
TCSS 422 A – Winter 2026
School of Engineering and Technology

1/20/2026

L4.1Slides by Wes J. Lloyd

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

The Process API &
Limited Direct Execution

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 1/15

 C Review Survey – Closed Jan 17 AOE

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi-tasking

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.2

OBJECTIVES – 1/20

 15% off textbook code: AAC72SAVE15

 https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-

arpaci-dusseau/operating-systems-three-easy-pieces-

hardcover-version-110/hardcover/product -

15gjeeky.html?q=three+easy+pieces+operating+systems&pag

e=1&pageSize=4

 With coupon textbook is only $33.79 + tax & shipping

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.3

TEXT BOOK COUPON

 Office Hours plan for Winter:

 Tuesday 2:30 - 3:30 pm Instructor Wes, Zoom

 Tue/Thur 6:00 - 7:00 pm Instructor Wes, CP 229/Zoom

 Tue 6:00 – 7:00 pm GTA Robert, Zoom/Room TBA

 Wed 1:00 – 2:00 pm GTA Robert, Zoom/Room TBA

 Instructor is available after class at 6pm in CP 229

each day

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.4

TCSS 422 – OFFICE HRS – WINTER 2026

 Please join the TCSS 422 A – Winter 2026 Discord Server

https://discord.gg/rR2yUDhgmq

 Under Edit Server Profile:

Please update your ‘Server Nickname’

to your real name or UW NET ID

THANK YOU

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.5

TCSS 422 DISCORD SERVER

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

January 20, 2026
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.6

ONLINE DAILY FEEDBACK SURVEY

1 2

3 4

5 6

https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://discord.gg/rR2yUDhgmq
https://discord.gg/rR2yUDhgmq

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/20/2026

L4.2Slides by Wes J. Lloyd

January 20, 2026
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L4.7

 Please classify your perspective on material covered in today’s

class

▪ 41 of 46 respondents – 89.13%!!

▪ 30 in-person, 11 online

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.54 ( - previous 6.34)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 4.73 ( - previous 5.13)

January 20, 2026
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.8

MATERIAL / PACE

 How does “2>&1” work? – redirection of stderr

 Each process in Linux has 3 files:

 filehandle=0 for standard input (stdin)

 filehandle=1 for standard output (stdout)

 filehandle=2 for standard error (stderr)

 redirect stdin with “<“

 redirect stdout with “>”

 redirect stderrr with “2>”

 &0 refers to stdin, &1 refers to stdout, &2 refers to stderr

./a0.sh >output.txt 2>output.err

./a0.sh >output.txt 2>&1

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.9

FEEDBACK FROM 1/15

 time command – creates a separate process which times the

“internal” child command

 time command writes time output to /dev/stderr

 Confusion : t ime does not write output to internal command’s

stderr stream

 time ./test4 >/dev/null 2>&1

 Timing results still go to console because test4’s stderr was

redirect to /dev/null, not the time command’s output

 { time ./test4; } 2>/dev/null

 To hide the timing output, we need to isolate the time

command with {} ’s, to redirect time’s stderr to /dev/null

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.10

FEEDBACK - 2

 Besides C programs, do programs in other languages l ike C++

and Java also have a stdin, stdout, and stderr in Linux?

 YES

 In operating systems, what defines fair CPU sharing?

 Processes with the same priority -level will receive roughly an

equal share of time to run on the CPU (called ‘CPU timeshare’)

 Are page faults part of the mechanisms used for lazy -loading?

 A page fault occurs when a memory page (e.g. 4k) is needed,

but it is not present in the physical RAM

▪ This could be caused by lazy-loading, because the OS initially loaded

only the few pages that were required to run a program

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.11

FEEDBACK - 3

 Questions from 1/15

 C Review Survey – Closed Jan 17 AOE

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi-tasking

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.12

OBJECTIVES – 1/20

7 8

9 10

11 12

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/20/2026

L4.3Slides by Wes J. Lloyd

 Questions from 1/15

 C Review Survey – Closed Jan 17 AOE

 Assignment 0 - Update

 Chapter 4: Linux process data structure - task_struct

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi-tasking

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.13

OBJECTIVES – 1/20

 In the homework, it specifies to use “non -interactive”
commands. What does this mean exactly?

 An non-interactive command does not require any input
from the user (i.e. from the keyboard)

 Non-interactive commands and scripts can run entirely on
their own without intervention

 These commands are considered “headless” in
that they don’t feature a USER INTERFACE,
either a GUI, or TUI

 What is a TUI?

▪ *Text-based User Interface

▪ TUI is also a bird →

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.14

ASSIGNMENT 0

 Request submitted for School of Engineering and Technology

hosted Ubuntu 24.04 VMs for TCSS 422 – Winter 2026

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.15

TCSS 422 – SET VMS

 Switch to Lecture 3 Slides

 Slides L3.37 to L3.48

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.16

FINISH CHAPTER 4

CHAPTER 5:

C PROCESS API

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L4.17

 Questions from 1/15

 C Review Survey – Closed Jan 17 AOE

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi-tasking
January 20, 2026

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.18

OBJECTIVES – 1/20

13 14

15 16

17 18

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/20/2026

L4.4Slides by Wes J. Lloyd

 Creates a new process - think of “a fork in the road”

 “Parent” process is the original

 Creates “child” process of the program from the current
execution point

 Book says “pretty odd”

 Creates a duplicate program instance (these are processes!)

 Copy of

▪ Address space (memory)

▪ Register

▪ Program Counter (PC)

 Fork returns

▪ child PID to parent

▪ 0 to child

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.19

fork()

 p1.c

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.20

FORK EXAMPLE

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char *argv[]){

 printf("hello world (pid:%d)\n", (int) getpid());

 int rc = fork();

 if (rc < 0) { // fork failed; exit

 fprintf(stderr, "fork failed\n");

 exit(1);

 } else if (rc == 0) { // child (new process)

 printf("hello, I am child (pid:%d)\n", (int) getpid());

 } else { // parent goes down this path (main)

 printf("hello, I am parent of %d (pid:%d)\n",

 rc, (int) getpid());

 }

 return 0;

}

 Non deterministic ordering of execution

or

 CPU scheduler determines which to run first

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.21

FORK EXAMPLE - 2

prompt> ./p1

hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)

hello, I am child (pid:29147)

prompt>

prompt> ./p1

hello world (pid:29146)

hello, I am child (pid:29147)

hello, I am parent of 29147 (pid:29146)

prompt>

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.22

:(){ :|: & };:

 What is bootstrapping?

 ‘bootstrapping’ refers to initialization steps and start -up

activities to get a program or system up and ready to run

 For operating systems, bootstrapping is referred to as

‘booting’

 For a Linux OS, bootstrapping is the loading of the Linux

kernel (at /boot/vmlinuz), and all associated start -up

activities like launching the init process (PID 1), etc.

 Can you f ind the s ize of your Linux kernel in MB ?

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.23

CLASS BREAK - QUESTION

WE WILL RETURN AT

5:05PM

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L4.24

19 20

21 22

23 24

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/20/2026

L4.5Slides by Wes J. Lloyd

 Questions from 1/15

 C Review Survey – Closed Jan 17 AOE

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi-tasking
January 20, 2026

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.25

OBJECTIVES – 1/20

 wait(), waitpid()

 Called by parent process

 Waits for a child process to finish executing

 Not a sleep() function

 Provides some ordering to multi -process execution

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.26

wait()

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.27

FORK WITH WAIT

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/wait.h>

int main(int argc, char *argv[]){

 printf("hello world (pid:%d)\n", (int) getpid());

 int rc = fork();

 if (rc < 0) { // fork failed; exit

 fprintf(stderr, "fork failed\n");

 exit(1);

 } else if (rc == 0) { // child (new process)

 printf("hello, I am child (pid:%d)\n", (int) getpid());

 } else { // parent goes down this path (main)

 int wc = wait(NULL);

 printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

 rc, wc, (int) getpid());

 }

 return 0;

}

 Deterministic ordering of execution

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.28

FORK WITH WAIT - 2

prompt> ./p2

hello world (pid:29266)

hello, I am child (pid:29267)

hello, I am parent of 29267 (wc:29267) (pid:29266)

prompt>

 Linux example

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.29

FORK EXAMPLE

 Questions from 1/15

 C Review Survey – Closed Jan 17 AOE

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi-tasking
January 20, 2026

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.30

OBJECTIVES – 1/20

25 26

27 28

29 30

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/20/2026

L4.6Slides by Wes J. Lloyd

 Supports running an external program by “transferring control”

 6 types: execl() , execlp() , execle() , execv(), execvp(), execvpe()

 execl() , execlp() , execle() : const char *arg (example: execl.c)

Provide cmd and args as individual params to the function

Each arg is a pointer to a null -terminated string

ODD: pass a variable number of args: (arg0, arg1, . . argn)

 execv(), execvp(), execvpe() (example: exec.c)

Provide cmd and args as an Array of pointers to strings

Strings are null -terminated

First argument is name of command being executed

Fixed number of args passed in

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.31

exec()

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.32

EXEC EXAMPLE

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <sys/wait.h>

int main(int argc, char *argv[]){

 printf("hello world (pid:%d)\n", (int) getpid());

 int rc = fork();

 if (rc < 0) { // fork failed; exit

 fprintf(stderr, "fork failed\n");

 exit(1);

 } else if (rc == 0) { // child (new process)

 printf("hello, I am child (pid:%d)\n", (int) getpid());

 char *myargs[3];

 myargs[0] = strdup("wc"); // program: "wc" (word count)

 myargs[1] = strdup("p3.c"); // argument: file to count

 myargs[2] = NULL; // marks end of array

 …

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.33

EXEC EXAMPLE - 2

…

 execvp(myargs[0], myargs); // runs word count

 printf("this shouldn’t print out");

 } else { // parent goes down this path (main)

 int wc = wait(NULL);

 printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

 rc, wc, (int) getpid());

 }

 return 0;

}

prompt> ./p3

hello world (pid:29383)

hello, I am child (pid:29384)

29 107 1030 p3.c

hello, I am parent of 29384 (wc:29384) (pid:29383)

prompt>

 Example:
https ://facul ty.washington.edu/wl loyd/courses/tcss422/examples/exec2.c

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.34

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <fcntl.h>

#include <sys/wait.h>

int

main(int argc, char *argv[]){

 int rc = fork();

 if (rc < 0) { // fork failed; exit

 fprintf(stderr, "fork failed\n");

 exit(1);

 } else if (rc == 0) { // child: redirect standard output to a file

 close(STDOUT_FILENO);

 open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

 …

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.35

FILE MODE BITS

S_IRWXU

read, write, execute/search by owner

S_IRUSR

read permission, owner

S_IWUSR

write permission, owner

S_IXUSR

execute/search permission, owner

S_IRWXG

read, write, execute/search by group

S_IRGRP

read permission, group

S_IWGRP

write permission, group

S_IXGRP

execute/search permission, group

S_IRWXO

read, write, execute/search by others

S_IROTH

read permission, others

S_IWOTH

write permission, others

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.36

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

…

 // now exec "wc"...

 char *myargs[3];

 myargs[0] = strdup("wc"); // program: "wc" (word count)

 myargs[1] = strdup("p4.c"); // argument: file to count

 myargs[2] = NULL; // marks end of array

 execvp(myargs[0], myargs); // runs word count

 } else { // parent goes down this path (main)

 int wc = wait(NULL);

 }

 return 0;

}

prompt> ./p4

prompt> cat p4.output

32 109 846 p4.c

prompt>

31 32

33 34

35 36

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/20/2026

L4.7Slides by Wes J. Lloyd

 Blocking API calls transfer control of the CPU to a kernel

thread and force the user process from RUNNING to BLOCKED

to wait for a response/outcome

 What blocking APIs

have we identified

thus far ?

 Does making a blocking

API call create a voluntary

or non-voluntary context

switch ?

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.37

BLOCKING API CALL

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L4.38

 Which Process API call is used to launch a different

program from the current program?

 (a) Fork()

 (b) Exec()

 (c) Wait()

 (d) None of the above

 (e) All of the above

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.39

QUESTION: PROCESS API

 Questions from 1/15

 C Review Survey – Closed Jan 17 AOE

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi-tasking
January 20, 2026

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.40

OBJECTIVES – 1/20

CH. 6:

LIMITED DIRECT

EXECUTION

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L4.41

 Questions from 1/15

 C Review Survey – Closed Jan 17 AOE

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi-tasking

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.42

OBJECTIVES – 1/20

37 38

39 40

41 42

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/20/2026

L4.8Slides by Wes J. Lloyd

 How does the CPU support running so many jobs

simultaneously?

 Time Sharing

 Tradeoffs:

▪ Performance

▪ Excessive overhead

▪ Control

▪ Fairness

▪ Security

 Both HW and OS support

is used

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.43

VIRTUALIZING THE CPU

 What if programs could directly control the CPU / system?

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.44

COMPUTER BOOT SEQUENCE:

OS WITH DIRECT EXECUTION

OS Program

1. Create entry for process list
2. Allocate memory for
program
3. Load program into memory
4. Set up stack with argc /
argv

5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

 What if programs could directly control the CPU / system?

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.45

COMPUTER BOOT SEQUENCE:

OS WITH DIRECT EXECUTION

OS Program

1. Create entry for process list
2. Allocate memory for
program
3. Load program into memory
4. Set up stack with argc /
argv

5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

Without limits on running programs,
the OS wouldn’t be in control of anything

and would “just be a library”

 With direct execution:

How does the OS stop a program from running, and switch

to another to support time sharing?

How do programs share disks and perform I/O if they are

given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures

such as linked lists grow over time?

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.46

DIRECT EXECUTION - 2

 Too little control:

▪ No security

▪ No time sharing

 Too much control:

▪ Too much OS overhead

▪ Poor performance for compute & I/O

▪ Complex APIs (system calls), difficult to use

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.47

CONTROL TRADEOFF

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.48

CONTEXT SWITCHING OVERHEAD

Time

Overhead

43 44

45 46

47 48

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/20/2026

L4.9Slides by Wes J. Lloyd

 Questions from 1/15

 C Review Survey – Closed Jan 17 AOE

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi-tasking

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.49

OBJECTIVES – 1/20

 OS implements LDE to support time/resource sharing

 Limited direct execution means “only limited” processes

can execute DIRECTLY on the CPU in trusted mode

 TRUSTED means the process is trusted, and it can do

anything… (e.g. it is a system / kernel level process)

 Enabled by protected (safe) control transfer

 CPU supported context switch

 Provides data isolation

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.50

LIMITED DIRECT EXECUTION

 Questions from 1/15

 C Review Survey – Closed Jan 17 AOE

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi-tasking

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.51

OBJECTIVES – 1/20

 Utilize CPU Privilege Rings (Intel x86)

▪ rings 0 (kernel), 1 (VM kernel), 2 (unused), 3 (user)

 User mode:

Application is running, but w/o direct I/O access

 Kernel mode:

OS kernel is running performing restricted operations

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.52

CPU MODES

access no access

 User mode: r ing 3 - untrusted

▪ Some instructions and registers are disabled by the CPU

▪ Exception registers

▪ HALT instruction

▪MMU instructions

▪ OS memory access

▪ I/O device access

 Kernel mode: r ing 0 – trusted

▪ All instructions and registers enabled

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.53

CPU MODES

 Questions from 1/15

 C Review Survey – Closed Jan 17 AOE

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi-tasking

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.54

OBJECTIVES – 1/20

49 50

51 52

53 54

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/20/2026

L4.10Slides by Wes J. Lloyd

 Implement restricted “OS” operations

 Kernel exposes key functions through an API:

▪ Device I/O (e.g. file I/O)

▪ Task swapping: context switching between processes

▪Memory management/allocation: malloc()

▪ Creating/destroying processes

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.55

SYSTEM CALLS

 Trap: any transfer to kernel mode

 Three kinds of traps

▪ System call: (planned) user → kernel

▪ SYSCALL for I/O, etc.

▪ Exception: (error) user → kernel

▪ Div by zero, page fault, page protection error

▪ Interrupt: (event) user → kernel

▪ Non-maskable vs. maskable

▪ Keyboard event, network packet arrival, timer ticks

▪ Memory parity error (ECC), hard drive failure

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.56

TRAPS:

SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Exception type
Synchronous vs.

asynchronous

User request vs.

coerced

User maskable vs.

nonmaskable

Within vs. between

instructions
Resume vs. terminate

I/O device request Asynchronous Coerced Nonmaskable Between Resume

Invoke operating system Synchronous User request Nonmaskable Between Resume

Tracing instruction execution Synchronous User request User maskable Between Resume

Breakpoint Synchronous User request User maskable Between Resume

Integer arithmetic overflow Synchronous Coerced User maskable Within Resume

Floating-point arithmetic overflow

or underflow
Synchronous Coerced User maskable Within Resume

Page fault Synchronous Coerced Nonmaskable Within Resume

Misaligned memory accesses Synchronous Coerced User maskable Within Resume

Memory protection violation Synchronous Coerced Nonmaskable Within Resume

Using undefined instruction Synchronous Coerced Nonmaskable Within Terminate

Hardware malfunction Asynchronous Coerced Nonmaskable Within Terminate

Power failure Asynchronous Coerced Nonmaskable Within Terminate

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.57

EXCEPTION TYPES

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L4.58

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L4.59

Computer BOOT Sequence:
OS with Limited Direct Execution

 Questions from 1/15

 C Review Survey – Closed Jan 17 AOE

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi-tasking

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.60

OBJECTIVES – 1/20

55 56

57 58

59 60

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/20/2026

L4.11Slides by Wes J. Lloyd

 How/when should the OS regain control of the CPU to

switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

▪ < Windows 95, Mac OSX

▪ Opportunistic: running programs must give up control

▪ User programs must call a special yield system call

▪ When performing I/O

▪ Illegal operations

▪ (POLLEV)

What problems could you for see with this approach?

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.61

MULTITASKING

 How/when should the OS regain control of the CPU to

switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

▪ < Windows 95, Mac OSX

▪ Opportunistic: running programs must give up control

▪ User programs must call a special yield system call

▪ When performing I/O

▪ Illegal operations

▪ (POLLEV)

What problems could you for see with this approach?

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.62

MULTITASKING

A process gets stuck in an infinite loop.

→ Reboot the machine

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L4.63

What problems exist for regaining the control of

the CPU with cooperative multitasking OSes?

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.64

QUESTION: MULTITASKING

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt

▪ Raised at some regular interval (in ms)

▪ Interrupt handling

1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.65

MULTITASKING - 2

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt

▪ Raised at some regular interval (in ms)

▪ Interrupt handling

1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.66

MULTITASKING - 2

A timer interrupt gives OS the ability to
run again on a CPU.

61 62

63 64

65 66

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/20/2026

L4.12Slides by Wes J. Lloyd

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L4.67

 For an OS that uses a system timer to force

arbitrary context switches to share the CPU, what

is a good value (in seconds) for the timer

interrupt?

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.68

QUESTION: TIME SLICE

 For an OS that uses a system timer to force

arbitrary context switches to share the CPU, what

is a good value (in seconds) for the timer

interrupt?

▪ Typical time slice for process execution is

10 to 100 milliseconds

▪ Typical context switch overhead is (switch between processes)

0.01 milliseconds

▪ 0.1% of the time slice (1/1000 th)

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.69

QUESTION: TIME SLICE

 Questions from 1/15

 C Review Survey – Closed Jan 17 AOE

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi-tasking

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.70

OBJECTIVES – 1/20

 Preemptive multitasking initiates “trap”

into the OS code to determine:

 Whether to continue running the current process,

or switch to a dif ferent one.

 If the decision is made to switch, the OS performs a

context switch swapping out the current process for a new one.

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.71

CONTEXT SWITCH

1. Save register values of the current process to its kernel

stack

▪ General purpose registers

▪ PC: program counter (instruction pointer)

▪ kernel stack pointer

2. Restore soon-to-be-executing process from its kernel

stack

3. Switch to the kernel stack for the soon-to-be-executing

process

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.72

CONTEXT SWITCH - 2

67 68

69 70

71 72

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/20/2026

L4.13Slides by Wes J. Lloyd

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L4.73 January 20, 2026

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L4.74

Context Switch

 What happens if during an interrupt (trap to kernel

mode), another interrupt occurs?

 Linux

▪ < 2.6 kernel: non-preemptive kernel

▪ >= 2.6 kernel: preemptive kernel

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.75

INTERRUPTED INTERRUPTS

Use “locks” as markers of regions of

non-preemptibility (non-maskable interrupt)

Preemption counter (preempt_count)

▪ begins at zero

▪ increments for each lock acquired (not safe to preempt)

▪ decrements when locks are released

 Interrupt can be interrupted when preempt_count=0

▪ It is safe to preempt (maskable interrupt)

▪ the interrupt is more important

January 20, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L4.76

PREEMPTIVE KERNEL

QUESTIONS

73 74

75 76

77

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 1/20
	Slide 3: Text book coupon
	Slide 4: Tcss 422 – office hrs – Winter 2026
	Slide 5: TCSS 422 Discord server
	Slide 6: Online daily feedback survey
	Slide 7
	Slide 8: Material / pace
	Slide 9: Feedback from 1/15
	Slide 10: Feedback - 2
	Slide 11: Feedback - 3
	Slide 12: OBJECTIVES – 1/20
	Slide 13: OBJECTIVES – 1/20
	Slide 14: Assignment 0
	Slide 15: TCSS 422 – SET VMs
	Slide 16: Finish chapter 4
	Slide 17: Chapter 5: C process api
	Slide 18: OBJECTIVES – 1/20
	Slide 19: fork()
	Slide 20: Fork example
	Slide 21: Fork example - 2
	Slide 22: :(){ :|: & };:
	Slide 23: Class break - question
	Slide 24: We will return at 5:05pm
	Slide 25: OBJECTIVES – 1/20
	Slide 26: wait()
	Slide 27: Fork With wait
	Slide 28: Fork with wait - 2
	Slide 29: Fork example
	Slide 30: OBJECTIVES – 1/20
	Slide 31: exec()
	Slide 32: Exec example
	Slide 33: Exec example - 2
	Slide 34: Exec with file redirection (output)
	Slide 35: File mode bits
	Slide 36: exec w/ File redirection (output) - 2
	Slide 37: Blocking api call
	Slide 38
	Slide 39: Question: PROCESS API
	Slide 40: OBJECTIVES – 1/20
	Slide 41: CH. 6: Limited direct execution
	Slide 42: OBJECTIVES – 1/20
	Slide 43: Virtualizing the cpu
	Slide 44: Computer boot sequence: OS with Direct execution
	Slide 45: Computer boot sequence: OS with Direct execution
	Slide 46: Direct execution - 2
	Slide 47: Control tradeoff
	Slide 48: Context switching overhead
	Slide 49: OBJECTIVES – 1/20
	Slide 50: Limited direct execution
	Slide 51: OBJECTIVES – 1/20
	Slide 52: Cpu modes
	Slide 53: CPU modes
	Slide 54: OBJECTIVES – 1/20
	Slide 55: System calls
	Slide 56: TRAPS: System calls, Exceptions, interrupts
	Slide 57: Exception types
	Slide 58
	Slide 59
	Slide 60: OBJECTIVES – 1/20
	Slide 61: multitasking
	Slide 62: multitasking
	Slide 63
	Slide 64: Question: multitasking
	Slide 65: Multitasking - 2
	Slide 66: Multitasking - 2
	Slide 67
	Slide 68: QUESTION: TIME SLICE
	Slide 69: QUESTION: TIME SLICE
	Slide 70: OBJECTIVES – 1/20
	Slide 71: Context switch
	Slide 72: Context switch - 2
	Slide 73
	Slide 74
	Slide 75: Interrupted interrupts
	Slide 76: Preemptive kernel
	Slide 77: Questions

