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TCSS 422: OPERATING SYSTEMS

 Questions from 1/15

 C Review Survey –  Closed Jan 17 AOE

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi-tasking
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OBJECTIVES – 1/20

 15% off textbook code: AAC72SAVE15 

 https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-

arpaci-dusseau/operating-systems-three-easy-pieces-

hardcover-version-110/hardcover/product -

15gjeeky.html?q=three+easy+pieces+operating+systems&pag

e=1&pageSize=4 

 With coupon textbook is only $33.79 + tax & shipping
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TEXT BOOK COUPON

 Office Hours plan for Winter:

 Tuesday 2:30 -  3:30 pm Instructor Wes, Zoom

 Tue/Thur 6:00 -  7:00 pm Instructor Wes, CP 229/Zoom

 Tue 6:00 –  7:00 pm GTA Robert, Zoom/Room TBA

 Wed 1:00 –  2:00 pm GTA Robert, Zoom/Room TBA

 Instructor is available after class at 6pm in CP 229 

each day
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TCSS 422 – OFFICE HRS – WINTER 2026

 Please join the TCSS 422 A – Winter 2026 Discord Server

https://discord.gg/rR2yUDhgmq  

 Under Edit Server Profile:

Please update your ‘Server Nickname’

to your real name or UW NET ID 

THANK YOU
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TCSS 422 DISCORD SERVER

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class

▪ 41 of 46 respondents – 89.13%!!

▪ 30 in-person, 11 online

 1-mostly review, 5-equal new/review, 10-mostly new

 Average –  6.54  (  -  previous 6.34) 

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average –  4.73  (  -  previous 5.13)
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MATERIAL / PACE

 How does “2>&1” work? –  redirection of  stderr

 Each process in Linux has 3 files:

 filehandle=0 for standard input (stdin)

 filehandle=1 for standard output (stdout)

 filehandle=2 for standard error (stderr)

 redirect stdin with “<“

 redirect stdout with “>”

 redirect stderrr with “2>”

 &0 refers to stdin, &1 refers to stdout, &2 refers to stderr

./a0.sh >output.txt 2>output.err

./a0.sh >output.txt 2>&1
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FEEDBACK FROM 1/15

 time  command – creates a separate process which times the 

“internal” child command  

 time  command writes time output to /dev/stderr

 Confusion : t ime does not write output to internal command’s 

stderr stream

 time ./test4 >/dev/null 2>&1

 Timing results still go to console because test4’s stderr was 

redirect to /dev/null, not the time command’s output

 { time ./test4; } 2>/dev/null

 To hide the timing output, we need to isolate the time 

command with {} ’s, to redirect time’s stderr to /dev/null
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FEEDBACK - 2

 Besides C programs, do programs in other languages l ike C++ 

and Java also have a stdin, stdout, and stderr in  Linux?

 YES

 In  operating systems, what defines fair CPU sharing?

 Processes with the same priority -level will receive roughly an 

equal share of time to run on the CPU (called ‘CPU timeshare’)

 Are page faults part of  the mechanisms used for lazy -loading?

 A page fault occurs when a memory page (e.g. 4k) is needed, 

but it is not present in the physical RAM

▪ This could be caused by lazy-loading, because the OS initially loaded 

only the few pages that were required to run a program
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FEEDBACK - 3

 Questions from 1/15

 C Review Survey –  Closed Jan 17 AOE

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi-tasking
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OBJECTIVES – 1/20

7 8

9 10

11 12
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 Questions from 1/15

 C Review Survey –  Closed Jan 17 AOE

 Assignment 0 -  Update

 Chapter 4: Linux process data structure - task_struct

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi-tasking
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OBJECTIVES – 1/20

 In the homework, it  specifies to use “non -interactive” 
commands.  What does this mean exactly?

 An non-interactive command does not require any input 
from the user ( i.e. from the keyboard)

 Non-interactive commands and scripts can run entirely on 
their own without intervention

 These commands are considered “headless” in 
that they don’t feature a USER INTERFACE, 
either a GUI, or TUI

 What is  a TUI?

▪ *Text-based User Interface

▪ TUI is also a bird                                   →
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ASSIGNMENT 0

 Request submitted for School of Engineering and Technology 

hosted Ubuntu 24.04 VMs for TCSS 422 – Winter 2026
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TCSS 422 – SET VMS

 Switch to Lecture 3 Slides

 Slides L3.37 to L3.48
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FINISH CHAPTER 4

CHAPTER 5:

C PROCESS API
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 Questions from 1/15

 C Review Survey –  Closed Jan 17 AOE

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi-tasking
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OBJECTIVES – 1/20

13 14
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 Creates a new process -  think of “a fork in the road”

 “Parent” process is the original

 Creates “child” process of the program from the current 
execution point

 Book says “pretty odd”

 Creates a duplicate program instance (these are processes!)

 Copy of

▪ Address space (memory)

▪ Register

▪ Program Counter (PC)

 Fork returns 

▪ child PID to parent

▪ 0 to child
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fork()

 p1.c
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FORK EXAMPLE

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char *argv[]){

    printf("hello world (pid:%d)\n", (int) getpid());

    int rc = fork();

    if (rc < 0) { // fork failed; exit

        fprintf(stderr, "fork failed\n");

        exit(1);

    } else if (rc == 0) { // child (new process)

        printf("hello, I am child (pid:%d)\n", (int) getpid());

    } else {  // parent goes down this path (main)

        printf("hello, I am parent of %d (pid:%d)\n",

        rc, (int) getpid());

    }

    return 0;

}

 Non deterministic ordering of execution

or

 CPU scheduler determines which to run first
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FORK EXAMPLE - 2

prompt> ./p1

hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)

hello, I am child (pid:29147)

prompt>

prompt> ./p1

hello world (pid:29146)

hello, I am child (pid:29147)

hello, I am parent of 29147 (pid:29146)

prompt>
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:(){ :|: & };:

 What is  bootstrapping?

 ‘bootstrapping’ refers to initialization steps and start -up 

activities to get a program or system up and ready to run

 For operating systems, bootstrapping is referred to as 

‘booting’

 For a Linux OS, bootstrapping is the loading of the Linux 

kernel (at /boot/vmlinuz), and all associated start -up 

activities like launching the init process (PID 1), etc.

 Can you f ind the s ize of  your Linux kernel in  MB ?
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CLASS BREAK - QUESTION

WE WILL RETURN AT 

5:05PM

January 20, 2026
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 Questions from 1/15

 C Review Survey –  Closed Jan 17 AOE

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi-tasking
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OBJECTIVES – 1/20

 wait(), waitpid()

 Called by parent process

 Waits for a child process to finish executing

 Not a sleep() function

 Provides some ordering to multi -process execution
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wait()
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FORK WITH WAIT

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/wait.h>

int main(int argc, char *argv[]){

    printf("hello world (pid:%d)\n", (int) getpid());

    int rc = fork();

    if (rc < 0) { // fork failed; exit

        fprintf(stderr, "fork failed\n");

        exit(1);

    } else if (rc == 0) { // child (new process)

        printf("hello, I am child (pid:%d)\n", (int) getpid());

    } else {  // parent goes down this path (main)

        int wc = wait(NULL);

        printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

        rc, wc, (int) getpid());

    }

    return 0;

}

 Deterministic ordering of execution
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FORK WITH WAIT - 2

prompt> ./p2

hello world (pid:29266)

hello, I am child (pid:29267)

hello, I am parent of 29267 (wc:29267) (pid:29266)

prompt>

 Linux example
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FORK EXAMPLE

 Questions from 1/15

 C Review Survey –  Closed Jan 17 AOE

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi-tasking
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OBJECTIVES – 1/20
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 Supports running an external program by “transferring control”

 6 types: execl() , execlp() , execle() , execv(), execvp(), execvpe() 

 execl() , execlp() , execle() : const char *arg   (example: execl.c)

Provide cmd and args as individual params to the function

Each arg is a pointer to a null -terminated string

ODD: pass a variable number of args: (arg0, arg1, . .  argn)

 execv(), execvp(), execvpe()    (example: exec.c)

Provide cmd and args as an Array of pointers to strings  

Strings are null -terminated

First argument is name of command being executed

Fixed number of args passed in
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exec()
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EXEC EXAMPLE

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <sys/wait.h>

int main(int argc, char *argv[]){

    printf("hello world (pid:%d)\n", (int) getpid());

    int rc = fork();

    if (rc < 0) {  // fork failed; exit

        fprintf(stderr, "fork failed\n");

        exit(1);

    } else if (rc == 0) { // child (new process)

        printf("hello, I am child (pid:%d)\n", (int) getpid());

        char *myargs[3];

        myargs[0] = strdup("wc");  // program: "wc" (word count)

        myargs[1] = strdup("p3.c"); // argument: file to count

        myargs[2] = NULL;  // marks end of array

        …
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EXEC EXAMPLE - 2

…

        execvp(myargs[0], myargs); // runs word count

        printf("this shouldn’t print out");

    } else {   // parent goes down this path (main)

        int wc = wait(NULL);

        printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

            rc, wc, (int) getpid());

    }

   return 0;

}

prompt> ./p3

hello world (pid:29383)

hello, I am child (pid:29384)

29 107 1030 p3.c

hello, I am parent of 29384 (wc:29384) (pid:29383)

prompt>

 Example: 
https ://facul ty.washington.edu/wl loyd/courses/tcss422/examples/exec2.c
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EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <fcntl.h>

#include <sys/wait.h>

int

main(int argc, char *argv[]){

    int rc = fork();

    if (rc < 0) { // fork failed; exit

        fprintf(stderr, "fork failed\n");

        exit(1);

    } else if (rc == 0) { // child: redirect standard output to a file

        close(STDOUT_FILENO);

        open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

        …
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FILE MODE BITS

S_IRWXU

read, write, execute/search by owner

S_IRUSR

read permission, owner

S_IWUSR

write permission, owner

S_IXUSR

execute/search permission, owner

S_IRWXG

read, write, execute/search by group

S_IRGRP

read permission, group

S_IWGRP

write permission, group

S_IXGRP

execute/search permission, group

S_IRWXO

read, write, execute/search by others

S_IROTH

read permission, others

S_IWOTH

write permission, others
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EXEC W/ FILE REDIRECTION (OUTPUT) - 2

…

        // now exec "wc"...

        char *myargs[3];

        myargs[0] = strdup("wc");  // program: "wc" (word count)

        myargs[1] = strdup("p4.c"); // argument: file to count

        myargs[2] = NULL;  // marks end of array

        execvp(myargs[0], myargs); // runs word count

    } else {   // parent goes down this path (main)

        int wc = wait(NULL);

    }

    return 0;

}

prompt> ./p4

prompt> cat p4.output

32 109 846 p4.c

prompt>

31 32

33 34

35 36
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 Blocking API calls transfer control of the CPU to a kernel 

thread and force the user process from RUNNING to BLOCKED 

to wait for a response/outcome

 What blocking APIs

have we identified 

thus far ?

 Does making a blocking

API call create a voluntary

or non-voluntary context 

switch ?
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BLOCKING API CALL

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate
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 Which Process API call is used to launch a different 

program from the current program?

 (a) Fork()

 (b) Exec()

 (c) Wait()

 (d) None of the above

 (e) All of the above
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QUESTION: PROCESS API

 Questions from 1/15

 C Review Survey –  Closed Jan 17 AOE

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6:  Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi-tasking
January 20, 2026
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OBJECTIVES – 1/20

CH. 6:

LIMITED DIRECT 

EXECUTION
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 Questions from 1/15

 C Review Survey –  Closed Jan 17 AOE

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi-tasking
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OBJECTIVES – 1/20

37 38

39 40

41 42
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 How does the CPU support running so many jobs 

simultaneously?

 Time Sharing

 Tradeoffs:

▪ Performance

▪ Excessive overhead

▪ Control

▪ Fairness

▪ Security

 Both HW and OS support

is used
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VIRTUALIZING THE CPU

 What if programs could directly control the CPU / system?
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COMPUTER BOOT SEQUENCE:

OS WITH DIRECT EXECUTION

OS Program

1. Create entry for process list
2. Allocate memory for 
program
3. Load program into memory
4. Set up stack with argc / 
argv

5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

 What if programs could directly control the CPU / system?
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COMPUTER BOOT SEQUENCE:

OS WITH DIRECT EXECUTION

OS Program

1. Create entry for process list
2. Allocate memory for 
program
3. Load program into memory
4. Set up stack with argc / 
argv

5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

Without limits on running programs,
the OS wouldn’t be in control of anything 

and would “just be a library”

 With direct execution: 

How does the OS stop a program from running, and switch 

to another to support time sharing?

How do programs share disks and perform I/O if they are 

given direct control?  Do they know about each other?

With direct execution, how can dynamic memory structures 

such as linked lists grow over time?
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DIRECT EXECUTION - 2

 Too little control: 

▪ No security

▪ No time sharing

 Too much control: 

▪ Too much OS overhead

▪ Poor performance for compute & I/O

▪ Complex APIs (system calls), difficult to use
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CONTROL TRADEOFF
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CONTEXT SWITCHING OVERHEAD

Time

Overhead

43 44

45 46

47 48
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 Questions from 1/15

 C Review Survey –  Closed Jan 17 AOE

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi-tasking
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OBJECTIVES – 1/20

 OS implements LDE to support time/resource sharing

 Limited direct execution means “only limited” processes 

can execute DIRECTLY on the CPU in trusted mode

 TRUSTED means the process is trusted, and it can do 

anything… (e.g. it is a system / kernel level process)

 Enabled by protected (safe) control transfer

 CPU supported context switch

 Provides data isolation
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LIMITED DIRECT EXECUTION

 Questions from 1/15

 C Review Survey –  Closed Jan 17 AOE

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi-tasking
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OBJECTIVES – 1/20

 Utilize CPU Privilege Rings (Intel x86)

▪ rings 0 (kernel), 1 (VM kernel), 2 (unused), 3 (user)

 User mode: 

Application is running, but w/o direct I/O access

 Kernel mode: 

OS kernel is running performing restricted operations
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CPU MODES

access no access

 User mode: r ing 3 -  untrusted

▪ Some instructions and registers are disabled by the CPU

▪ Exception registers

▪ HALT instruction

▪MMU instructions

▪ OS memory access

▪ I/O device access

 Kernel mode: r ing 0 –  trusted

▪ All instructions and registers enabled
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CPU MODES

 Questions from 1/15

 C Review Survey –  Closed Jan 17 AOE

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi-tasking
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OBJECTIVES – 1/20
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 Implement restricted “OS” operations

 Kernel exposes key functions through an API:

▪ Device I/O  (e.g. file I/O)

▪ Task swapping: context switching between processes

▪Memory management/allocation:  malloc()

▪ Creating/destroying processes
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SYSTEM CALLS

 Trap: any transfer to kernel mode

 Three kinds of traps

▪ System call: (planned)  user → kernel

▪ SYSCALL for I/O, etc.

▪ Exception: (error) user → kernel

▪ Div by zero, page fault, page protection error

▪ Interrupt: (event) user → kernel

▪ Non-maskable vs. maskable

▪ Keyboard event, network packet arrival, timer ticks

▪ Memory parity error (ECC), hard drive failure
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TRAPS: 

SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Exception type
Synchronous vs. 

asynchronous

User request vs. 

coerced

User maskable vs. 

nonmaskable

Within vs. between 

instructions
Resume vs. terminate

I/O device request Asynchronous Coerced Nonmaskable Between Resume

Invoke operating system Synchronous User request Nonmaskable Between Resume

Tracing instruction execution Synchronous User request User maskable Between Resume

Breakpoint Synchronous User request User maskable Between Resume

Integer arithmetic overflow Synchronous Coerced User maskable Within Resume

Floating-point arithmetic overflow 

or underflow
Synchronous Coerced User maskable Within Resume

Page fault Synchronous Coerced Nonmaskable Within Resume

Misaligned memory accesses Synchronous Coerced User maskable Within Resume

Memory protection violation Synchronous Coerced Nonmaskable Within Resume

Using undefined instruction Synchronous Coerced Nonmaskable Within Terminate

Hardware malfunction Asynchronous Coerced Nonmaskable Within Terminate

Power failure Asynchronous Coerced Nonmaskable Within Terminate
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EXCEPTION TYPES
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Computer BOOT Sequence: 
OS with Limited Direct Execution

 Questions from 1/15

 C Review Survey –  Closed Jan 17 AOE

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi-tasking
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OBJECTIVES – 1/20
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 How/when should the OS regain control of the CPU to 

switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

▪ < Windows 95, Mac OSX

▪ Opportunistic: running programs must give up control

▪ User programs must call a special yield system call

▪ When performing I/O

▪ Illegal operations

▪ (POLLEV) 

What problems could you for see with this approach?
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MULTITASKING

 How/when should the OS regain control of the CPU to 

switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

▪ < Windows 95, Mac OSX

▪ Opportunistic: running programs must give up control

▪ User programs must call a special yield system call

▪ When performing I/O

▪ Illegal operations

▪ (POLLEV) 

What problems could you for see with this approach?
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MULTITASKING

A process gets stuck in an infinite loop. 

→ Reboot the machine
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What problems exist for regaining the control of 

the CPU with cooperative multitasking OSes?
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QUESTION: MULTITASKING

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt

▪ Raised at some regular interval (in ms)

▪ Interrupt handling

1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?
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MULTITASKING - 2

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt

▪ Raised at some regular interval (in ms)

▪ Interrupt handling

1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?
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MULTITASKING - 2

A timer interrupt gives OS the ability to 
run again on a CPU.

61 62
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 For an OS that uses a system timer to force 

arbitrary context switches to share the CPU, what 

is a good value (in seconds) for the timer 

interrupt?
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QUESTION: TIME SLICE

 For an OS that uses a system timer to force 

arbitrary context switches to share the CPU, what 

is a good value (in seconds) for the timer 

interrupt?

▪ Typical time slice for process execution is 

10 to 100 milliseconds

▪ Typical context switch overhead is (switch between processes)

0.01 milliseconds 

▪ 0.1% of the time slice (1/1000 th)
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QUESTION: TIME SLICE

 Questions from 1/15

 C Review Survey –  Closed Jan 17 AOE

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi-tasking
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OBJECTIVES – 1/20

 Preemptive multitasking initiates “trap” 

into the OS code to determine:

 Whether to continue running the current process,

or switch to a dif ferent one.

 If  the decision is made to switch, the OS performs a 

context switch swapping out the current process for a new one.
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CONTEXT SWITCH

1. Save register values of the current process to its kernel 

stack

▪ General purpose registers 

▪ PC: program counter (instruction pointer)

▪ kernel stack pointer

2. Restore soon-to-be-executing process from its kernel 

stack

3. Switch to the kernel stack for the soon-to-be-executing 

process 
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CONTEXT SWITCH - 2

67 68
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Context Switch

 What happens if during an interrupt (trap to kernel 

mode), another interrupt occurs?

 Linux

▪ < 2.6 kernel: non-preemptive kernel

▪ >= 2.6 kernel: preemptive kernel
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INTERRUPTED INTERRUPTS

Use “locks” as markers of regions of 

non-preemptibility (non-maskable interrupt)

Preemption counter (preempt_count)

▪ begins at zero

▪ increments for each lock acquired (not safe to preempt)

▪ decrements when locks are released

 Interrupt can be interrupted when preempt_count=0

▪ It is safe to preempt (maskable interrupt) 

▪ the interrupt is more important 
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PREEMPTIVE KERNEL

QUESTIONS

73 74

75 76

77
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