
TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.1Slides by Wes J. Lloyd

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

The Process API &
Limited Direct Execution

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 4/8

 C Review Survey – Closes Friday April 11

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.2

OBJECTIVES – 4/10

1

2

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.2Slides by Wes J. Lloyd

 15% off textbook code: PUBLISHPAGES15 (through Fri Apr 11)

 https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-

arpaci-dusseau/operating-systems-three-easy-pieces-

hardcover-version-110/hardcover/product-

15gjeeky.html?q=three+easy+pieces+operating+systems&pag

e=1&pageSize=4

 With coupon textbook is only $33.79 + tax & shipping

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.3

TEXT BOOK COUPON

 Office Hours plan for Spring (by Zoom):

 Monday 11:30am - 12:30p GTA Xinghan

 Tuesday 11:30am - 12:30p GTA Xinghan

 Wednesday 11:00am - 12:00p Instructor Wes

 Friday 12:00pm - 1:00p Wes or Xinghan

 No office hours this Friday April 11 th

▪ Scheduling conflict for Wes & Xinghan

 Instructor is available after class at 6pm in CP 229

each day

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.4

TCSS 422 – OFFICE HRS – SPRING 2025

3

4

https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.3Slides by Wes J. Lloyd

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

April 10, 2025
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.5

ONLINE DAILY FEEDBACK SURVEY

April 10, 2025
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L4.6

5

6

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.4Slides by Wes J. Lloyd

 Please classify your perspective on material covered in today’s

class (39 of 63 respondents – 61.9% !!) precipitous drop =/

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.64 (- previous 5.86)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.29 (- previous 5.11)

April 10, 2025
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.7

MATERIAL / PACE

 So, it 's advantageous for a context switch to occur when a
program/process is blocked, but not when it 's ready to run
and just waiting?

 A context switch is the act of stopping a running process,
removing it from the CPU, and moving it to a blocked state
(voluntary CS), or placing it on the run queue (non -voluntary
CS)

 On the run queue, jobs of the same priority compete to be
rescheduled to run on the CPU based on how long they’ve
waited

 When a program is blocked, it remains blocked until
an interrupt fires signaling that the I/O result is available

▪ Process moves to the run queue and waits to be rescheduled to run
on the CPU

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.8

FEEDBACK FROM 4/8

7

8

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.5Slides by Wes J. Lloyd

 How is it communicated to the OS that a process is in a good

state for a voluntary context switch?

 Changing a process’s state from RUNNING to BLOCKED will

automatically remove it from the CPU (voluntary C/S)

 The OS does not perform voluntary context switches

 Example:

 Call to sleep function: sleep(1);

 Sleep function uses a kernel API to request an interrupt

(signal) be generated to wake up the process when the sleep

time elapses

 Sleep function moves process from RUNNING to BLOCKED

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.9

FEEDBACK - 2

 sleep() is the C function in Linux that sleeps for n seconds

1. Using ChatGPT (or another LLM) determine if Linux C sleep() is a
blocking API call

2. Using ChatGPT or Google determine which header file sleep() is
defined in

 We suspect that sleep() uses a Linux kernel API call to actually do
the sleeping

 WHY ? (discuss)

 Linux kernel API calls are privileged functions which every -day
programmers do not usually call

 Linux sleep() provides a convenience wrapper function to make the
programmer’s life easier

3. Using Chat GPT, determine which Linux kernel API function(s) are
used to implement the user space sleep() function which serves
as a wrapper.

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.10

CHATGPT ACTIVITY

9

10

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.6Slides by Wes J. Lloyd

 Please join the TCSS 422 A – Spring 2025 Discord Server

https://discord.gg/Jh5Cp8TMYn

 Under Edit Server Profile:

Please update your ‘Server Nickname’

to your real name or UW NET ID

THANK YOU

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.11

TCSS 422 DISCORD SERVER

 Questions from 4/8

 C Review Survey – Closes Friday April 11

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.12

OBJECTIVES – 4/10

11

12

https://discord.gg/Jh5Cp8TMYn

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.7Slides by Wes J. Lloyd

C REVIEW SURVEY -

AVAILABLE THRU 4/11

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L4.13

 Questions from 4/8

 C Review Survey – Closes Friday April 11

 Assignment 0 - Update

 Chapter 4: Linux process data structure - task_struct

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.14

OBJECTIVES – 4/10

13

14

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.8Slides by Wes J. Lloyd

 In the homework, it specifies to use “non -interactive”
commands. What does this mean exactly?

 An non-interactive command does not require any input
from the user (i.e. from the keyboard)

 Non-interactive commands and scripts can run entirely on
their own without intervention

 These commands are considered “headless” in
that they don’t feature a USER INTERFACE,
either a GUI, or TUI

 What is a TUI?

▪ *Text-based User Interface

▪ TUI is also a bird →

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.15

ASSIGNMENT 0

 Request submitted for School of Engineering and Technology

hosted Ubuntu 24.04 VMs for TCSS 422 – Spring 2025

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.16

TCSS 422 – SET VMS

15

16

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.9Slides by Wes J. Lloyd

 Switch to Lecture 3 Slides

 Slides L3.43 to L3.41

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.17

FINISH CHAPTER 4

 Questions from 4/8

 C Review Survey – Closes Friday April 11

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking
April 10, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.18

OBJECTIVES – 4/10

17

18

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.10Slides by Wes J. Lloyd

CHAPTER 5:

C PROCESS API

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L4.19

 Creates a new process - think of “a fork in the road”

 “Parent” process is the original

 Creates “child” process of the program from the current
execution point

 Book says “pretty odd”

 Creates a duplicate program instance (these are processes!)

 Copy of

▪ Address space (memory)

▪ Register

▪ Program Counter (PC)

 Fork returns

▪ child PID to parent

▪ 0 to child

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.20

fork()

19

20

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.11Slides by Wes J. Lloyd

 p1.c

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.21

FORK EXAMPLE

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char *argv[]){

 printf("hello world (pid:%d)\n", (int) getpid());

 int rc = fork();

 if (rc < 0) { // fork failed; exit

 fprintf(stderr, "fork failed\n");

 exit(1);

 } else if (rc == 0) { // child (new process)

 printf("hello, I am child (pid:%d)\n", (int) getpid());

 } else { // parent goes down this path (main)

 printf("hello, I am parent of %d (pid:%d)\n",

 rc, (int) getpid());

 }

 return 0;

}

 Non deterministic ordering of execution

or

 CPU scheduler determines which to run first

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.22

FORK EXAMPLE - 2

prompt> ./p1

hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)

hello, I am child (pid:29147)

prompt>

prompt> ./p1

hello world (pid:29146)

hello, I am child (pid:29147)

hello, I am parent of 29147 (pid:29146)

prompt>

21

22

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.12Slides by Wes J. Lloyd

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.23

:(){ :|: & };:

 Questions from 4/8

 C Review Survey – Closes Friday April 11

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking
April 10, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.24

OBJECTIVES – 4/10

23

24

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.13Slides by Wes J. Lloyd

 wait(), waitpid()

 Called by parent process

 Waits for a child process to finish executing

 Not a sleep() function

 Provides some ordering to multi -process execution

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.25

wait()

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.26

FORK WITH WAIT

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/wait.h>

int main(int argc, char *argv[]){

 printf("hello world (pid:%d)\n", (int) getpid());

 int rc = fork();

 if (rc < 0) { // fork failed; exit

 fprintf(stderr, "fork failed\n");

 exit(1);

 } else if (rc == 0) { // child (new process)

 printf("hello, I am child (pid:%d)\n", (int) getpid());

 } else { // parent goes down this path (main)

 int wc = wait(NULL);

 printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

 rc, wc, (int) getpid());

 }

 return 0;

}

25

26

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.14Slides by Wes J. Lloyd

 Deterministic ordering of execution

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.27

FORK WITH WAIT - 2

prompt> ./p2

hello world (pid:29266)

hello, I am child (pid:29267)

hello, I am parent of 29267 (wc:29267) (pid:29266)

prompt>

 Linux example

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.28

FORK EXAMPLE

27

28

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.15Slides by Wes J. Lloyd

 Questions from 4/8

 C Review Survey – Closes Friday April 11

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking
April 10, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.29

OBJECTIVES – 4/10

 Supports running an external program by “transferring control”

 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

 execl(), execlp(), execle(): const char *arg (example: execl.c)

Provide cmd and args as individual params to the function

Each arg is a pointer to a null -terminated string

ODD: pass a variable number of args: (arg0, arg1, .. argn)

 execv(), execvp(), execvpe() (example: exec.c)

Provide cmd and args as an Array of pointers to strings

Strings are null -terminated

First argument is name of command being executed

Fixed number of args passed in

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.30

exec()

29

30

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.16Slides by Wes J. Lloyd

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.31

EXEC EXAMPLE

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <sys/wait.h>

int main(int argc, char *argv[]){

 printf("hello world (pid:%d)\n", (int) getpid());

 int rc = fork();

 if (rc < 0) { // fork failed; exit

 fprintf(stderr, "fork failed\n");

 exit(1);

 } else if (rc == 0) { // child (new process)

 printf("hello, I am child (pid:%d)\n", (int) getpid());

 char *myargs[3];

 myargs[0] = strdup("wc"); // program: "wc" (word count)

 myargs[1] = strdup("p3.c"); // argument: file to count

 myargs[2] = NULL; // marks end of array

 …

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.32

EXEC EXAMPLE - 2

…

 execvp(myargs[0], myargs); // runs word count

 printf("this shouldn’t print out");

 } else { // parent goes down this path (main)

 int wc = wait(NULL);

 printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

 rc, wc, (int) getpid());

 }

 return 0;

}

prompt> ./p3

hello world (pid:29383)

hello, I am child (pid:29384)

29 107 1030 p3.c

hello, I am parent of 29384 (wc:29384) (pid:29383)

prompt>

31

32

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.17Slides by Wes J. Lloyd

 Example:
https://faculty.washington.edu/wlloyd/courses/tcss422/examples/exec2.c

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.33

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <fcntl.h>

#include <sys/wait.h>

int

main(int argc, char *argv[]){

 int rc = fork();

 if (rc < 0) { // fork failed; exit

 fprintf(stderr, "fork failed\n");

 exit(1);

 } else if (rc == 0) { // child: redirect standard output to a file

 close(STDOUT_FILENO);

 open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

 …

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.34

FILE MODE BITS

S_IRWXU

read, write, execute/search by owner

S_IRUSR

read permission, owner

S_IWUSR

write permission, owner

S_IXUSR

execute/search permission, owner

S_IRWXG

read, write, execute/search by group

S_IRGRP

read permission, group

S_IWGRP

write permission, group

S_IXGRP

execute/search permission, group

S_IRWXO

read, write, execute/search by others

S_IROTH

read permission, others

S_IWOTH

write permission, others

33

34

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.18Slides by Wes J. Lloyd

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.35

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

…

 // now exec "wc"...

 char *myargs[3];

 myargs[0] = strdup("wc"); // program: "wc" (word count)

 myargs[1] = strdup("p4.c"); // argument: file to count

 myargs[2] = NULL; // marks end of array

 execvp(myargs[0], myargs); // runs word count

 } else { // parent goes down this path (main)

 int wc = wait(NULL);

 }

 return 0;

}

prompt> ./p4

prompt> cat p4.output

32 109 846 p4.c

prompt>

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L4.36

35

36

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.19Slides by Wes J. Lloyd

 Which Process API call is used to launch a different

program from the current program?

 (a) Fork()

 (b) Exec()

 (c) Wait()

 (d) None of the above

 (e) All of the above

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.37

QUESTION: PROCESS API

WE WILL RETURN AT

5:00PM

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L4.38

37

38

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.20Slides by Wes J. Lloyd

 Questions from 4/8

 C Review Survey – Closes Friday April 11

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking
April 10, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.39

OBJECTIVES – 4/10

CH. 6:

LIMITED DIRECT

EXECUTION

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L4.40

39

40

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.21Slides by Wes J. Lloyd

 Questions from 4/8

 C Review Survey – Closes Friday April 11

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.41

OBJECTIVES – 4/10

 How does the CPU support running so many jobs

simultaneously?

 Time Sharing

 Tradeoffs:

▪ Performance

▪ Excessive overhead

▪ Control

▪ Fairness

▪ Security

 Both HW and OS support

is used

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.42

VIRTUALIZING THE CPU

41

42

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.22Slides by Wes J. Lloyd

 What if programs could directly control the CPU / system?

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.43

COMPUTER BOOT SEQUENCE:

OS WITH DIRECT EXECUTION

OS Program

1. Create entry for process list
2. Allocate memory for
program
3. Load program into memory
4. Set up stack with argc /
argv

5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

 What if programs could directly control the CPU / system?

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.44

COMPUTER BOOT SEQUENCE:

OS WITH DIRECT EXECUTION

OS Program

1. Create entry for process list
2. Allocate memory for
program
3. Load program into memory
4. Set up stack with argc /
argv

5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

Without limits on running programs,
the OS wouldn’t be in control of anything

and would “just be a library”

43

44

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.23Slides by Wes J. Lloyd

 With direct execution:

How does the OS stop a program from running, and switch

to another to support time sharing?

How do programs share disks and perform I/O if they are

given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures

such as linked lists grow over time?

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.45

DIRECT EXECUTION - 2

 Too little control:

▪ No security

▪ No time sharing

 Too much control:

▪ Too much OS overhead

▪ Poor performance for compute & I/O

▪ Complex APIs (system calls), difficult to use

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.46

CONTROL TRADEOFF

45

46

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.24Slides by Wes J. Lloyd

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.47

CONTEXT SWITCHING OVERHEAD

Time

Overhead

 Questions from 4/8

 C Review Survey – Closes Friday April 11

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.48

OBJECTIVES – 4/10

47

48

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.25Slides by Wes J. Lloyd

 OS implements LDE to support time/resource sharing

 Limited direct execution means “only limited” processes

can execute DIRECTLY on the CPU in trusted mode

 TRUSTED means the process is trusted, and it can do

anything… (e.g. it is a system / kernel level process)

 Enabled by protected (safe) control transfer

 CPU supported context switch

 Provides data isolation

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.49

LIMITED DIRECT EXECUTION

 Questions from 4/8

 C Review Survey – Closes Friday April 11

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.50

OBJECTIVES – 4/10

49

50

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.26Slides by Wes J. Lloyd

 Utilize CPU Privilege Rings (Intel x86)

▪ rings 0 (kernel), 1 (VM kernel), 2 (unused), 3 (user)

 User mode:

Application is running, but w/o direct I/O access

 Kernel mode:

OS kernel is running performing restricted operations

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.51

CPU MODES

access no access

 User mode: ring 3 - untrusted

▪ Some instructions and registers are disabled by the CPU

▪ Exception registers

▪ HALT instruction

▪MMU instructions

▪ OS memory access

▪ I/O device access

 Kernel mode: ring 0 – trusted

▪ All instructions and registers enabled

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.52

CPU MODES

51

52

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.27Slides by Wes J. Lloyd

 Questions from 4/8

 C Review Survey – Closes Friday April 11

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.53

OBJECTIVES – 4/10

 Implement restricted “OS” operations

 Kernel exposes key functions through an API:

▪ Device I/O (e.g. file I/O)

▪ Task swapping: context switching between processes

▪Memory management/allocation: malloc()

▪ Creating/destroying processes

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.54

SYSTEM CALLS

53

54

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.28Slides by Wes J. Lloyd

 Trap: any transfer to kernel mode

 Three kinds of traps

▪ System call: (planned) user → kernel

▪ SYSCALL for I/O, etc.

▪ Exception: (error) user → kernel

▪ Div by zero, page fault, page protection error

▪ Interrupt: (event) user → kernel

▪ Non-maskable vs. maskable

▪ Keyboard event, network packet arrival, timer ticks

▪ Memory parity error (ECC), hard drive failure

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.55

TRAPS:

SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Exception type
Synchronous vs.

asynchronous

User request vs.

coerced

User maskable vs.

nonmaskable

Within vs. between

instructions
Resume vs. terminate

I/O device request Asynchronous Coerced Nonmaskable Between Resume

Invoke operating system Synchronous User request Nonmaskable Between Resume

Tracing instruction execution Synchronous User request User maskable Between Resume

Breakpoint Synchronous User request User maskable Between Resume

Integer arithmetic overflow Synchronous Coerced User maskable Within Resume

Floating-point arithmetic overflow

or underflow
Synchronous Coerced User maskable Within Resume

Page fault Synchronous Coerced Nonmaskable Within Resume

Misaligned memory accesses Synchronous Coerced User maskable Within Resume

Memory protection violation Synchronous Coerced Nonmaskable Within Resume

Using undefined instruction Synchronous Coerced Nonmaskable Within Terminate

Hardware malfunction Asynchronous Coerced Nonmaskable Within Terminate

Power failure Asynchronous Coerced Nonmaskable Within Terminate

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.56

EXCEPTION TYPES

55

56

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.29Slides by Wes J. Lloyd

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L4.57

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L4.58

Computer BOOT Sequence:
OS with Limited Direct Execution

57

58

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.30Slides by Wes J. Lloyd

 Questions from 4/8

 C Review Survey – Closes Friday April 11

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.59

OBJECTIVES – 4/10

 How/when should the OS regain control of the CPU to

switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

▪ < Windows 95, Mac OSX

▪ Opportunistic: running programs must give up control

▪ User programs must call a special yield system call

▪ When performing I/O

▪ Illegal operations

▪ (POLLEV)

What problems could you for see with this approach?

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.60

MULTITASKING

59

60

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.31Slides by Wes J. Lloyd

 How/when should the OS regain control of the CPU to

switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

▪ < Windows 95, Mac OSX

▪ Opportunistic: running programs must give up control

▪ User programs must call a special yield system call

▪ When performing I/O

▪ Illegal operations

▪ (POLLEV)

What problems could you for see with this approach?

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.61

MULTITASKING

A process gets stuck in an infinite loop.

→ Reboot the machine

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L4.62

61

62

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.32Slides by Wes J. Lloyd

What problems exist for regaining the control of

the CPU with cooperative multitasking OSes?

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.63

QUESTION: MULTITASKING

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt

▪ Raised at some regular interval (in ms)

▪ Interrupt handling

1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.64

MULTITASKING - 2

63

64

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.33Slides by Wes J. Lloyd

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt

▪ Raised at some regular interval (in ms)

▪ Interrupt handling

1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.65

MULTITASKING - 2

A timer interrupt gives OS the ability to
run again on a CPU.

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L4.66

65

66

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.34Slides by Wes J. Lloyd

For an OS that uses a system timer to force

arbitrary context switches to share the CPU, what

is a good value (in seconds) for the timer

interrupt?

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.67

QUESTION: TIME SLICE

For an OS that uses a system timer to force

arbitrary context switches to share the CPU, what

is a good value (in seconds) for the timer

interrupt?

▪ Typical time slice for process execution is

10 to 100 milliseconds

▪ Typical context switch overhead is (switch between processes)

0.01 milliseconds

▪ 0.1% of the time slice (1/1000 th)

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.68

QUESTION: TIME SLICE

67

68

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.35Slides by Wes J. Lloyd

 Questions from 4/8

 C Review Survey – Closes Friday April 11

 Assignment 0 - Update

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.69

OBJECTIVES – 4/10

 Preemptive multitasking initiates “trap”

into the OS code to determine:

 Whether to continue running the current process,

or switch to a dif ferent one.

 If the decision is made to switch, the OS performs a context

switch swapping out the current process for a new one.

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.70

CONTEXT SWITCH

69

70

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.36Slides by Wes J. Lloyd

1. Save register values of the current process to its kernel

stack

▪ General purpose registers

▪ PC: program counter (instruction pointer)

▪ kernel stack pointer

2. Restore soon-to-be-executing process from its kernel

stack

3. Switch to the kernel stack for the soon-to-be-executing

process

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.71

CONTEXT SWITCH - 2

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L4.72

71

72

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.37Slides by Wes J. Lloyd

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L4.73

Context Switch

 What happens if during an interrupt (trap to kernel

mode), another interrupt occurs?

 Linux

▪ < 2.6 kernel: non-preemptive kernel

▪ >= 2.6 kernel: preemptive kernel

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.74

INTERRUPTED INTERRUPTS

73

74

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/10/2025

L4.38Slides by Wes J. Lloyd

Use “locks” as markers of regions of non -

preemptibility (non-maskable interrupt)

Preemption counter (preempt_count)

▪ begins at zero

▪ increments for each lock acquired (not safe to preempt)

▪ decrements when locks are released

 Interrupt can be interrupted when preempt_count=0

▪ It is safe to preempt (maskable interrupt)

▪ the interrupt is more important

April 10, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L4.75

PREEMPTIVE KERNEL

QUESTIONS

75

76

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 4/10
	Slide 3: Text book coupon
	Slide 4: Tcss 422 – office hrs – Spring 2025
	Slide 5: Online daily feedback survey
	Slide 6
	Slide 7: Material / pace
	Slide 8: Feedback from 4/8
	Slide 9: Feedback - 2
	Slide 10: Chatgpt activity
	Slide 11: TCSS 422 Discord server
	Slide 12: OBJECTIVES – 4/10
	Slide 13: C Review Survey - available thru 4/11
	Slide 14: OBJECTIVES – 4/10
	Slide 15: Assignment 0
	Slide 16: TCSS 422 – SET VMs
	Slide 17: Finish chapter 4
	Slide 18: OBJECTIVES – 4/10
	Slide 19: Chapter 5: C process api
	Slide 20: fork()
	Slide 21: Fork example
	Slide 22: Fork example - 2
	Slide 23: :(){ :|: & };:
	Slide 24: OBJECTIVES – 4/10
	Slide 25: wait()
	Slide 26: Fork With wait
	Slide 27: Fork with wait - 2
	Slide 28: Fork example
	Slide 29: OBJECTIVES – 4/10
	Slide 30: exec()
	Slide 31: Exec example
	Slide 32: Exec example - 2
	Slide 33: Exec with file redirection (output)
	Slide 34: File mode bits
	Slide 35: exec w/ File redirection (output) - 2
	Slide 36
	Slide 37: Question: PROCESS API
	Slide 38: We will return at 5:00pm
	Slide 39: OBJECTIVES – 4/10
	Slide 40: CH. 6: Limited direct execution
	Slide 41: OBJECTIVES – 4/10
	Slide 42: Virtualizing the cpu
	Slide 43: Computer boot sequence: OS with Direct execution
	Slide 44: Computer boot sequence: OS with Direct execution
	Slide 45: Direct execution - 2
	Slide 46: Control tradeoff
	Slide 47: Context switching overhead
	Slide 48: OBJECTIVES – 4/10
	Slide 49: Limited direct execution
	Slide 50: OBJECTIVES – 4/10
	Slide 51: Cpu modes
	Slide 52: CPU modes
	Slide 53: OBJECTIVES – 4/10
	Slide 54: System calls
	Slide 55: TRAPS: System calls, Exceptions, interrupts
	Slide 56: Exception types
	Slide 57
	Slide 58
	Slide 59: OBJECTIVES – 4/10
	Slide 60: multitasking
	Slide 61: multitasking
	Slide 62
	Slide 63: Question: multitasking
	Slide 64: Multitasking - 2
	Slide 65: Multitasking - 2
	Slide 66
	Slide 67: QUESTION: TIME SLICE
	Slide 68: QUESTION: TIME SLICE
	Slide 69: OBJECTIVES – 4/10
	Slide 70: Context switch
	Slide 71: Context switch - 2
	Slide 72
	Slide 73
	Slide 74: Interrupted interrupts
	Slide 75: Preemptive kernel
	Slide 76: Questions

