TCSS 422 A — Winter 2026 1/20/2026
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

The Process APl &
Limited Direct Execution

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2026]

Lantany202026 School of Engineering and Technology, University of Washington jll Tacoma

OBJECTIVES - 1/20

| ® Questions from 1/15 |

= C Review Survey - Closed Jan 17 AOE
m Assignment O - Update
® Chapter 5: Process API
= fork(), wait(), exec()
® Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

TCSS422: Operating Systems [Winter 2026] 4.2
School of Engineering and Technology, University of Washington - Tacoma)

January 20, 2026

Slides by Wes J. Lloyd L4.1

TCSS 422 A — Winter 2026 1/20/2026
School of Engineering and Technology

TEXT BOOK COUPON

= 15% off textbook code: AAC72SAVE15

= https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-
arpaci-dusseau/operating-systems-three-easy-pieces-
hardcover-version-110/hardcover/product-
15gjeeky.html?q=three+easy+pieces+operating+systems&pag
e=1&pageSize=4

= With coupon textbook is only $33.79 + tax & shipping

TCSS422: Operating Systems [Winter 2026]
L4.
January|20,2026 School of Engineering and Technology, University of Washington - Tacoma 3

TCSS 422 - OFFICE HRS - WINTER 2026

= Office Hours plan for Winter:

= Tuesday 2:30 - 3:30 pm Instructor Wes, Zoom

® Tue/Thur 6:00 - 7:00 pm Instructor Wes, CP 229/Zoom
® Tue 6:00 - 7:00 pm GTA Robert, Zoom/Room TBA

= Wed 1:00 - 2:00 pm GTA Robert, Zoom/Room TBA

® [nstructor is available after class at 6pm in CP 229
each day

TCSS422: Operating Systems [Winter 2026]
Lantaivi202026 School of Engineering and Technology, University of Washington - Tacoma La4

Slides by Wes J. Lloyd L4.2

https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4

TCSS 422 A — Winter 2026 1/20/2026

School of Engineering and Technology

TCSS 422 DISCORD SERVER

= Please join the TCSS 422 A - Winter 2026 Discord Server

m https://discord.gg/rR2yUDhgmq

= Under Edit Server Profile:
Please update your ‘Server Nickname’
to your real name or UW NET ID
THANK YOU

Deafen

Edit Server Profile

TCSS422: Operating Systems [Winter 2026]
L4.
January|20,2026 School of Engineering and Technology, University of Washington - Tacoma s

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
® Tuesday surveys: due by ~ Wed @ 11:59p

= Thursday surveys: due ~ Mon @ 11:59p
— TC55422 A » Assignments

Spring 2021
Home

Announcements
* Upcoming Assignments

Zoom
Syllabus «» TCSS 422 - Online Daily Feedback Survey - 4/1
b Available until Apr 5 at 11:59pm | Due Apr 5 at 10pm | -/1pts
Dicruccinng P Y S WO o S0 | [e
TCSS422: Computer Operating Systems [Spring 2025] | 146 |

Lantaivi202026 School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L4.3

https://discord.gg/rR2yUDhgmq
https://discord.gg/rR2yUDhgmq

TCSS 422 A — Winter 2026 1/20/2026
School of Engineering and Technology

TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions

[C | Question1 0.5 pts

On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:

el 2 3 4 5 6 7 9 10
Mostly Equal Mostly
Review To Me New and Review New to Me

O Question 2 0.5 pts

Please rate the pace of today’s class:

1 2 3 4 5 6 7 8 9 160

Slow Just Right Fast

TCSS422: Computer Operating Systems [Spring 2025]

gantavi2tan2e School of Engineering and Technology, University of Washington - Tacoma La.7

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class

= 41 of 46 respondents - 89.13%!!

= 30 in-person, 11 online
= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.54 (T - previous 6.34)

= Please rate the pace of today’s class:
® 1-slow, 5-just right, 10-fast
= Average - 4.73 ({ - previous 5.13)

TCSS422: Computer Operating Systems [Spring 2025] | 148 |

Lantaivi202026 School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L4.4

TCSS 422 A — Winter 2026
School of Engineering and Technology

FEEDBACK FROM 1/15

= How does “2>&1” work? - redirection of stderr

®m Each process in Linux has 3 files:

= filehandle=0 for standard input (stdin)

= filehandle=1 for standard output (stdout)

= filehandle=2 for standard error (stderr)

= redirect stdin with “<*“

= redirect stdout with “>”

= redirect stderrr with “2>”

m &0 refers to stdin, &1 refers to stdout, &2 refers to stderr

./a0.sh >output.txt 2>output.err
./a0.sh >output.txt 2>&l

TCSS422: Operating Systems [Winter 2026]
L4.
January|20,2026 School of Engineering and Technology, University of Washington - Tacoma 9

FEEDBACK - 2

" time command - creates a separate process which times the
“internal” child command
= time command writes time output to /dev/stderr

= Confusion: time does not write output to internal command’s
stderr stream
time ./test4 >/dev/null 2>&l
= Timing results still go to console because test4’s stderr was
redirect to /dev/null, not the time command’s output

{ time ./test4; } 2>/dev/null

= To hide the timing output, we need to isolate the time
command with {}'s, to redirect time’s stderr to /dev/null

TCSS422: Operating Systems [Winter 2026]
Lantaivi202026 School of Engineering and Technology, University of Washington - Tacoma

L4.10

10

Slides by Wes J. Lloyd

1/20/2026

L4.5

TCSS 422 A — Winter 2026
School of Engineering and Technology

FEEDBACK - 3

= Besides C programs, do programs in other languages like C++
and Java also have a stdin, stdout, and stderr in Linux?

= YES

= |In operating systems, what defines fair CPU sharing?

= Processes with the same priority-level will receive roughly an
equal share of time to run on the CPU (called ‘CPU timeshare’)

= Are page faults part of the mechanisms used for lazy-loading?
= A page fault occurs when a memory page (e.g. 4k) is needed,
but it is not present in the physical RAM

= This could be caused by lazy-loading, because the OS initially loaded
only the few pages that were required to run a program

TCSS422: Operating Systems [Winter 2026]

January|20,2026 School of Engineering and Technology, University of Washington - Tacoma

L4.11

11

OBJECTIVES - 1/20

® Questions from 1/15

|- C Review Survey - Closed Jan 17 AOE |

m Assignment O - Update
® Chapter 5: Process API
= fork(), wait(), exec()
® Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

TCSS422: Operating Systems [Winter 2026]

Lantaivi202026 School of Engineering and Technology, University of Washington - Tacoma

L4.12

12

Slides by Wes J. Lloyd

1/20/2026

L4.6

TCSS 422 A — Winter 2026
School of Engineering and Technology

OBJECTIVES - 1/20

® Questions from 1/15
® C Review Survey - Closed Jan 17 AOE
| = Assignment O - Update |
® Chapter 4: Linux process data structure - task_struct
® Chapter 5: Process API
= fork(), wait(), exec()
® Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

TCSS422: Operating Systems [Winter 2026]

L4.1
School of Engineering and Technology, University of Washington - Tacoma 3

January 20, 2026

13

ASSIGNMENT O

® In the homework, it specifies to use “non-interactive”
commands. What does this mean exactly?

® An non-interactive command does not require any input
from the user (i.e. from the keyboard)

= Non-interactive commands and scripts can run entirely on
their own without intervention

B These commands are considered “headless” in
that they don’t feature a USER INTERFACE,
either a GUI, or TUI

= What is a TUI?

= *Text-based User Interface
TUl is also a bird >

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma L4-14

January 20, 2026

14

Slides by Wes J. Lloyd

1/20/2026

L4.7

TCSS 422 A — Winter 2026 1/20/2026
School of Engineering and Technology

TCSS 422 - SET VMS

® Request submitted for School of Engineering and Technology
hosted Ubuntu 24.04 VMs for TCSS 422 - Winter 2026

TCSS422: Operating Systems [Winter 2026]

January|20,2026 School of Engineering and Technology, University of Washington - Tacoma

L4.15

15

FINISH CHAPTER 4

®m Switch to Lecture 3 Slides
® Slides L3.37 to L3.48

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma 1416

January 20, 2026

16

Slides by Wes J. Lloyd L4.8

TCSS 422 A — Winter 2026
School of Engineering and Technology

CHAPTER 5:
C PROCESS API

TCSS422: Operating Systems [Winter 2026]

fantang2aa02e School of Engineering and Technology, University of Washington -

OBJECTIVES - 1/20

® Questions from 1/15
® C Review Survey - Closed Jan 17 AOE
= Assignment O - Update
® Chapter 5: Process API
wait(), exec()
® Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking

- = = a a
TCSS422: Operating Systems [Winter 2026]
Lantaivi202026 School of Engineering and Technology, University of Washington - Tacoma

18

Slides by Wes J. Lloyd

1/20/2026

L4.9

TCSS 422 A — Winter 2026
School of Engineering and Technology

fork()

m Creates a new process - think of “a fork in the road”
= “Parent” process is the original
® Creates “child” process of the program from the current
execution point
= Book says “pretty odd”
= Creates a duplicate program instance (these are processes!)
= Copy of
= Address space (memory)
= Register
= Program Counter (PC)
= Fork returns
= child PID to parent
= 0 to child

January 20, 2026 TCSS422: Operating Systems [Winter 2026]

L4.1!
School of Engineering and Technology, University of Washington - Tacoma 9

19

FORK EXAMPLE

= pl.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]) {
printf ("hello world (pid:%d)\n", (int) getpid());

- int rc = fork();
if (rc < 0)

{ // fork failed; exit
fprintf (stderr, "fork failed\n");
exit (1) ;
} else if (rc == 0) { // child (ne 5)
printf("hello, I am child (pid:%d)\n", (int) getpid());
} else { // parent c down this path (main)

printf ("hello, I am parent of %d (pid:%d)\n",
rc, (int) getpid());

January 20, 2026 TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma 1420

20

Slides by Wes J. Lloyd

1/20/2026

L4.10

TCSS 422 A — Winter 2026

School of Engineering and Technology

FORK EXAMPLE - 2

= Non deterministic ordering of execution

prompt> ./pl
hello world (pid:29146)
hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)
prompt>
or
prompt> ./pl
hello world (pid:29146)
hello, I am child (pid:29147)
hello, I am parent of 29147 (pid:29146)
prompt>

® CPU scheduler determines which to run first

January 20, 2026

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma

L4.21

21

January 20, 2026

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma

L4.22

22

Slides by Wes J. Lloyd

1/20/2026

L4.11

TCSS 422 A — Winter 2026

1/20/2026
School of Engineering and Technology

CLASS BREAK - QUESTION

= What is bootstrapping?

® ‘bootstrapping’ refers to initialization steps and start-up
activities to get a program or system up and ready to run

= For operating systems, bootstrapping is referred to as
‘booting’

® For a Linux OS, bootstrapping is the loading of the Linux
kernel (at /boot/vmlinuz), and all associated start-up
activities like launching the init process (PID 1), etc.

= Can you find the size of your Linux kernel in MB ?

January 20, 2026 TCSS422: Operating Systems [Winter 2026]

L4.2.
School of Engineering and Technology, University of Washington - Tacoma 4.23

23

TCSS422: Operating Systems [Winter 2026]
Eantavi2ian2e School of Engineering and Technology, University of Washington -

24

Slides by Wes J. Lloyd L4.12

TCSS 422 A — Winter 2026
School of Engineering and Technology

- f a a a
TCSS422: Operating Systems [Winter 2026]
January|20,2026 School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 1/20

® Questions from 1/15
® C Review Survey - Closed Jan 17 AOE
m Assignment O - Update
® Chapter 5: Process API
= fork(),| wait(), lexec()
® Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking

25

= wait(), waitpid()

= Called by parent process

= Waits for a child process to finish executing

= Not a sleep() function

= Provides some ordering to multi-process execution

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.26

January 20, 2026

26

Slides by Wes J. Lloyd

1/20/2026

L4.13

TCSS 422 A — Winter 2026
School of Engineering and Technology

FORK WITH WAIT

} else

rc,

eturn

printf("hello, I am child (pid:%d)\n

- int we = wait (NULL);

printf ("hello, I am parent of %d (wc:%d) (pid:%d)\n",

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int main(int argc, char *argv([]) {
printf ("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit
fprintf (stderr, "fork failed\n");
exit (1) ;
}] (rc == 0) { // child (new €

/ parent g

down this path (main)

wc, (int) getpid());

0;

(int) getpid());

January 20, 2026

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.27

27

FORK WITH WAIT - 2

= Deterministic ordering of execution

prompt> ./p2
hello world

prompt>

(pid:29266)

hello, I am child (pid:29267)
hello, I am parent of 29267 (wc:29267) (pid:29266)

January 20, 2026

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.28

28

Slides by Wes J. Lloyd

1/20/2026

L4.14

TCSS 422 A — Winter 2026
School of Engineering and Technology

® Linux example

FORK EXAMPLE

January 20, 2026

TCSS422: Operating Systems [Winter 2026]

L4.2!
School of Engineering and Technology, University of Washington - Tacoma 9

29

= CPU modes
= System calls

- q
January 20, 2026

OBJECTIVES - 1/20

® Questions from 1/15
® C Review Survey - Closed Jan 17 AOE
= Assignment O - Update
® Chapter 5: Process API
= fork(), wait()
® Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution

and traps

= Cooperative multi-tasking

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

30

Slides by Wes J. Lloyd

1/20/2026

L4.15

TCSS 422 A — Winter 2026
School of Engineering and Technology

exec()) ¢

® Supports running an external program by “transferring control”

= 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

= execl(), execlp(), execle(): const char *arg (example: execl.c)

Provide cmmd and args as individual params to the function
Each arg is a pointer to a null-terminated string
ODD: pass a variable number of args: (arg0, argl, .. argn)

= execv(), execvp(), execvpe() (example: exec.c)

Provide cmd and args as an Array of pointers to strings

Strings are null-terminated
First argument is name of command being executed
Fixed number of args passed in

TCSS422: Operating Systems [Winter 2026]

January|20,2026 School of Engineering and Technology, University of Washington - Tacoma

L4.31

31

EXEC EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/wait.h>

int main(int argc, char *argv([]) {
printf ("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit
fprintf (stderr, "fork failed\n");
exit (1) ;
} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());
‘ char *myargs[3];
myargs[0] = strdup("wc");
myargs[1]
myargs [2]

strdup ("p3.c");
NULL;

TCSS422: Operating Systems [Winter 2026]

Lantaivi202026 School of Engineering and Technology, University of Washington - Tacoma

L4.32

32

Slides by Wes J. Lloyd

1/20/2026

L4.16

TCSS 422 A — Winter 2026
School of Engineering and Technology

EXEC EXAMPLE - 2

} else {
int we =

execvp (myargs[0], myargs); // runs
printf ("this shouldn’t print out");

/ dlown this

parent gc

wait (NULL) ;

printf ("hello, I am parent of %d (wc:%d) (pid:%d)\n"
rc, wc, (int) getpid());

(mai

)

prompt> ./p3
hello world (pid

29 107 1030 p3.c

:29383)
hello, I am child (pid:29384)

hello, I am parent of 29384 (wc:29384) (pid:29383)

prompt>

January 20, 2026

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.33

33

= Example:

#include
#include
#include
#include
#include
#include

int
main (int
int

i

}oel

=

<stdio.h>
<stdlib.h>
<unistd.h>
<string.h>
<fcntl.h>
<sys/wait.h>

argc, char *argv([]) {

rc = fork();

rc < 0) { // fork failed; exit
fprintf (stderr, "fork failed\n")

exit (1) ;

se if (rc == 0) {
close (STDOUT_FILENO) ;

open ("./p4.output"”, O CREAT|O_WRONLY|O TRUNC, S IRWXU);

child: redirect standard output

EXEC WITH FILE REDIRECTION (OUTPUT)

https://faculty.washington.edu/wlloyd/courses/tcss422/examples/exec2.c

| January 20, 2026

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.34

34

Slides by Wes J. Lloyd

1/20/2026

L4.17

TCSS 422 A — Winter 2026

School of Engineering and Technology

FILE MODE BITS

‘ S_IRWXU
read, write, execute/search by owner
S_IRUSR
read permission, owner
S_IWUSR
write permission, owner
S_IXUSR
execute/search permission, owner
S_IRWXG
read, write, execute/search by group
S_IRGRP
read permission, group
S_IWGRP
write permission, group
S_IXGRP
execute/search permission, group
S_IRWXO
read, write, execute/search by others
S_IROTH
read permission, others
S_IWOTH
write permission, others

January 20, 2026

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma

L4.35

35

W exec wWC ...
char *myargs[3];

myargs[0] = strdup("wc");
myargs[1] = strdup("p4.c");
myargs[2] = NULL;

execvp (myargs[0], myargs);

} else {
int wc = wait (NULL);
}

return 0;

prompt> ./p4

prompt> cat p4.output
32 109 846 p4d.c
prompt>

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

January 20, 2026

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma

L4.36

36

Slides by Wes J. Lloyd

1/20/2026

L4.18

TCSS 422 A — Winter 2026
School of Engineering and Technology

BLOCKING API CALL

= Blocking API calls transfer control of the CPU to a kernel
thread and force the user process from RUNNING to BLOCKED
to wait for a response/outcome

= What blocking APls

have we identified Descheduled

Ready
9
thus far ? Scheduled

= Does making a blocking o \ /
API call create a voluntary VO:initiate |/O: done

or non-voluntary context
switch ? Blocked

TCSS422: Operating Systems [Winter 2026]

January|20,2026 School of Engineering and Technology, University of Washington - Tacoma

L4.37

37

38

0 < Activities €3 visual settings {8 Edit < >

£
»

(5
e ‘When pall is active respond »t - PellEV.comiweslioyd Send weslloyd o 22333

Which Process APl call is used to launch a different program from the
current program?

Current responses]

Slides by Wes J. Lloyd

1/20/2026

L4.19

TCSS 422 A — Winter 2026
School of Engineering and Technology

QUESTION: PROCESS API

® Which Process API call is used to launch a different

program from the current program?

® (a) Fork()

= (b) Exec()

E (¢) Wait()

= (d) None of the above
m (e) All of the above

January 20, 2026 TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma

L4.39

39

OBJECTIVES - 1/20

® Questions from 1/15
® C Review Survey - Closed Jan 17 AOE
= Assignment O - Update
® Chapter 5: Process API
= fork(), wait(), exec()
| = Chapter 6: Limited Direct Execution |
= Direct execution

= Limited direct execution

= CPU modes

= System calls and traps

= Cooperative multi-tasking

- = = a a
TCSS422: Operating Systems [Winter 2026]
Lantaivi202026 School of Engineering and Technology, University of Washington - Tacoma

40

Slides by Wes J. Lloyd

1/20/2026

L4.20

TCSS 422 A — Winter 2026
School of Engineering and Technology

CH. 6:
LIMITED DIRECT
EXECUTION

TCSS422: Operating Systems [Winter 2026]

fantang2aa02e School of Engineering and Technology, University of Washington -

OBJECTIVES - 1/20

® Questions from 1/15
= C Review Survey - Closed Jan 17 AOE
m Assignment O - Update
= Chapter 5: Process API
= fork(), wait(), exec()
® Chapter 6: Limited Direct Execution
| = Direct execution |
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

TCSS422: Operating Systems [Winter 2026]

Lantaivi202026 School of Engineering and Technology, University of Washington - Tacoma

L4.42

42

Slides by Wes J. Lloyd

1/20/2026

L4.21

TCSS 422 A — Winter 2026
School of Engineering and Technology

VIRTUALIZING THE CPU

® How does the CPU support running so many jobs
simultaneously?

= Time Sharing

® Tradeoffs:

= Performance
Excessive overhead
= Control
Fairness
Security

® Both HW and OS support
is used

TCSS422: Operating Systems [Winter 2026]

January|20,2026 School of Engineering and Technology, University of Washington - Tacoma

L4.43

43

COMPUTER BOOT SEQUENCE:

OS WITH DIRECT EXECUTION

= What if programs could directly control the CPU / system?

(O Program

1. Create entry for process list
2. Allocate memory for
program

3. Load program into memory
4. Set up stack with argc /

argv
5. Clear registers 7. Run main ()
6. Execute call main () 8. Execute return from main ()

9. Free memory of process
10. Remove from process list

TCSS422: Operating Systems [Winter 2026]

Lantaivi202026 School of Engineering and Technology, University of Washington - Tacoma

L4.44

44

Slides by Wes J. Lloyd

1/20/2026

L4.22

TCSS 422 A — Winter 2026
School of Engineering and Technology

COMPUTER BOOT SEQUENCE:

OS WITH DIRECT EXECUTION

= What if programs could directly control the CPU / system?

oS Program

1. Create entry for process list
2. Allocate memory for

Without /imits on running programs,

the OS wouldn't be in control of anything
and would

5. Clear registers 7. Run main ()
6. Execute call main () 8. Execute return from main ()

9. Free memory of process
10. Remove from process list

TCSS422: Operating Systems [Winter 2026]

L4.4
School of Engineering and Technology, University of Washington - Tacoma 5

January 20, 2026

45

DIRECT EXECUTION - 2

= With direct execution:

How does the OS stop a program from running, and switch
to another to support time sharing?

How do programs share disks and perform 1/0 if they are
given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures
such as linked lists grow over time?

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

January 20, 2026 L4.46

46

Slides by Wes J. Lloyd

1/20/2026

L4.23

TCSS 422 A — Winter 2026
School of Engineering and Technology

CONTROL TRADEOFF

= Too little control:
= No security
= No time sharing

® Too much control:
= Too much OS overhead

= Poor performance for compute & I/0
= Complex APIs (system calls), difficult to use

TCSS422: Operating Systems [Winter 2026]

January|20,2026 School of Engineering and Technology, University of Washington - Tacoma

L4.47

47

CONTEXT SWITCHING OVERHEAD

Context Switching Total cost of

context switching

Multitasking

A
= . .

vs. Multitasking with context switching

Sequential

Overhead -

Time

TCSS422: Operating Systems [Winter 2026]

Lantaivi202026 School of Engineering and Technology, University of Washington - Tacoma

L4.48

48

Slides by Wes J. Lloyd

1/20/2026

L4.24

TCSS 422 A — Winter 2026
School of Engineering and Technology

OBJECTIVES - 1/20

® Questions from 1/15
® C Review Survey - Closed Jan 17 AOE
= Assignment O - Update
® Chapter 5: Process API
= fork(), wait(), exec()
® Chapter 6: Limited Direct Execution
= Direct execution
| = Limited direct execution |
= CPU modes
= System calls and traps

= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

TCSS422: Operating Systems [Winter 2026]

January|20,2026 School of Engineering and Technology, University of Washington - Tacoma

L4.49

49

LIMITED DIRECT EXECUTION X

® 0S implements LDE to support time/resource sharing

= Limited direct execution means “only limited” processes
can execute DIRECTLY on the CPU in trusted mode

® TRUSTED means the process is trusted, and it can do
anything... (e.g. it is a system / kernel level process)

® Enabled by protected (safe) control transfer
® CPU supported context switch

® Provides data isolation

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma 1450

January 20, 2026

50

Slides by Wes J. Lloyd

1/20/2026

L4.25

TCSS 422 A — Winter 2026 1/20/2026
School of Engineering and Technology

OBJECTIVES - 1/20

® Questions from 1/15
= C Review Survey - Closed Jan 17 AOE
m Assignment O - Update
® Chapter 5: Process API
= fork(), wait(), exec()
® Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
| = CPU modes |
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

| January 20, 2026 L4.51

51

CPU MODES

m Utilize CPU Privilege Rings (Intel x86)
= rings O (kernel), 1 (VM kernel), 2 (unused), 3 (user)
access €——————— DNO access

= User mode:
Application is running, but w/o direct I/0 access

= Kernel mode:
OS kernel is running performing restricted operations

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma L4-52

January 20, 2026

52

Slides by Wes J. Lloyd L4.26

TCSS 422 A — Winter 2026 1/20/2026
School of Engineering and Technology

CPU MODES

= User mode: ring 3 - untrusted
= Some instructions and registers are disabled by the CPU
= Exception registers
= HALT instruction
= MMU instructions

= 0S memory access
=|/0 device access

= Kernel mode: ring O — trusted
= All instructions and registers enabled

TCSS422: Operating Systems [Winter 2026]

L4.
School of Engineering and Technology, University of Washington - Tacoma 53

January 20, 2026

53

OBJECTIVES - 1/20

® Questions from 1/15
® C Review Survey - Closed Jan 17 AOE
® Assignment O - Update
® Chapter 5: Process API
= fork(), wait(), exec()
® Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
| = System calls and traps |
= Cooperative multi-tasking

= Context switching and preemptive multi-tasking

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.54

| January 20, 2026

54

Slides by Wes J. Lloyd L4.27

TCSS 422 A — Winter 2026 1/20/2026
School of Engineering and Technology

SYSTEM CALLS

® Implement restricted “OS” operations
= Kernel exposes key functions through an API:
= Device I/0 (e.g. file 1/0)
= Task swapping: context switching between processes
= Memory management/allocation: malloc()
= Creating/destroying processes

January 20, 2026 TCSS422: Operating Systems [Winter 2026]

L4.
School of Engineering and Technology, University of Washington - Tacoma 55

55

TRAPS:

SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Mainline Code

Interrupt Service Routine

Interrupt

Toop() { IBRC) [
= Trap: any transfer to kernel mode instruction 1 T
instruction 3 Instruction 3
instruction 4 I
- instruction 6
= Three kinds of traps o

= System call: (planned) user 2> kernel
SYSCALL for 1/0, etc.

= Exception: (error) user > kernel
Div by zero, page fault, page protection error

= Interrupt: (event) user > kernel
Non-maskable vs. maskable

Keyboard event, network packet arrival, timer ticks
Memory parity error (ECC), hard drive failure

TCSS422: Operating Systems [Winter 2026]
Lantaivi202026 School of Engineering and Technology, University of Washington - Tacoma

L4.56

56

Slides by Wes J. Lloyd L4.28

TCSS 422 A — Winter 2026
School of Engineering and Technology

EXCEPTION TYPES

Synchronousvs. Userrequestvs. Usermaskable vs. ‘Within vs. between
Resume vs. terminate|
asynchronous coerced nonmaskable Instructions
/0 device request Asynchronous Coerced Nonmaskable Between Resume
Invoke operating system Synchronous User request Nonmaskable Between Resume
racingInstruction execution Synchronous User request User maskable Between Resume
Breakpolnt Synchronous User request User maskable Between Resume
Integer arithmetic overflow Synchronous Coerced User maskable Within Resume
Raing pointathmetc oxericn) Synchronous Coerced User maskable Within Resume
or underflow
Page fault Synchronous Coerced Nonmaskable Within Resume
Misallgned memory accesses Synchronous Coerced User maskable Within Resume
Memory protection violation Synchronous Coerced Nonmaskable Within Resume
Using undefined Instruction Synchronous Coerced Nonmaskable Within Terminate
Hardware malfunction Asynchronous Coerced Nonmaskable Within Terminate
Power fallure Asynchronous Coerced Nonmaskable Within Terminate
s
TCSS422: Operating Systems [Winter 2026]
ni 20, 202 q 5 3 a q L4.57
| Lanlan2072026 School of Engineering and Technology, University of Washington - Tacoma
0S @ boot Hardware
(kernel mode)
q initialize trap table
remember address of ...
syscall handler
OS @ run Hardware Program
(kernel mode) (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup user stack with argv
Fill kernel stack with reg/PC
return-from -trap
restore regs from kernel stack
‘ move to user mode
jump to main .
Run main()
I Call system
trap into OS
save regs to kernel stack
move to kernel mode
jump to trap handler
Handle trap
q Do work of syscall
return-from-trap
restore regs from kernel stack
‘ move to user mode
jump to PC after trap
‘ return from main
trap (via exit ()
‘ Free memory of process
Remove from process list
TCSS422: Operating Systems [Winter 2026]
fanuanvj20;72026 School of Engineering and Technology, University of Washington - Tacoma L4.58

58

Slides by Wes J. Lloyd

1/20/2026

L4.29

TCSS 422 A — Winter 2026 1/20/2026
School of Engineering and Technology

0S @ boot Hardware
(kernel mode)

initialize trap table
remember address of ...
syscall handler

0S @ run Hardware Program
(kernel mode) (user mode)

Create entry for process list
Allocate memory for program
Load program into memory
Setup user stack with argv
_rne 3 with rea/p

Computer BOOT Sequence:

OS with Limited Direct Execution

move to kernel mode
jump to trap handler
Handle trap
Do work of syscall

return-from-tra
P restore regs from kernel stack

move to user mode
jump to PC after trap

return from main
trap (via exit())

‘ Free memory of process
Remove from process list
TCSS422: Operating Systems [Winter 2026]

gantavi2tan2e School of Engineering and Technology, University of Washington - Tacoma L4.59

59

OBJECTIVES - 1/20

® Questions from 1/15
® C Review Survey - Closed Jan 17 AOE
® Assignment O - Update
® Chapter 5: Process API
= fork(), wait(), exec()
® Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
| = Cooperative multi-tasking |

= Context switching and preemptive multi-tasking

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

| January 20, 2026 L4.60

60

Slides by Wes J. Lloyd L4.30

TCSS 422 A — Winter 2026
School of Engineering and Technology

MULTITASKING

= How/when should the OS regain control of the CPU to
switch between processes?

= Cooperative multitasking (mostly pre 32-bit)
= < Windows 95, Mac 0SX
= Opportunistic: running programs must give up control
User programs must call a special yield system call

When performing 1/0
lllegal operations

= (POLLEV)
What problems could you for see with this approach?

TCSS422: Operating Systems [Winter 2026]
January|20,2026 School of Engineering and Technology, University of Washington - Tacoma

L4.61

61

MULTITASKING

® How/when should the OS regain control of the CPU to
switch between processes?

= Coopas

lllegal operations

= (POLLEV)
What problems could you for see with this approach?

TCSS422: Operating Systems [Winter 2026]
Lantaivi202026 School of Engineering and Technology, University of Washington - Tacoma

L4.62

62

Slides by Wes J. Lloyd

1/20/2026

L4.31

TCSS 422 A — Winter 2026 1/20/2026
School of Engineering and Technology

Q < Activities 5 Moderate € visual settings £} Edit < b3
5ol *
When poll is active respond at PollEv.com/weslloyd Send weslloyd and your message to 22333
L >
What problems exist for regaining control of the <0
CPU with cooperative multitasking OSes?
Join by QR code
Join by Web Loading... Scan with your camera app
PollEv.com/weslloyd
Join by Text
Send weslloyd and your message to
22333
Current responses 3
63

QUESTION: MULTITASKING

= What problems exist for regaining the control of
the CPU with cooperative multitasking OSes?

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.64

January 20, 2026

64

Slides by Wes J. Lloyd L4.32

TCSS 422 A — Winter 2026
School of Engineering and Technology

MULTITASKING - 2

= Preemptive multitasking (32 & 64 bit OSes)
m >= Mac 0SX, Windows 95+

®ETimer interrupt
= Raised at some regular interval (in ms)
= Interrupt handling
Current program is halted
Program states are saved
0OS Interrupt handler is run (kernel mode)

= (PollEV) What is a good interval for the timer interrupt?

TCSS422: Operating Systems [Winter 2026]

January|20,2026 School of Engineering and Technology, University of Washington - Tacoma

L4.65

65

MULTITASKING - 2

® Preemptive multitasking (32 & 64 bit OSes)
®>= Mac 0OSX, Windows 95+

gives OS the ability to

run again on a CPU.

Current program is halted
Program states are saved
OS Interrupt handler is run (kernel mode)

= (PollEV) What is a good interval for the timer interrupt?

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma La.66

January 20, 2026

66

Slides by Wes J. Lloyd

1/20/2026

L4.33

TCSS 422 A — Winter 2026 1/20/2026

School of Engineering and Technology

O < Activities £ Moderate %) visual settings £ Edit < >

ol

B

When poll is active respond at PollEv.com/weslloyd Send weslloyd and your message to 22333

For an OS that uses a system timer to force

arbitrary context switches to share the CPU, <0
what is a good value (in seconds) for the timer

interrupt?

Join by QR code
B Loading -
Join by Web Scan with your camera app

PollEv.com/weslloyd

Join by Text

Send weslloyd and your message to
22333

Current responses
67

QUESTION: TIME SLICE

®For an OS that uses a system timer to force
arbitrary context switches to share the CPU, what
is a good value (in seconds) for the timer
interrupt?

TCSS422: Operating Systems [Winter 2026]

Lantaivi202026 School of Engineering and Technology, University of Washington - Tacoma L4.68

68

Slides by Wes J. Lloyd L4.34

TCSS 422 A — Winter 2026
School of Engineering and Technology

QUESTION: TIME SLICE

®For an OS that uses a system timer to force

arbitrary context switches to share the CPU, what
is a good value (in seconds) for the timer
interrupt?
= Typical time slice for process execution is

10 to 100 milliseconds
= Typical context switch overhead is (switch between processes)

0.01 milliseconds

0.1% of the time slice (1/1000t")

TCSS422: Operating Systems [Winter 2026]

January|20,2026 School of Engineering and Technology, University of Washington - Tacoma

L4.69

69

OBJECTIVES - 1/20

® Questions from 1/15
= C Review Survey - Closed Jan 17 AOE
m Assignment O - Update
® Chapter 5: Process API
= fork(), wait(), exec()
® Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-taskin l

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma L4.70

January 20, 2026

70

Slides by Wes J. Lloyd

1/20/2026

L4.35

TCSS 422 A — Winter 2026
School of Engineering and Technology

CONTEXT SWITCH

= Preemptive multitasking initiates “trap”
into the OS code to determine:

+ Whether to continue running the current process,
or switch to a different one.

+ If the decision is made to switch, the OS performs a
context switch swapping out the current process for a new one.

TCSS422: Operating Systems [Winter 2026]

January|20,2026 School of Engineering and Technology, University of Washington - Tacoma L7

71

CONTEXT SWITCH - 2

1. Save register values of the current process to its kernel
stack
= General purpose registers
= PC: program counter (instruction pointer)
= Kernel stack pointer

2. Restore soon-to-be-executing process from its kernel

stack
3. Switch to the kernel stack for the soon-to-be-executing
process
TCSS422: 0 ting Syste [Winter 2026]
fantianyj2042026 School of Er?gei':elenrigngy:nedn?l'sechr:zlsgy, University of Washington - Tacoma L2

72

Slides by Wes J. Lloyd

1/20/2026

L4.36

TCSS 422 A — Winter 2026
School of Engineering and Technology

0S @ boot
(kernel mode)

Hardware

‘ initialize trap table

0OS @ run
(kernel mode)

- start interrupt timer

remember address of ...
syscall handler

‘ timer handler

start timer
interrupt CPU in X ms

Program

Hardware (user mode)

Handle the trap

Call switch() routine
‘ save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)

ﬁ Process A
timer interrupt

save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

restore regs(B) from k-stack(B)

move to user mode
‘ Process B

jump to B's PC

TCSS422: Operating Systems [Winter 2026]

gantavi2tan2e School of Engineering and Technology, University of Washington - Tacoma L4.73
73
0S @ boot Hard
(kernel mode) ardware
initialize trap table
remember address of ...
syscall handler
timer handler
start interrupt timer
start timer
interrupt CPU in X ms
0 ,, 4 Hardware Prra 4
Context Switch
Call switch() routine
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)
restore regs(B) from k-stack(B)
move to user mode
jump to B's PC
‘ Process B
January 20, 2026 TCSS422: Operating Systems [Winter 2026] A

School of Engineering and Technology, University of Washington - Tacoma

74

Slides by Wes J. Lloyd

1/20/2026

L4.37

TCSS 422 A — Winter 2026
School of Engineering and Technology

INTERRUPTED INTERRUPTS

® What happens if during an interrupt (trap to kernel
mode), another interrupt occurs?

® Linux
= < 2.6 kernel: non-preemptive kernel
= >= 2.6 kernel: preemptive kernel

TCSS422: Operating Systems [Winter 2026]

January|20,2026 School of Engineering and Technology, University of Washington - Tacoma

L4.75

75

PREEMPTIVE KERNEL

= Use “locks” as markers of regions of
non-preemptibility (non-maskable interrupt)

= Preemption counter (preempt_count)
= begins at zero
= increments for each lock acquired (not safe to preempt)
= decrements when locks are released

= Interrupt can be interrupted when preempt_count=0
= |t is safe to preempt (maskable interrupt)
= the interrupt is more important

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma L4.76

January 20, 2026

76

Slides by Wes J. Lloyd

1/20/2026

L4.38

TCSS 422 A — Winter 2026 1/20/2026
School of Engineering and Technology

QUESTIONS

77

Slides by Wes J. Lloyd L4.39

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 1/20
	Slide 3: Text book coupon
	Slide 4: Tcss 422 – office hrs – Winter 2026
	Slide 5: TCSS 422 Discord server
	Slide 6: Online daily feedback survey
	Slide 7
	Slide 8: Material / pace
	Slide 9: Feedback from 1/15
	Slide 10: Feedback - 2
	Slide 11: Feedback - 3
	Slide 12: OBJECTIVES – 1/20
	Slide 13: OBJECTIVES – 1/20
	Slide 14: Assignment 0
	Slide 15: TCSS 422 – SET VMs
	Slide 16: Finish chapter 4
	Slide 17: Chapter 5: C process api
	Slide 18: OBJECTIVES – 1/20
	Slide 19: fork()
	Slide 20: Fork example
	Slide 21: Fork example - 2
	Slide 22: :(){ :|: & };:
	Slide 23: Class break - question
	Slide 24: We will return at 5:05pm
	Slide 25: OBJECTIVES – 1/20
	Slide 26: wait()
	Slide 27: Fork With wait
	Slide 28: Fork with wait - 2
	Slide 29: Fork example
	Slide 30: OBJECTIVES – 1/20
	Slide 31: exec()
	Slide 32: Exec example
	Slide 33: Exec example - 2
	Slide 34: Exec with file redirection (output)
	Slide 35: File mode bits
	Slide 36: exec w/ File redirection (output) - 2
	Slide 37: Blocking api call
	Slide 38
	Slide 39: Question: PROCESS API
	Slide 40: OBJECTIVES – 1/20
	Slide 41: CH. 6: Limited direct execution
	Slide 42: OBJECTIVES – 1/20
	Slide 43: Virtualizing the cpu
	Slide 44: Computer boot sequence: OS with Direct execution
	Slide 45: Computer boot sequence: OS with Direct execution
	Slide 46: Direct execution - 2
	Slide 47: Control tradeoff
	Slide 48: Context switching overhead
	Slide 49: OBJECTIVES – 1/20
	Slide 50: Limited direct execution
	Slide 51: OBJECTIVES – 1/20
	Slide 52: Cpu modes
	Slide 53: CPU modes
	Slide 54: OBJECTIVES – 1/20
	Slide 55: System calls
	Slide 56: TRAPS: System calls, Exceptions, interrupts
	Slide 57: Exception types
	Slide 58
	Slide 59
	Slide 60: OBJECTIVES – 1/20
	Slide 61: multitasking
	Slide 62: multitasking
	Slide 63
	Slide 64: Question: multitasking
	Slide 65: Multitasking - 2
	Slide 66: Multitasking - 2
	Slide 67
	Slide 68: QUESTION: TIME SLICE
	Slide 69: QUESTION: TIME SLICE
	Slide 70: OBJECTIVES – 1/20
	Slide 71: Context switch
	Slide 72: Context switch - 2
	Slide 73
	Slide 74
	Slide 75: Interrupted interrupts
	Slide 76: Preemptive kernel
	Slide 77: Questions

