TCSS 422 A — Winter 2026
School of Engineering and Technology

1/20/2026

TCSS 422: OPERATING SYSTEMS

The Process API &
Limited Direct Execution

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2026]

Sy 202028) School of Engineering and Technology, University of Washington

OBJECTIVES - 1/20

|- Questions from 1/15 |

= C Review Survey - Closed Jan 17 AOE
= Assignment O - Update
= Chapter 5: Process API
= fork(), wait(), exec()
= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

TCSS422: Operating Systems Winter 2026] 2

‘ anuanv207202¢ School of Engineering and Technology, University of Washington - Tacoma

TEXT BOOK COUPON

TCSS 422 - OFFICE HRS - WINTER 2026

= 15% off textbook code: AAC72SAVE15

= https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-

arpaci-dusseau/operating-systems-three-easy-pieces-
hardcover-version-110/hardcover/product-
15gjeeky.html?q=three+easy+pieces+operating+systems&pa
e=1&pageSize=4

= With coupon textbook is only $33.79 + tax & shipping

TCS5422: Operating Systems [Winter 2026] s

202028 School of Engineering and Technology, University of Washington - Tacoma.

= Offlce Hours plan for Winter:

= Tuesday 2:30 - 3:30 pm Instructor Wes, Zoom

= Tue/Thur 6:00 - 7:00 pm Instructor Wes, CP 229/Zoom
= Tue 6:00 - 7:00 pm GTA Robert, Zoom/Room TBA

= Wed 1:00 - 2:00 pm GTA Robert, Zoom/Room TBA

= |nstructor is available after class at 6pm in CP 229
each day

TCS5422: Operating Systems Winter 2026] w4

‘ anuanv20izo2€ School of Engineering and Technology, University of Washington - Tacoma

TCSS 422 DISCORD SERVER

ONLINE DAILY FEEDBACK SURVEY

= Please join the TCSS 422 A - Winter 2026 Discord Server

= https://discord.gg/rR2yUDhgmq

= Under Edit Server Profile:
Please update your ‘Server Nickname’
to your real name or UW NET ID
THANK YOU

TCS3422; Operating Systems [Winter 2026] s

(EIFRERED School of Engineering and Technology, University of Washington - Tacoma

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TCS5422A > Assignments

Spring 2021
Home

Announcements

Joom * Upcoming Assignments
Syllabus s TCSS422 - Online Daily Feedback Survey - 4/1
I . I - Available until Apr 5 at 11:5%pm | DueApr 5 at 10pm | -/1pts
. Ao e .
uter Operating Systems [Spring 2025] s

TCSS422:
‘ ELERFRETD ‘ School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L4.1

https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://discord.gg/rR2yUDhgmq
https://discord.gg/rR2yUDhgmq

TCSS 422 A — Winter 2026
School of Engineering and Technology

TCS5 422 - Online Daily Feedback Survey - 4/1

Quiz Instructions

Question 1 05ps
On.a scale of 1 to 10, p your perspective i in taday's
el
1 2 3 a s s 7 8 % 1
metly
mevien 18 e a0 nevien e e
Question 2 05pt

Please rate the pace of today’s dass:

TCSS422: Computer Operating Systems [Spring 2025]

lenuary. 20,2026 School of Engineering and Technology, University of Washington - Tacoma L7

FEEDBACK FROM 1/15

= How does “2>&1” work? - redirection of stderr

= Each process in Linux has 3 files:

= filehandle=0 for standard input (stdin)

= filehandle=1 for standard output (stdout)

= filehandle=2 for standard error (stderr)

= redirect stdin with “<“

= redirect stdout with “>”

= redirect stderrr with “2>”

= &0 refers to stdin, &1 refers to stdout, &2 refers to stderr

./a0.sh >output.txt 2>output.err
./a0.sh >output.txt 2>&l

1/20/2026

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class

= 41 of 46 respondents - 89.13%!!
= 30 in-person, 11 online
= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - 6.54 (1 - previous 6.34)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 4.73 (4 - previous 5.13)

TCS5422: Computer Operating Systems [Spring 2025)

School of Engineering and Technology, University of Washington - Tacoma we

‘ January 20, 2026

TCS5422: Operating Systems [Winter 2026]

‘ January20,2026 School of Engineering and Technology, University of Washington - Tacoma.

FEEDBACK - 3

= Besides C programs, do programs in other languages like C++
n va also hav In, n rrIn Linux?

= YES

= In operating systems, what deflnes falr CPU sharing?
= Processes with the same priority-level will receive roughly an
equal share of time to run on the CPU (called ‘CPU timeshare’)

= Are page faults part of the mechanisms used for lazy-loading?
= A page fault occurs when a memory page (e.g. 4k) is needed,
but it is not present in the physical RAM

= This could be caused by lazy-loading, because the OS initially loaded
only the few pages that were required to run a program

TCSS422: Operating Systems [Winter 2026]
‘ (EIFRERED School of Engineering and Technology, University of Washington - Tacoma L

FEEDBACK - 2
= time command - creates a separate process which times the
“internal” child command
= time command writes time output to /dev/stderr
= Confusion: tim not wrl Internal command”
stderr stream
time ./test4 >/dev/null 2>&l
= Timing results still go to console because test4’s stderr was
redirect to /dev/null, not the time command’s output
{ time ./test4; } 2>/dev/null
= To hide the timing output, we need to isolate the time
command with {}'s, to redirect time’s stderr to /dev/null
[omanaoams [T e sman e 200 gt - eams
10

OBJECTIVES - 1/20

= Questions from 1/15
= C Revlew Survey - Cl
= Assignment O - Update
= Chapter 5: Process API
= fork(), wait(), exec()
= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking

n 17 AOE

= Context switching and preemptive multi-tasking

TC55422: Operating Systems [Winter 2026] 2
School of Engineering and Technology, University of Washington - Tacoma

‘ January 20, 2026

11

Slides by Wes J. Lloyd

12

L4.2

TCSS 422 A — Winter 2026
School of Engineering and Technology

1/20/2026

OBJECTIVES - 1/20

= Questions from 1/15
= C Review Survey - Closed Jan 17 AOE
| = Assignment O - Update |

= Chapter 5: Process API
= fork(), wait(), exec()
= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

= Chapter 4: Linux process data structure - task_struct

TCS5422: Operating Systems [Winter 2026]

‘ fanuany2072026) School of Engineering and Technology, University of Washington - Tacoma

1813

ASSIGNMENT O

= In the homework, it specifies to use “non-interactive”

commands. What does thls mean exactly?

= An non-interactive command does not require any input

from the user (i.e. from the keyboard)

= Non-interactive commands and scripts can run entirely on

their own without intervention
= These commands are considered “headless” in
that they don’t feature a USER INTERFACE,
either a GUI, or TUI
= What Is a TUI?
= *Text-based User Interface
TUI Is also a bird >

TCSS422: Operating Systems Winter 2026]

‘ anuanv207202¢ School of Engineering and Technology, University of Washington - Tacoma

13

14

TCSS 422 - SET VMS

hosted Ubuntu 24.04 VMs for TCSS 422 - Winter 2026

= Request submitted for School of Engineering and Technology

TCS5422: Operating Systems [Winter 2026]

January 20, 2026 School of Engineering and Technology, University of Washington - Tacoma

La.15

FINISH CHAPTER 4

= Switch to Lecture 3 Slides
= Slides L3.37 to L3.48

TCS5422: Operating Systems Winter 2026]

anuanv20izo2€ School of Engineering and Technology, University of Washington - Tacoma

416

15

CHAPTER 5:

C PROCESS API

TCSS422: Operating Systems [Winter 2026]

TR School of Engineering and Technology, University of Washington -

17

Slides by Wes J. Lloyd

16

OBJECTIVES - 1/20

= Questions from 1/15
= C Review Survey - Closed Jan 17 AOE
= Assignment O - Update
= Chapter 5: Process API
wait(), exec()
= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking

18

L4.3

TCSS 422 A — Winter 2026 1/20/2026
School of Engineering and Technology

fork()) ¢ FORK EXAMPLE

= Creates a new process - think of “a fork in the road” = pil.c
= “Parent” process is the original
“ s ” #include <stdio.h>
= Creates “child” process of the program from the current Finclade otdlinone
executlon point #include <unistd.h>
= Book says “pretty odd” at main(int arge, char *argv(l)(
~ B printf("hello world (pid:%d)\n", (int) getpid());
= Creates a duplicate program instance (these are processes!) l» t rc = fork();
£ (rc < 0) { £ failed; exit
= Copy of fprintf(stderr, "fork failed\n");
= Address space (memory) p o o .
= Register printf("hello, I am child (pid:%d)\n", (int) getpid());
) ((main)
= Program Counter (PC) printf("hello, I am parent of %d (pid:%d)\n",
» (int) tpid ()
= Fork returns . rc, (int) getpi.
= child PID to parent , o
= 0 to child
TCSS422: Operating Systems [Winter 2026] TCSS422: Operating Systems [Winter 2026]
‘ fanuany2072026) School of Engineering and Technology, University of Washington - Tacoma La19 ‘ anuanv207202¢ School of Engineering and Technology, University of Washington - Tacoma 1420

19 20

FORK EXAMPLE - 2

= Non deterministic ordering of execution

prompt> ./pl

hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)

prompt>

prompt> ./pl

hello world (pid:29146)

hello, I am child (pid:29147)

hello, T am parent of 29147 (pid:29146)

HE DY e WORIDY Lo Wl

= CPU scheduler determines which to run first

TC55422; Operating Systems [Winter 2026] TC55422: Operating Systems [Winter 2026]
‘ 202028 School of Engineering and Technology, University of Washington - Tacoma L2t January20,2026 School of Engineering and Technology, University of Washington - Tacoma 122

21 22

CLASS BREAK - QUESTION

= What is bootstrapping?

= ‘bootstrapping’ refers to initialization steps and start-up
activities to get a program or system up and ready to run

= For operating systems, bootstrapping is referred to as
‘booting’

= For a Linux OS, bootstrapping is the loading of the Linux WE WI LL RETU RN AT
kernel (at /boot/vmlinuz), and all associated start-up
activities like launching the init process (PID 1), etc. 5 OSPM

= Can you fInd the size of your Linux kernel in MB ?

TCSS422: Operating Systems [Winter 2026] TCSS422: Operating Systems [Winter 2026]
‘ (e School of Engineering and Technology, University of Washington - Tacoma 2 SR D School of Engineering and Technology, University of Washington -

23 24

Slides by Wes J. Lloyd L4.4

TCSS 422 A — Winter 2026
School of Engineering and Technology

1/20/2026

OBJECTIVES - 1/20

= Questions from 1/15
= C Review Survey - Closed Jan 17 AOE
= Assignment O - Update
= Chapter 5: Process API
= fork(

= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking

TCS5422: Operating Systems [Winter 2026)
School of Engineering and Technology, Un

ity of Washington - Tacoma

wait() S

= wait(), waitpid()
= Called by parent process

= Waits for a child process to finish executing

= Not a sleep() function

= Provides some ordering to multi-process execution

TC55422; Operating Systems [Winter 2026]
‘ anuanv207202¢ School of Engineering and Technology, University of Washington - Tacoma 1428

25

FORK WITH WAIT

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#include wait.h>
main (arge, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());

re
(re <
fprintf (stderr,
exit(1);

) (rc == 0) {

printf("hello, I am child (pid:%d)\n", (int) getpid());
()

ork();

fork failed\n");

t (NULL

we
printf("hello, I ent of %d (wc:¥d) (pid:sd)\n",
re, we, (int) getpid());

TC55422; Operating Systems [Winter 2026]
‘ January20,2026 School of Engineering and Technology, University of Washington - Tacoma

1427

26

FORK WITH WAIT - 2

= Deterministic ordering of execution

prompt> ./p2

hello world (pid:29266)
hello, I am child (pid:29267
hello, I am parent of 29267 (4
prompt>

9267) (pid:29266)

TC55422: Operating Systems [Winter 2026]
‘ January20,2026 School of Engineering and Technology, University of Washington - Tacoma .28

27

FORK EXAMPLE

= Linux example

TCSS422: Operating Systems [Winter 2026]
‘ (EIFRERED School of Engineering and Technology, University of Washington - Tacoma

14.29

29

Slides by Wes J. Lloyd

28

OBJECTIVES - 1/20

= Questions from 1/15
= C Review Survey - Closed Jan 17 AOE
= Assignment O - Update
= Chapter 5: Process API

= fork(), wait()[exec() |
= Chapter 6: Limited Direct Execution

= Direct execution

= Limited direct execution

= CPU modes

= System calls and traps

= Cooperative multi-tasking

021
School of Engineering and Technology, University of Washington - Tacoma

30

L4.5

TCSS 422 A — Winter 2026
School of Engineering and Technology

1/20/2026

exec() >k

= Supports running an external program by “transferring control”
= 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

= execl(), execlp(), execle(): const char *arg (example: execl.c)

Provide cmd and args as individual params to the function
Each arg is a pointer to a null-terminated string
ODD: pass a variable number of args: (arg0, argl, .. argn)

= execv(), execvp(), execvpe() (example: exec.c)

Provide cmd and args as an Array of pointers to strings

Strings are null-terminated
First argument is name of command being executed
Fixed number of args passed in

TC55422; Operating Systems [Winter 2026]
fanuany2072026) School of Engineering and Technology, University of Washington - Tacoma L1

EXEC EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/wait.h>
main (arge, ar *argv(]){
printf("hello world (pid:®d)\n", (int) getpid());
rc = fork():
(rc < 0) {
fprintf (stderr, "fork failed\n");
exit(1);
} (rc ((
printf("hello, I am child (pid:%d)\n", (int) getpid());
char *myargs[3];
myargs [0] = strdup("wc") ; wer
myargs[1] = strdup("p3.c");
myargs [2) = NULL;
TCS5422: Operating Systems [Winter 2026
‘ anuanv207202¢ School of E:gineerigngvand Tec[hnalagy, Uni]vers\ty of Washington - Tacoma 132

31

32

EXEC EXAMPLE - 2

‘ execvp (myargs (0], myargs);

printf("this shouldn’t print out");
1 {
c = wait (NULL);
printf("hello, I am parent of 5d (wc:¥d) (pid:%d)\n",
re, we, (int) getpid());

prompt> ./p3
hello world (pid:29383)

hello, I am child (pid:29384)

29 107 1030 p3.c

hello, I am parent of 29384 (wc:29384) (pid:29383)
prompt>

TC55422; Operating Systems [Winter 2026]
January20,2026 School of Engineering and Technology, University of Washington - Tacoma L33

EXEC WITH FILE REDIRECTION (OUTPUT)

= Example:
https://faculty.washington.edu/wlloyd/courses/tcss422/examples/exec2.c

#include <stdio.h>
<stdlib.h>
<unistd.h>
<string.h>
<fentl.h>
#include <sys/wait.h>

main(int argc, char *argv(]){
rc

fprintf (stderr, "fork failed\n");
exit(1l);
} (xc = 0)
close (STDOUT_FILENO) ;
q open (". /pd.oatput”, O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

TC55422: Operating Systems [Winter 2026]
‘ January20,2026 School of Engineering and Technology, University of Washington - Tacoma L34

33

FILE MODE BITS

q S_TRWXU
read, write, execute/search by owner
S_IRUSR
read permission, owner
S_TWUSR
wEite permission, owner
S_IXUSR
execute/search permission, owner
S_IRWXG
read, write, execute/search by group
S_IRGRP
read permission, group
S_IWGRP
write permission, group
S_IXGRP
execute/search permission, group
S_IRWXO
read, write, execute/search by others
S_IROTH
read permission, others
S_IWOTH
write permission, others
TCSS422: Operating Systems [Winter 2026]
(e e e e 143

35

Slides by Wes J. Lloyd

34

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

*myargs [3];
nyargs(0] = strdup
myargs(1] = strdup("pd.
myargs([2] = NULL;
execvp (myargs[0], myargs);

} {
int we = wait (NULL);

prompt> ./p4
prompt> cat pd.output
32 109 846 pd.c
prompt>

7CS5422: Operating Systems [Winter 2026]
e School of Engineering and Technology, University of Washington -Tacoma 1430

36

L4.6

TCSS 422 A — Winter 2026
School of Engineering and Technology

BLOCKING API CALL

to wait for a response/outcome

have we identified
thus far ?

(. Descheduled
| Running

/ Scheduled
= Does making a blocking o \
API call create a voluntary "O:initiate — 1/0:
or non-voluntary context / \

switch ? Blocked |

= What blocking APls /'W" o

| i
=

= Blocking API calls transfer control of the CPU to a kernel
thread and force the user process from RUNNING to BLOCKED

/

done

TCS5422: Operating Systems [Winter 2026]

l fanuany2072026) School of Engineering and Technology, University of Washington - Tacoma

1437

37

QUESTION: PROCESS API

= Which Process API call is used to launch a different
program from the current program?

= (a) Fork()

= (b) Exec()

= (c) Wait()

= (d) None of the above
= (e) All of the above

TCS5422: Operating Systems [Winter 2026]

l January 20,2026 School of Engineering and Technology, University of Washington - Tacoma

14.39

39

CH. 6:

LIMITED DIRECT
EXECUTION

TCSS422: Operating Systems [Winter 2026]

]
Sonu a0 2020 School of Engineering and Technology, University of Washington -

41

Slides by Wes J. Lloyd

1/20/2026

.11) < Activities

1O

& Visual settings £ Edit

Which Process API call is used to launch a different program from the
current program?

s 3

38

OBJECTIVES - 1/20

= Questions from 1/15
= C Review Survey - Closed Jan 17 AOE
= Assignment O - Update
= Chapter 5: Process API
= fork(), wait(), exec()

| = Chapter 6: Limited Direct Executionl

= Direct execution

= Limited direct execution

= CPU modes

= System calls and traps

= Cooperative multi-tasking
= Conte witchi d pre

January 20, 2026

40

OBJECTIVES - 1/20

® Questions from 1/15
= C Review Survey - Closed Jan 17 AOE
= Assighment O - Update
= Chapter 5: Process API
= fork(), wait(), exec()
= Chapter 6: Limited Direct Execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

TC55422: Operating Systems [Winter 2026]

l ELERFRETD School of Engineering and Technology, University of Washington - Tacoma

La.a2

42

L4.7

TCSS 422 A — Winter 2026
School of Engineering and Technology

1/20/2026

VIRTUALIZING THE CPU

= How does the CPU support running so many jobs
simultaneously?
= Time Sharing

= Tradeoffs:

= Performance
Excessive overhead
= Control
Fairness
Security

= Both HW and OS support
is used

TC55422; Operating Systems [Winter 2026]
fanuany2072026) School of Engineering and Technology, University of Washington - Tacoma Laas

COMPUTER BOOT SEQUENCE:

OS WITH DIRECT EXECUTION

= What if programs could directly control the CPU / system?

0os Program

1. Create entry for process list
2. Allocate memory for
program

3. Load program into memory
4. Set up stack with arge /
argv

5. Clear registers

6. Execute call main ()

7. Run main ()
8. Execute return from main ()

9. Free memory of process
10. Remove from process list

TCS5422: Operating Systems [Winter 2026] Laaa
School of Engineering and Technology, University of Washington - Tacoma

‘ January 20, 2026

43

COMPUTER BOOT SEQUENCE:

OS WITH DIRECT EXECUTION

= What if programs could directly control the CPU / system?

0os Program

1. Create entry for process list
2. Allocate memory for

Without /imits on running programs,

the OS wouldn’t be in control of anything
and would

7.Run main ()
8. Execute return from main ()

5. Clear registers
6. Execute call main ()

9. Free memory of process
10. Remove from process list

TC55422; Operating Systems [Winter 2026]
January20,2026 School of Engineering and Technology, University of Washington - Tacoma Lads

45

CONTROL TRADEOFF

=Too little control:
= No security
= No time sharing

= Too much control:
=Too much OS overhead
= Poor performance for compute & I/0
= Complex APIs (system calls), difficult to use

TCSS422: Operating Systems [Winter 2026]
(EIFRERED School of Engineering and Technology, University of Washington - Tacoma L4z

47

Slides by Wes J. Lloyd

44

DIRECT EXECUTION - 2

= With direct executlon:

How does the OS stop a program from running, and switch
to another to support time sharing?

How do programs share disks and perform 1/0 if they are
given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures
such as linked lists grow over time?

TC55422: Operating Systems [Winter 2026]
‘ January20,2026 School of Engineering and Technology, University of Washington - Tacoma La48

46

CONTEXT SWITCHING OVERHEAD

Context Switching Totsl cost of

context sudtching

Multitasking

vs. Multitasking with context switching

sequential

Overhead

Time

7CS5422: Operating Systems [Winter 2026]
‘ e School of Engineering and Technology, University of Washington -Tacoma Lo

48

L4.8

TCSS 422 A — Winter 2026
School of Engineering and Technology

1/20/2026

OBJECTIVES - 1/20

= Questions from 1/15
= C Review Survey - Closed Jan 17 AOE
= Assignment O - Update
= Chapter 5: Process API
= fork(), wait(), exec()
= Chapter 6: Limited Direct Execution
= Direct execution
| = Limited direct execution |
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

TCS5422: Operating Systems [Winter 2026]

fanuany2072026) School of Engineering and Technology, University of Washington - Tacoma

L4.49

LIMITED DIRECT EXECUTION *

= 0S implements LDE to support time/resource sharing

= Limited direct execution means “only limited” processes
can execute DIRECTLY on the CPU in trusted mode

= TRUSTED means the process is trusted, and it can do
anything... (e.g. it is a system / kernel level process)

= Enabled by protected (safe) control transfer
= CPU supported context switch

= Provides data isolation

49

OBJECTIVES - 1/20

® Questions from 1/15
= C Review Survey - Closed Jan 17 AOE
= Assignment O - Update
= Chapter 5: Process API
= fork(), wait(), exec()
= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
| = CPU modes |
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

TC55422: Operating Systems [Winter 2026]
‘ January20,2026 School of Engineering and Technology, University of Washington - Tacoma.

La.51

TC55422; Operating Systems [Winter 2026]
anuanv207202¢ School of Engineering and Technology, University of Washington - Tacoma La.s0

= Utilize CPU Privilege Rings (Intel x86)
= rings O (kernel), 1 (VM kernel), 2 (unused), 3 (user)
access — no access

= User mode:
Application is running, but w/o direct I/0 access

= Kernel mode:
0S kernel is running performing restricted operations

TC55422: Operating Systems [Winter 2026]
‘ January20,2026 School of Engineering and Technology, University of Washington - Tacoma .52

51

CPU MODES

= User mode: ring 3 - untrusted

= Exception registers
= HALT instruction

= MMU instructions

= 0S memory access
=1/0 device access

= Kernel mode: ring 0 - trusted

= All instructions and registers enabled

= Some instructions and registers are disabled by the CPU

TCS3422; Operating Systems [Winter 2026]

‘ (EIFRERED School of Engineering and Technology, University of Washington - Tacoma

1453

53

Slides by Wes J. Lloyd

52

OBJECTIVES - 1/20

= Questions from 1/15
= C Review Survey - Closed Jan 17 AOE
= Assignment O - Update
= Chapter 5: Process API
= fork(), wait(), exec()
= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
| = System calls and traps |
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

TC55422: Operating Systems [Winter 2026] Lass
School of Engineering and Technology, University of Washington - Tacoma

‘ January 20, 2026

54

L4.9

TCSS 422

A — Winter 2026

School of Engineering and Technology

1/20/2026

SYSTEM CALLS

= Implement restricted “OS” operations
= Kernel exposes key functions through an API:
= Device 1/0 (e.g. file 1/0)
= Task swapping: context switching between processes
= Memory management/allocation: malloc()
= Creating/destroying processes

TCS5422: Operating Systems [Winter 2026]

fanuany2072026) School of Engineering and Technology, University of Washington - Tacoma

La.5s

TRAPS:
SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Wininecode /N menusseniceouine

= Trap: any transfer to kernel mode

= Three kinds of traps

= System call: (planned) user > kernel
SYSCALL for 1/0, etc.

= Exception: (error) user > kernel

Div by zero, page fault, page protection error

= Interrupt: (event) user > kernel
Non-maskable vs. maskable
Keyboard event, network packet arrival, timer ticks
Memory parity error (ECC), hard drive failure

55

EXCEPTION TYPES

ption Synchronousva. User request vs. Usermaskablevs. ‘Withinva. between

= aepnatvonous coorved ronmasiatis Iniuctions

o o] Neremaskae
[e ——
Synchronous: User request User maskable Between
e Userrequest User maskatle Cr
[— [User maskatle Witin
— coerced User masatle witin
o T fr—=m Witin
e — Ut Wiin
Synchronous: Coerced Nonmaskable ‘Within
s e Nomsiatle Witin
Jun— coerced Normasiable witin
s Gocreed Nonmasiabe Witin

Resume

Resume

Resume

Resume

Resume

Resume

Terminate

Torminate

Terminate

TC55422; Operating Systems [Winter 2026]
‘ anuanv207202¢ School of Engineering and Technology, University of Washington - Tacoma La.58
05 © boot Hardware
(kemel made)
initilize trap table i
remambar address of
syscal handier
0s@run Hardware Program
(kemel mode) (user mods)
Create entryfor process lat
cata mem
Setup user stack with argy
Fill kel stack with ragiPC
roturn-from -trap

restare rags from kernal stack
move to user mode
Jump o main
#un maing)
=) Call st
trap inta 05
save rogs ta kernal stack

move to kernel made
jump to trap handler

Hande tisp
Do work of syscall
retur-from -0

restare regs from kemel stack

move to user meds
Jump 1o FC after tap
‘ retur from main

tuap (s exit (1)

Frea memory of pracess
Remove from process list

TCSS422: Operating Systems [Winter 2026]

26,
SEIETRFE, S School of Engineering and Technology, University of Washington - Tacoma L4.58

TC55422; Operating Systems [Winter 2026]
‘ 202028 School of Engineering and Technology, University of Washington - Tacoma L7
05 © boot Hardware
(kemel made)
nitiakize wap table .
remambar address of
syscall handler
os@run Hardware Program

(kemel mods) (user mods)

Create entry for process list
Allocate memary for program
Lead program inte memory
Setup usar stack with argy

Computer BOOT Sequence:

OS with Limited Direct Execution

move to kernel mode.
Jump to trap handler

Handle trsp

Do wark of syscal

retum-from-r
" restore regs from kernel stack

move to user mode

Jump to FC aftr trap.

return from main
t1ap {via ez (1)

Frea memory of pracess

Remove from process list

TCSS422: Operating Systems [Winter 2026]

SEIIETER), 20 School of Engineering and Technology, University of Washington - Tacoma

L4.59

59

Slides by Wes J. Lloyd

58

OBJECTIVES - 1/20

= Questions from 1/15
= C Review Survey - Closed Jan 17 AOE
= Assignment O - Update
= Chapter 5: Process API
= fork(), wait(), exec()
= Chapter 6: Limited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperatlve muItI-taskIng|

= Context switching and preemptive multi-tasking

TC55422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

14.60

‘ January 20, 2026

60

TCSS 422 A — Winter 2026
School of Engineering and Technology

MULTITASKING

= How/when should the OS regain control of the CPU to
switch between processes?

= Cooperative multitasking (mostly pre 32-bit)
= < Windows 95, Mac 0SX
= Opportunistic: running programs must give up control
User programs must call a special yleld system call
When performing 1/0
lllegal operations

= (POLLEV)
What problems could you for see with this approach?

TC55422; Operating Systems [Winter 2026]
‘ fanuany2072026) School of Engineering and Technology, University of Washington - Tacoma Las1
0 < Activities 5 Moderate &) Visual settings & Edit < >
ol
When pollis active respond at PollEv.comiweslloyd Send weslloyd and your message to 22333
B

What problems exist for regaining control of the

CPU with cooperative multitasking OSes? 20

Join by QR code

Join by Web Loadjng Scan with your camera app

PollEv.com/weslloyd

Join by Text

Send weslloyd and your message to
22333

1/20/2026

MULTITASKING

= How/when should the OS regain control of the CPU to
switch between processes?

lllegal operations

= (POLLEV)
What problems could you for see with this approach?

TCSS422: Operating Systems Winter 2026]

‘ anuanv207202¢ School of Engineering and Technology, University of Washington - Tacoma

462

62

QUESTION: MULTITASKING

= What problems exist for regaining the control of
the CPU with cooperative multitasking 0Ses?

TCS5422: Operating Systems Winter 2026]

‘ January20,2026 School of Engineering and Technology, University of Washington - Tacoma

La.6a

63

MULTITASKING - 2

= Preemptive multitasking (32 & 64 bit OSes)
= >= Mac 0SX, Windows 95+

=Timer interrupt
= Raised at some regular interval (in ms)
= Interrupt handling
Current program is halted
Program states are saved
0S Interrupt handler is run (kernel mode)

= (PollEV) What is a good interval for the timer interrupt?

TCS3422; Operating Systems [Winter 2026]

(EIFRERED School of Engineering and Technology, University of Washington -Tacoma

La.65

64

MULTITASKING - 2

= Preemptive multitasking (32 & 64 bit OSes)
= >= Mac 0SX, Windows 95+

gives OS the ability to

run again on a CPU.

Current program is halted
Program states are saved
0S Interrupt handler is run (kernel mode)

= (PollEV) What is a good interval for the timer interrupt?

L4.66

TC55422: Operating Systems [Winter 2026]

‘ ELERFRETD School of Engineering and Technology, University of Washington - Tacoma

65

Slides by Wes J. Lloyd

66

L4.11

TCSS 422 A — Winter 2026 1/20/2026
School of Engineering and Technology

11} < Activities £ Moderate &) Visual settings & Edit < >
2] “ .
When poll is active respond at PollEv.comiweslloyd ~ Send weslloyd and your message to 22333 Q U ESTI 0 N . TI M E S L I C E
£y
For an OS that uses a system timer to force
arbitrary context switches to share the CPU, @0 = For an OS that uses a system timer to force
what is a good value (in seconds) for the timer . .
ime"upt?g () arbitrary context switches to share the CPU, what
is a good value (in seconds) for the timer
interrupt?
Join by QR code
Join by Web Loadine Scan with your camera app
PollEv.com/weslloyd
Join by Text
Send weslloyd and your message to
22333
[manaoams [T e s e 200 g -Twoms
67 68

QUESTION: TIME SLICE OBJECTIVES - 1/20
= For an OS that uses a system timer to force " Questions from 1/15

arbitrary context switches to share the CPU, what = C Review Survey - Closed Jan 17 AOE
is a good value (in seconds) for the timer = Assignment O - Update
interrupt? = Chapter 5: Process API
=Typical time slice for process execution is = fork(), wait(), exec()

1 100 milli n = Chapter 6: Limited Direct Execution
=Typical context switch overhead is (switch between processes) - D.ire‘m exe‘cution .

0.01 millilseconds = Limited direct execution

= CPU modes

= System calls and traps
= Cooperative multi-tasking
= Context switc and

TC55422; Operating Systems [Winter 2026] C55422: Operating Systems
‘ January20,2026 School of Engineering and Technology, University of Washington - Tacoma Las9 January20,2026 School of Engineering and Te

0.1% of the time slice (1/1000t")

26]
), University of Washington - Tacoma

69 70

CONTEXT SWITCH CONTEXT SWITCH - 2

= Preemptive multitasking initiates “trap” 1. Save register values of the current process to its kernel
into the OS code to determine: stack

= General purpose registers
= PC: program counter (instruction pointer)
= kernel stack pointer

+ Whether to continue running the current process,
or switch to a dlfferent one.

+ If the decision is made to switch, the OS performs a

context swltch swapping out the current process for a new one. 2. Restore soon-to-be-executing process from its kernel
stack
3. Switch to the kernel stack for the soon-to-be-executing
process
TCSS422: Oy ating Syste [Winter 2026] TCSS422: Oy iting Syste [Winter 2026]

71 72

Slides by Wes J. Lloyd L4.12

TCSS 422 A — Winter 2026
School of Engineering and Technology

05 @ boot
(kermel mods) Hardware

- initiaize trap table
start interrupt timer

remember address of

syscall handlar

timer handler

- e
interrupt CPU in X ms

05 @ run Program
(kermel mods) Hardware {user moda)

Process A&

timer interrupt
save 10g5(A) 10 k-stack(A)
mave to kernel
Jump to trap handler
Handle the trap
Call switch() routine
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)
switch to kestack(B)
return-from-trap (into B)
restore regs(8) from k-stack(B)
fmove to user moda
Jump to 85 PC

Process B

TCSS422: Operating Systems [Winter 2026]

lenuary. 20,2026 School of Engineering and Technology, University of Washington - Tacoma

L1473

73

INTERRUPTED INTERRUPTS

mode), another interrupt occurs?

= Linux
= < 2.6 kernel: non-preemptive kernel
= >= 2.6 kernel: preemptive kernel

= What happens if during an interrupt (trap to kernel

TCS5422: Operating Systems [Winter 2026]

l January 20,2026 School of Engineering and Technology, University of Washington - Tacoma

1475

75

QUESTIONS

77

Slides by Wes J. Lloyd

1/20/2026

05 @ boot
(kermel mods) Hardware

initiaize trap table
remember address of
syscall handlar

timar handler
start interrupt timer

starttimar
interrupt CPU in X ms

Frogram

Context Switch

Call switch() routine
save regs(A) to proc-structiA]
restore regs(B) from proc-struct(B)
switch to kestack(B)
return-from-trap (into B)

restore regs(8) from k-stack(B)
move to user mode
Jump to B3 PC

Process B

TCS8422: Operating Systems [Winter 2026]

SRBLaL 20:202€) School of Engineering and Technology, University of Washington - Tacoma La74

74

PREEMPTIVE KERNEL

= Use “locks” as markers of regions of
non-preemptibility (non-maskable interrupt)

= Preemption counter (preempt_count)
= begins at zero

= increments for each lock acquired (not safe to preempt)
= decrements when locks are released

= |nterrupt can be interrupted when preempt_count=0
= |t is safe to preempt (maskable interrupt)
= the interrupt is more important

TCS5422: Operating Systems Winter 2026] 476
School of Engineering and Technology, University of Washington - Tacoma

l January 20, 2026

76

L4.13

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 1/20
	Slide 3: Text book coupon
	Slide 4: Tcss 422 – office hrs – Winter 2026
	Slide 5: TCSS 422 Discord server
	Slide 6: Online daily feedback survey
	Slide 7
	Slide 8: Material / pace
	Slide 9: Feedback from 1/15
	Slide 10: Feedback - 2
	Slide 11: Feedback - 3
	Slide 12: OBJECTIVES – 1/20
	Slide 13: OBJECTIVES – 1/20
	Slide 14: Assignment 0
	Slide 15: TCSS 422 – SET VMs
	Slide 16: Finish chapter 4
	Slide 17: Chapter 5: C process api
	Slide 18: OBJECTIVES – 1/20
	Slide 19: fork()
	Slide 20: Fork example
	Slide 21: Fork example - 2
	Slide 22: :(){ :|: & };:
	Slide 23: Class break - question
	Slide 24: We will return at 5:05pm
	Slide 25: OBJECTIVES – 1/20
	Slide 26: wait()
	Slide 27: Fork With wait
	Slide 28: Fork with wait - 2
	Slide 29: Fork example
	Slide 30: OBJECTIVES – 1/20
	Slide 31: exec()
	Slide 32: Exec example
	Slide 33: Exec example - 2
	Slide 34: Exec with file redirection (output)
	Slide 35: File mode bits
	Slide 36: exec w/ File redirection (output) - 2
	Slide 37: Blocking api call
	Slide 38
	Slide 39: Question: PROCESS API
	Slide 40: OBJECTIVES – 1/20
	Slide 41: CH. 6: Limited direct execution
	Slide 42: OBJECTIVES – 1/20
	Slide 43: Virtualizing the cpu
	Slide 44: Computer boot sequence: OS with Direct execution
	Slide 45: Computer boot sequence: OS with Direct execution
	Slide 46: Direct execution - 2
	Slide 47: Control tradeoff
	Slide 48: Context switching overhead
	Slide 49: OBJECTIVES – 1/20
	Slide 50: Limited direct execution
	Slide 51: OBJECTIVES – 1/20
	Slide 52: Cpu modes
	Slide 53: CPU modes
	Slide 54: OBJECTIVES – 1/20
	Slide 55: System calls
	Slide 56: TRAPS: System calls, Exceptions, interrupts
	Slide 57: Exception types
	Slide 58
	Slide 59
	Slide 60: OBJECTIVES – 1/20
	Slide 61: multitasking
	Slide 62: multitasking
	Slide 63
	Slide 64: Question: multitasking
	Slide 65: Multitasking - 2
	Slide 66: Multitasking - 2
	Slide 67
	Slide 68: QUESTION: TIME SLICE
	Slide 69: QUESTION: TIME SLICE
	Slide 70: OBJECTIVES – 1/20
	Slide 71: Context switch
	Slide 72: Context switch - 2
	Slide 73
	Slide 74
	Slide 75: Interrupted interrupts
	Slide 76: Preemptive kernel
	Slide 77: Questions

