
TCSS 422 A – Spring 2024
School of Engineering and Technology

4/11/2024

L6.1Slides by Wes J. Lloyd

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

Common Scheduling Algorithms,
Multi-level Feedback

Queue (MLFQ) Scheduler,
Proportional Share

Schedulers

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 10% off textbook code: MYLIBRARY10 (through Friday Apr

12)

 https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-

arpaci-dusseau/operating-systems-three-easy-pieces-

hardcover-version-110/hardcover/product -

15gjeeky.html?q=three+easy+pieces+operating+systems&pag

e=1&pageSize=4

 With coupon textbook is only $35.78 + tax & shipping

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.2

TEXT BOOK COUPON

 Tuesdays af ter class until 7:00pm

Hybrid (In-person/Zoom)

▪ This session will be in person in CP 229.

▪ Zoom will be monitored when no student is in CP 229.

 Thursdays after class until 7:00pm – Hybrid (In-person/Zoom)

▪ Additional office time will be held on Thursdays after class

when there is high demand indicated by a busy Tuesday

office hour

▪When Thursday Office Hours are planned, Zoom links will

be shared via Canvas

▪ Questions after class on Thursdays are always entertained

even when the formal office hour is not scheduled

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.3

TCSS 422 – OFFICE HRS – SPRING 2024

 Please join the TCSS 422 A – Spring 2024 Discord Server

https://discord.gg/H7PPZ5ArFW

 Under Edit Server Profile:

Please update your ‘Server Nickname’

to your real name or UW NET ID

THANK YOU

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.4

TCSS 422 DISCORD SERVER

 Grad C er t i f icate Sof t Dev Eng (GC -SDE) Spr ing Sem inar, o p en to T CSS 4 22 s t udents

 Damien Eversmann, RedHat Chief Architect for Education

 Saturday, A pr i l 20 - 12:30 to 1:20 pm

 Zoom L ink: https ://washington.zoom.us/j/96445774685

Selected as one of the Industr y Leaders of the Year in 2022 by EdScoop,
Damien has over 25 years of exper ience as an IT professiona l . Hav ing spent the
bu lk of h is career working in or in suppor t of the publ ic sector, he is somewhat
of an exper t when it comes to IT in government and h igher education .
Throughout h is working l i fe , Damien has ser ved as a Developer, System
Admin istra tor, Development Manager, Enterpr ise Arch itect and Technology
Director. L iv ing the l i fe of an Academic and Research Admin istra tor has a lso
g iven Damien a vast knowledge of and a hea lthy respect for regu lat ions and
compliance. He has worked on projects running the gamut f rom desktop -based
widgets to major, mult i - t iered appl icat ions, f rom small , embedded systems to
many -faceted in frastructures.

As Ch ief Arch itect for Education at Red Hat, Damien ser ves the role of br idg ing
the gap between the mission and the business of education and the
technolog ies and solu t ions that suppor t i t a l l . He has a penchant for teach ing
and demonstrat ion and anyth ing e lse that gets h im in f ront of people to share
the message of Continuous Learn ing , DevOps Cu ltu re , Innovation through
Automation and IT Modern izat ion .

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.5

INDUSTRY GUEST SPEAKER

RED HAT LINUX (IBM) APRIL 20

 Questions from 4/11

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.6

OBJECTIVES – 4/11

1 2

3 4

5 6

https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://discord.gg/H7PPZ5ArFW
https://washington.zoom.us/j/96445774685

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/11/2024

L6.2Slides by Wes J. Lloyd

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

April 11, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.7

ONLINE DAILY FEEDBACK SURVEY

April 11, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L6.8

 Please classify your perspective on material covered in today’s

class (29 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.00 (- previous 6.44)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.21 (no change - previous 5.21)

April 11, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.9

MATERIAL / PACE

 What does preemption mean?

▪ Preempt or preemption means to interrupt

▪ In the context of scheduling for operating systems, preemption refers to
the interruption and pausing of a job or task so that some other job or
task is allowed to run

▪ When a job is interrupt, it goes from RUNNING → READY

▪ Why does the job not go from RUNNING → BLOCKED when preempted?

 the t iming o f ABC, and how to determine the in itial speed

▪ For some problems, we will say that the job arrive in the sequence of ‘A
B C’, but we do not provide distinctly different times. We say they all
arrive at time t=0, but in the order of A B C

▪ This ordering is required as schedulers like FIFO require the ability to
infer the arrival ordering, but we do not distinguish distinct arrival times

▪ Question-on-question: What is mean by ‘the initial speed’ ?

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.10

FEEDBACK FROM 4/9

 Some of the schedulers were a l i t tle confusing mainly the

Faster F irst, random order.

 Question-on-question:

▪ What is “Faster First” ?

▪ What is “random order” ?

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.11

FEEDBACK - 2

 The ‘preemptive kernel’ is a l i t tle unclear

▪ The primary idea here is that interrupt handlers (kernel functions

that process interrupts) can now be interrupted in Linux starting with

version >= 2.6

▪ Non-Maskable-Interrupts have the highest priority and cannot be

masked out by other interrupts. These are critical hardware events

such as memory parity error or power loss.

▪ Other interrupt handlers can be interrupted

▪ Locks are added around kernel code that should not be interrupted.

The locks increment a preemption counter and track the number or

code sections running that can’t be interrupted

▪ Interrupts can only interrupt other interrupt handlers when counter is

zero

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.12

FEEDBACK - 3

7 8

9 10

11 12

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/11/2024

L6.3Slides by Wes J. Lloyd

 Questions from 4/11

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.13

OBJECTIVES – 4/11

 Questions from 4/11

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.14

OBJECTIVES – 4/11

 Questions from 4/11

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.15

OBJECTIVES – 4/11

 Questions from 4/11

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.16

OBJECTIVES – 4/11

CHAPTER 7-

SCHEDULING:

INTRODUCTION

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L6.17

Chapter 7: Scheduling Introduction

▪ Scheduling metrics

▪ Turnaround time, Jain’s Fairness Index, Response time

▪ FIFO, SJF, STCF, RR schedulers

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.18

CHAPTER 7

13 14

15 16

17 18

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/11/2024

L6.4Slides by Wes J. Lloyd

 STCF scheduler

▪ A: CPU=50ms, I/O=40ms, 10ms intervals

▪ B: CPU=50ms, I/O=0ms

▪ Consider A as 10ms subjobs (CPU, then I/O)

 Without considering I/O:

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.19

SCHEDULING WITH I/O

CPU utilization= 100/140=71%

 When a job initiates an I/O request

▪ A is blocked, waits for I/O to compute, frees CPU

▪ STCF scheduler assigns B to CPU

 When I/O completes → raise interrupt

▪ Unblock A, STCF goes back to executing A: (10ms sub-job)

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.20

SCHEDULING WITH I/O - 2

Cpu utilization = 100/100=100%

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L6.21

Which scheduler, this far, best addresses fairness

and average response time of jobs?

 First In – First Out (FIFO)

Shortest Job First (SJF)

Shortest Time to Completion First (STCF)

Round Robin (RR)

None of the Above

All of the Above

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.22

QUESTION: SCHEDULING FAIRNESS

 Consider Three jobs (A, B, C) that require:

timeA=400ms, timeB=100ms, and timeC=200ms

 All jobs arrive at time=0 in the sequence of A B C.

 Draw a scheduling graph to help compute the

average response time (ART) and

average turnaround time (ATT) scheduling metrics for the

FIFO scheduler.

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.23

SCHEDULING METRICS

A B C

0 400 500 700

Example:

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L6.24

19 20

21 22

23 24

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/11/2024

L6.5Slides by Wes J. Lloyd

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L6.25

 Consider Three jobs (A, B, C) that require:

timeA=400ms, timeB=100ms, and timeC=200ms

 All jobs arrive at time=0 in the sequence of A B C.

 Draw a scheduling graph to help compute the

average response time (ART) and

average turnaround time (ATT) scheduling metrics for the

SJF scheduler.

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.26

SCHEDULING METRICS

AB C

0 100 300 700

Example:

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L6.27 April 11, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L6.28

 Questions from 4/11

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.29

OBJECTIVES – 4/11

CHAPTER 8 –

MULTI-LEVEL FEEDBACK

QUEUE (MLFQ) SCHEDULER

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L6.30

25 26

27 28

29 30

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/11/2024

L6.6Slides by Wes J. Lloyd

Objectives:

▪ Improve turnaround time:

 Run shorter jobs first

▪Minimize response time:

 Important for interactive jobs (UI)

Achieve without a priori knowledge of job length

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.31

MULTI-LEVEL FEEDBACK QUEUE

 Multiple job queues

 Adjust job priority based on

observed behavior

 Interactive Jobs

▪ Frequent I/O → keep priority high

▪ Interactive jobs require fast

response time (GUI/UI)

 Batch Jobs

▪ Require long periods of CPU

utilization

▪ Keep priority low

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.32

MLFQ - 2 Round-Robin
within a Queue

 New arriving jobs are placed into highest priority queue

 If a job uses its entire time slice, priority is reduced (↓)

▪ Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

 If a job relinquishes the CPU for I/O priority stays the same

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.33

MLFQ: DETERMINING JOB PRIORITY

MLFQ approximates SJF

 Three-queue scheduler, time slice=10ms

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.34

MLFQ: LONG RUNNING JOB

Priority

 Aarrival_time =0ms, A run_time=200ms,

 B run_time =20ms, Barrival_time =100ms

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.35

MLFQ: BATCH AND INTERACTIVE JOBS

Priority

Scheduling multiple jobs (ms)

 Continuous interactive job (B) with long running batch job (A)

▪ Low response time is good for B

▪ A continues to make progress

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.36

MLFQ: BATCH AND INTERACTIVE - 2

The MLFQ approach keeps interactive job(s) at the highest priority

31 32

33 34

35 36

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/11/2024

L6.7Slides by Wes J. Lloyd

WE WILL RETURN AT

4:55PM

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L6.37

 Questions from 4/11

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.38

OBJECTIVES – 4/11

Starvation

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.39

MLFQ: ISSUES

 Questions from 4/11

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.40

OBJECTIVES – 4/11

 Gaming the scheduler

▪ Issue I/O operation at 99% completion of the time slice

▪ Keeps job priority fixed – never lowered

 Job behavioral change

▪ CPU/batch process becomes an interactive process

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.41

MLFQ: ISSUES - 2

Priority becomes stuck

 Priority Boost

▪ Reset all jobs to topmost queue after some time interval S

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.42

RESPONDING TO BEHAVIOR CHANGE

Starvation

37 38

39 40

41 42

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/11/2024

L6.8Slides by Wes J. Lloyd

 With priority boost

▪ Prevents starvation

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.43

RESPONDING TO BEHAVIOR CHANGE - 2

With

 Without priority boost:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 KEY: If time quantum of a higher queue is filled,

then we don’t run any jobs in lower priority queues!!!

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.44

KEY TO UNDERSTANDING MLFQ – PB

 Consider 3 queues:

 Q2 – HIGH PRIORITY – Time Quantum 10ms

 Q1 – MEDIUM PRIORITY – Time Quantum 20 ms

 Q0 – LOW PRIORITY – Time Quantum 40 ms

 Job A: 200ms no I/O

 Job B: 5ms then I/O

 Job C: 5ms then I/O

 Q2 fills up,

starves Q1 & Q0

 A makes no progress

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.45

STARVATION EXAMPLE

Starvation

 Improved time accounting:

▪ Track total job execution time in the queue

▪ Each job receives a fixed time allotment

▪ When allotment is exhausted, job priority is lowered

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.46

PREVENTING GAMING

 Consider the tradeoffs:

▪ How many queues?

▪ What is a good time slice?

▪ How often should we “Boost” priority of jobs?

▪ What about different time slices to different queues?

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.47

MLFQ: TUNING

 Oracle Solaris MLFQ implementation

▪ 60 Queues →

w/ slowly increasing time slice (high to low priority)

▪ Provides sys admins with set of editable table(s)

▪ Supports adjusting time slices, boost intervals, priority

changes, etc.

 Advice

▪ Provide OS with hints about the process

▪ Nice command → Linux

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.48

PRACTICAL EXAMPLE

43 44

45 46

47 48

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/11/2024

L6.9Slides by Wes J. Lloyd

 The refined set of MLFQ rules:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 Rule 3: When a job enters the system, it is placed at the

highest priority.

 Rule 4: Once a job uses up its time allotment at a given

level (regardless of how many times it has given up the

CPU), its priority is reduced(i.e., it moves down on queue).

 Rule 5: After some time period S, move all the jobs in the

system to the topmost queue.

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.49

MLFQ RULE SUMMARY

 Questions from 4/11

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.50

OBJECTIVES – 4/11

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L6.51 April 11, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L6.52

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L6.53

 Question:

 Given a system with a quantum length of 10 ms for a l l jobs in

its highest queue, how often would you have to boost jobs

back to the highest priority level to guarantee that a single

long-running (and potentially starving) job gets at least 5% of

the CPU?

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.54

EXAMPLE

49 50

51 52

53 54

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/11/2024

L6.10Slides by Wes J. Lloyd

 Quest ion:

 Given a system with a quantum length of 10 ms fo r a l l jobs in its

highest queue, how often would you have to boost jobs back to the

highest priority level to guarantee that a single long -running (and

potent ially starving) job gets at least 5% of the CPU?

.

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.55

EXAMPLE

 Quest ion:

 Given a system with a quantum length of 10 ms fo r a l l jobs in its

highest queue, how often would you have to boost jobs back to the

highest priority level to guarantee that a single long -running (and

potent ially starving) job gets at least 5% of the CPU?

 Some combination of n short jobs runs for a total of 10 ms per

cycle without relinquishing the CPU

▪ E.g. 2 jobs = 5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs = 1 ms ea

▪ n jobs always uses full time quantum in highest queue (10 ms)

▪ Batch jobs starts, runs for full quantum of 10ms, pushed to lower queue

▪ All other jobs run and context switch totaling the quantum per cycle

▪ If 10ms is 5% of the CPU, when must the priority boost be ???

▪ ANSWER → Priority boost should occur every 200ms

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.56

EXAMPLE

 Questions from 4/11

 Assignment 0

 C Tutorial - Pointers, Strings, Exec in C

 Quiz 1 – Active Reading Chapter 9

 Chapter 7: Scheduling Introduction

 Chapter 8: Multi -level Feedback Queue

▪ MLFQ Scheduler

▪ Job Starvation

▪ Gaming the Scheduler

▪ Examples

 Chapter 9: Proportional Share Schedulers

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.57

OBJECTIVES – 4/11

CHAPTER 9 -

PROPORTIONAL SHARE

SCHEDULER

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L6.58

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.59

OBJECTIVES – 4/11

 Also called fair -share scheduler

 or lottery scheduler

▪ Guarantees each job receives some percentage of CPU

time based on share of “tickets”

▪ Each job receives an allotment of tickets

▪% of tickets corresponds to potential share of a resource

▪ Can conceptually schedule any resource this way

▪ CPU, disk I/O, memory

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.60

PROPORTIONAL SHARE SCHEDULER

55 56

57 58

59 60

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/11/2024

L6.11Slides by Wes J. Lloyd

 Simple implementation

▪ Just need a random number generator

▪ Picks the winning ticket

▪Maintain a data structure of jobs and tickets (list)

▪ Traverse list to find the owner of the ticket

▪ Consider sorting the list for speed

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.61

LOTTERY SCHEDULER

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.62

LOTTERY SCHEDULER IMPLEMENTATION

1 // counter: used to track if we’ve found the winner yet

2 int counter = 0;

3

4 // winner: use some call to a random number generator to

5 // get a value, between 0 and the total # of tickets

6 int winner = getrandom(0, totaltickets);

7

8 // current: use this to walk through the list of jobs

9 node_t *current = head;

10

11 // loop until the sum of ticket values is > the winner

12 while (current) {

13 counter = counter + current->tickets;

14 if (counter > winner)

15 break; // found the winner

16 current = current->next;

17 }

18 // ’current’ is the winner: schedule it...

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.63

OBJECTIVES – 4/11

 Ticket currency / exchange

▪ User allocates tickets in any desired way

▪ OS converts user currency into global currency

 Example:

▪ There are 200 global tickets assigned by the OS

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.64

TICKET MECHANISMS

 Ticket transfer

▪ Temporarily hand off tickets to another process

 Ticket inflation

▪ Process can temporarily raise or lower the number of

tickets it owns

▪ If a process needs more CPU time, it can boost tickets.

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.65

TICKET MECHANISMS - 2

 Scheduler picks a winning ticket

▪ Load the job with the winning ticket and run it

 Example:

▪ Given 100 tickets in the pool

▪ Job A has 75 tickets: 0 - 74

▪ Job B has 25 tickets: 75 – 99

 But what do we know about probability of a coin flip?

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.66

LOTTERY SCHEDULING

Scheduled job:

61 62

63 64

65 66

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/11/2024

L6.12Slides by Wes J. Lloyd

 Equality of distribution (fairness) requires a lot of flips!

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.67

COIN FLIPPING

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.68

LOTTERY FAIRNESS

 With two jobs

▪ Each with the same number of tickets (t=100)

When the job length is not very long,
average unfairness can be quite severe.

 What is the best approach to assign tickets to jobs?

▪ Typical approach is to assume users know best

▪ Users are provided with tickets, which they allocate as

desired

 How should the OS automatically distribute tickets upon

job arrival?

▪What do we know about incoming jobs a priori ?

▪ Ticket assignment is really an open problem…

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.69

LOTTERY SCHEDULING CHALLENGES

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.70

OBJECTIVES – 4/11

Addresses statistical probability issues with

lottery scheduling

 Instead of guessing a random number to select a

job, simply count…

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.71

STRIDE SCHEDULER

 Jobs have a “stride” value

▪ A stride value describes the counter pace when the job should

give up the CPU

▪ Stride value is inverse in proportion to the job’s number of

tickets (more tickets = smaller stride)

 Total system tickets = 10,000

▪ Job A has 100 tickets → Astride = 10000/100 = 100 stride

▪ Job B has 50 tickets → Bstride = 10000/50 = 200 stride

▪ Job C has 250 tickets → Cstride = 10000/250 = 40 stride

 Stride scheduler tracks “pass” values for each job (A, B, C)

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.72

STRIDE SCHEDULER - 2

67 68

69 70

71 72

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/11/2024

L6.13Slides by Wes J. Lloyd

 Basic algorithm:

1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and

starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a

new job (go to 1)

 KEY: When the counter reaches a job’s “PASS” value,

the scheduler passes on to the next job…

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.73

STRIDE SCHEDULER - 3

Stride values

▪Tickets = priority to select job

▪Stride is inverse to tickets

▪Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.74

STRIDE SCHEDULER - EXAMPLE

 Three-way tie: randomly pick job A (all pass values=0)

 Set A’s pass value to A’s stride = 100

 Increment counter until > 100

 Pick a new job: two-way tie

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.75

STRIDE SCHEDULER EXAMPLE - 2

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and receives a lot of
opportunities to run…

Initial job selection
is random. All @ 0

 We set A’s counter (pass value) to A’s stride = 100

 Next scheduling decision between B (pass=0) and C (pass=0)

▪ Randomly choose B

 C has the lowest counter for next 3 rounds

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.76

STRIDE SCHEDULER EXAMPLE - 3

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and is selected to run
more often …

 Job counters support determining which job to run next

 Over time jobs are scheduled to run based on their

priority represented as their share of t ickets…

 Tickets are analogous to job pr iority

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.77

STRIDE SCHEDULER EXAMPLE - 4

Tickets
C = 250
A = 100
B = 50

 Chapter 9: Proportional Share Schedulers

▪ Lottery scheduler

▪ Ticket mechanisms

▪ Stride scheduler

▪ Linux Completely Fair Scheduler

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.78

OBJECTIVES – 4/11

73 74

75 76

77 78

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/11/2024

L6.14Slides by Wes J. Lloyd

 Large Google datacenter study:

“Profiling a Warehouse -scale Computer” (Kanev et al.)

 Monitored 20,000 servers over 3 years

 Found 20% of CPU time spent in the Linux kernel

 5% of CPU time spent

in the CPU scheduler!

 Study highlights

importance for

high performance

OS kernels and

CPU schedulers !

S e e : h t t p s : / / d l . a c m . o r g / d o i / p d f / 1 0 . 1 1 4 5 / 2 7 4 9 4 6 9 . 2 7 5 0 3 9 2

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.79

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi -Tasking System

▪ In perfect system every process of the same priority (class)

receive exactly 1/n th of the CPU time

 Each scheduling class has a runqueue

▪ Groups process of same class

▪ In class, scheduler picks task w/ lowest vruntime to run

▪ Time slice varies based on how many jobs in shared runqueue

▪ Minimum time slice prevents too many context switches

(e.g. 3 ms)

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.80

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Every thread/process has a scheduling class (policy):

 Normal classes: SCHED_OTHER (TS), SCHED_IDLE,

SCHED_BATCH

▪ TS = Time Sharing

 Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

 How to show scheduling class and priority:

 #class

ps –elfc

 #priority (nice value)

ps ax -o pid,ni,cls,pri,cmd

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.81

COMPLETELY FAIR SCHEDULER - 2

 Linux ≥ 2.6.23: Completely Fair Scheduler (CFS)

 Linux < 2.6.23: O(1) scheduler

 Linux maintains simple counter (vruntime) to track how long

each thread/process has run

 CFS picks process with lowest vruntime to run next

 CFS adjusts timeslice based on # of proc waiting for the CPU

 Kernel parameters that specify CFS behavior:

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.82

COMPLETELY FAIR SCHEDULER - 3

$ sudo sysctl kernel.sched_latency_ns

kernel.sched_latency_ns = 24000000

$ sudo sysctl kernel.sched_min_granularity_ns

kernel.sched_min_granularity_ns = 3000000

$ sudo sysctl kernel.sched_wakeup_granularity_ns

kernel.sched_wakeup_granularity_ns = 4000000

 Sched_min_granularity_ns (3ms)

▪ Time slice for a process: busy system (w/ full runqueue)

▪ If system has idle capacity, time slice exceed the min as long as

difference in vruntime between running process and process with

lowest vruntime is less than sched_wakeup_granularity_ns

(4ms)

 Scheduling t ime period is: total cycle t ime for iterat ing through a

set of processes where each is allowed to run

(l ike round robin)

 Example:

sched_latency_ns (24ms)

i f (proc in runqueue < sched_latency_ns/sched_min_granularity)

or

sched_min_granularity * number of processes in runqueue

R e f : h t t p s : / /w ww. sy s t u t or i a l s . c om /s c h e d_ m i n _ g r a n u l a r i t y_ n s - s c h ed _ l a t e nc y _ n s - c f s - a f f ec t - t i me s l i c e - p r o c es s es /

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.83

COMPLETELY FAIR SCHEDULER - 4

 HIGH sched_min_granularity_ns (timeslice)

 sched_latency_ns

 sched_wakeup_granularity_ns

reduced context switching → less overhead

poor near-term fairness

 LOW sched_min_granularity_ns (timeslice)

 sched_latency_ns

 sched_wakreup_granularity_ns

increased context switching → more overhead

better near-term fairness

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.84

CFS TRADEOFF

79 80

81 82

83 84

https://dl.acm.org/doi/pdf/10.1145/2749469.2750392
https://www.systutorials.com/sched_min_granularity_ns-sched_latency_ns-cfs-affect-timeslice-processes/

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/11/2024

L6.15Slides by Wes J. Lloyd

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.85

COMPLETELY FAIR SCHEDULER - 5

 Runqueues are stored using a linux red-black tree

▪ Self balancing binary tree - nodes indexed by vruntime

 Leftmost node has lowest
vruntime (approx execution time)

 Walking tree to find left

most node has very low

big O complexity:
~O(log N) for N nodes

 Completed

processes removed

 Time slice: Linux “Nice value”

▪ Nice predates the CFS scheduler

▪ Top shows nice values

▪ Process command (nice & priority):
ps ax -o pid,ni,cmd,%cpu, pri

 Nice Values: from -20 to 19

▪ Lower is higher priority, default is 0

▪ Vruntime is a weighted time measurement

▪ Priority weights the calculation of vruntime within a

runqueue to give high priority jobs a boost.

▪ Influences job’s position in rb-tree

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.86

CFS: JOB PRIORITY

 CFS tracks cumulative job run time in vruntime variable

 The task on a given runqueue with the lowest vruntime is
scheduled next

 struct sched_entity contains vruntime parameter

▪ Describes process execution time in nanoseconds

▪ Value is not pure runtime, is weighted based on job priority

▪ Perfect scheduler →
achieve equal vruntime for all processes of same priority

 Sleeping jobs: upon return reset vruntime to lowest value in
system

▪ Jobs with frequent short sleep SUFFER !!

 Key takeaway:
identifying the next job to schedule is really fast!

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.87

COMPLETELY FAIR SCHEDULER - 6

 More information:

 Man page: “man sched” : Describes Linux scheduling API

 http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

 https://www.kernel.org/doc/Documentation/scheduler/sched -

design-CFS.txt

 https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

 See paper: The Linux Scheduler – a Decade of Wasted Cores

 http://www.ece.ubc.ca/~sasha/papers/eurosys16 -final29.pdf

April 11, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L6.88

COMPLETELY FAIR SCHEDULER - 7

QUESTIONS

85 86

87 88

89

http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://en.wikipedia.org/wiki/Completely_Fair_Scheduler
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

	Slide 1: TCSS 422: Operating Systems
	Slide 2: Text book coupon
	Slide 3: Tcss 422 – office hrs – spring 2024
	Slide 4: TCSS 422 Discord server
	Slide 5: Industry guest speaker red hat linux (IBM) April 20
	Slide 6: OBJECTIVES – 4/11
	Slide 7: Online daily feedback survey
	Slide 8
	Slide 9: Material / pace
	Slide 10: Feedback from 4/9
	Slide 11: Feedback - 2
	Slide 12: Feedback - 3
	Slide 13: OBJECTIVES – 4/11
	Slide 14: OBJECTIVES – 4/11
	Slide 15: OBJECTIVES – 4/11
	Slide 16: OBJECTIVES – 4/11
	Slide 17: Chapter 7-Scheduling: introduction
	Slide 18: Chapter 7
	Slide 19: Scheduling with i/o
	Slide 20: Scheduling with i/o - 2
	Slide 21
	Slide 22: QUESTION: scheduling fairness
	Slide 23: Scheduling metrics
	Slide 24
	Slide 25
	Slide 26: Scheduling metrics
	Slide 27
	Slide 28
	Slide 29: OBJECTIVES – 4/11
	Slide 30: Chapter 8 – Multi-Level Feedback QUEUE (mlfq) SCHEDULER
	Slide 31: Multi-level feedback queue
	Slide 32: Mlfq - 2
	Slide 33: Mlfq: determining job priority
	Slide 34: MLFQ: long running job
	Slide 35: MLFQ: Batch and interactive jobs
	Slide 36: Mlfq: batch and interactive - 2
	Slide 37: We will return at 4:55pm
	Slide 38: OBJECTIVES – 4/11
	Slide 39: MLFQ: issues
	Slide 40: OBJECTIVES – 4/11
	Slide 41: Mlfq: issues - 2
	Slide 42: Responding to behavior change
	Slide 43: Responding to behavior change - 2
	Slide 44: Key to understanding MLFQ – PB
	Slide 45: Starvation example
	Slide 46: Preventing gaming
	Slide 47: MLFQ: TUNING
	Slide 48: Practical example
	Slide 49: Mlfq rule summary
	Slide 50: OBJECTIVES – 4/11
	Slide 51
	Slide 52
	Slide 53
	Slide 54: example
	Slide 55: example
	Slide 56: example
	Slide 57: OBJECTIVES – 4/11
	Slide 58: Chapter 9 -Proportional Share Scheduler
	Slide 59: OBJECTIVES – 4/11
	Slide 60: Proportional share scheduler
	Slide 61: Lottery scheduler
	Slide 62: Lottery scheduler implementation
	Slide 63: OBJECTIVES – 4/11
	Slide 64: Ticket mechanisms
	Slide 65: Ticket mechanisms - 2
	Slide 66: Lottery scheduling
	Slide 67: Coin flipping
	Slide 68: Lottery fairness
	Slide 69: Lottery scheduling challenges
	Slide 70: OBJECTIVES – 4/11
	Slide 71: Stride scheduler
	Slide 72: Stride scheduler - 2
	Slide 73: Stride scheduler - 3
	Slide 74: Stride scheduler - example
	Slide 75: Stride scheduler example - 2
	Slide 76: Stride scheduler example - 3
	Slide 77: Stride scheduler example - 4
	Slide 78: OBJECTIVES – 4/11
	Slide 79: Linux: completely fair scheduler (CFS)
	Slide 80: Linux: Completely fair scheduler (CFS)
	Slide 81: Completely fair scheduler - 2
	Slide 82: Completely fair scheduler - 3
	Slide 83: Completely fair scheduler - 4
	Slide 84: Cfs TRADEOFF
	Slide 85: Completely fair scheduler - 5
	Slide 86: CFS: job priority
	Slide 87: Completely fair scheduler - 6
	Slide 88: Completely fair scheduler - 7
	Slide 89: Questions

