

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.87

CFS: JOB PRIORITY

 CFS tracks cumulative job run time in vruntime variable

 The task on a given runqueue with the lowest vruntime is
scheduled next

 struct sched_entity contains vruntime parameter

▪ Describes process execution time in nanoseconds

▪ Value is not pure runtime, is weighted based on job priority

▪ Perfect scheduler →
achieve equal vruntime for all processes of same priority

 Sleeping jobs: upon return reset vruntime to lowest value in
system

▪ Jobs with frequent short sleep SUFFER !!

 Key takeaway:
identifying the next job to schedule is really fast!

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.88

COMPLETELY FAIR SCHEDULER - 6

 More information:

 Man page: “man sched” : Describes Linux scheduling API

 http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

 https://www.kernel.org/doc/Documentation/scheduler/sched -

design-CFS.txt

 https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

 See paper: The Linux Scheduler – a Decade of Wasted Cores

 http://www.ece.ubc.ca/~sasha/papers/eurosys16 -final29.pdf

April 17, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L6.89

COMPLETELY FAIR SCHEDULER - 7 QUESTIONS

85 86

87 88

89 90

http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

	Slide 1: TCSS 422: Operating Systems
	Slide 2: Text book coupon
	Slide 3: Tcss 422 – office hrs – Spring 2025
	Slide 4: TCSS 422 Discord server
	Slide 5: OBJECTIVES – 4/17
	Slide 6: Online daily feedback survey
	Slide 7
	Slide 8: Material / pace
	Slide 9: Feedback from 4/15
	Slide 10: OBJECTIVES – 4/17
	Slide 11: OBJECTIVES – 4/17
	Slide 12: OBJECTIVES – 4/17
	Slide 13: OBJECTIVES – 4/17
	Slide 14: Catch up from lecture 5
	Slide 15: Chapter 7-Scheduling: introduction
	Slide 16: Chapter 7
	Slide 17: RR: Round robin
	Slide 18: RR EXAMPLE
	Slide 19: Round robin: tradeoffs
	Slide 20: Scheduling with i/o
	Slide 21: Scheduling with i/o - 2
	Slide 22
	Slide 23: QUESTION: scheduling fairness
	Slide 24: Scheduling metrics
	Slide 25
	Slide 26
	Slide 27: Scheduling metrics
	Slide 28
	Slide 29
	Slide 30: OBJECTIVES – 4/17
	Slide 31: Chapter 8 – Multi-Level Feedback QUEUE (mlfq) SCHEDULER
	Slide 32: Multi-level feedback queue
	Slide 33: Mlfq - 2
	Slide 34: Mlfq: determining job priority
	Slide 35: MLFQ: long running job
	Slide 36: MLFQ: Batch and interactive jobs
	Slide 37: Mlfq: batch and interactive - 2
	Slide 38: We will return at 5:05pm
	Slide 39: OBJECTIVES – 4/17
	Slide 40: MLFQ: issues
	Slide 41: OBJECTIVES – 4/17
	Slide 42: Mlfq: issues - 2
	Slide 43: Responding to behavior change
	Slide 44: Responding to behavior change - 2
	Slide 45: Key to understanding MLFQ – PB
	Slide 46: Starvation example
	Slide 47: Preventing gaming
	Slide 48: MLFQ: TUNING
	Slide 49: Practical example
	Slide 50: Mlfq rule summary
	Slide 51: OBJECTIVES – 4/17
	Slide 52
	Slide 53
	Slide 54
	Slide 55: example
	Slide 56: example
	Slide 57: example
	Slide 58: OBJECTIVES – 4/17
	Slide 59: Chapter 9 -Proportional Share Scheduler
	Slide 60: OBJECTIVES – 4/17
	Slide 61: Proportional share scheduler
	Slide 62: Lottery scheduler
	Slide 63: Lottery scheduler implementation
	Slide 64: OBJECTIVES – 4/17
	Slide 65: Ticket mechanisms
	Slide 66: Ticket mechanisms - 2
	Slide 67: Lottery scheduling
	Slide 68: Coin flipping
	Slide 69: Lottery fairness
	Slide 70: Lottery scheduling challenges
	Slide 71: OBJECTIVES – 4/17
	Slide 72: Stride scheduler
	Slide 73: Stride scheduler - 2
	Slide 74: Stride scheduler - 3
	Slide 75: Stride scheduler - example
	Slide 76: Stride scheduler example - 2
	Slide 77: Stride scheduler example - 3
	Slide 78: Stride scheduler example - 4
	Slide 79: OBJECTIVES – 4/17
	Slide 80: Linux: completely fair scheduler (CFS)
	Slide 81: Linux: Completely fair scheduler (CFS)
	Slide 82: Completely fair scheduler - 2
	Slide 83: Completely fair scheduler - 3
	Slide 84: Completely fair scheduler - 4
	Slide 85: Cfs TRADEOFF
	Slide 86: Completely fair scheduler - 5
	Slide 87: CFS: job priority
	Slide 88: Completely fair scheduler - 6
	Slide 89: Completely fair scheduler - 7
	Slide 90: Questions

