
TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.1Slides by Wes J. Lloyd

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

The Process API &
Limited Direct Execution

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 4/2

 C Review Survey – Closes Friday April 5

 Assignment 0

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.2

OBJECTIVES – 4/4

1

2

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.2Slides by Wes J. Lloyd

 15% off textbook code: POETRY15 (through Friday Apr 5)

 https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-

arpaci-dusseau/operating-systems-three-easy-pieces-

hardcover-version-110/hardcover/product-

15gjeeky.html?q=three+easy+pieces+operating+systems&pag

e=1&pageSize=4

 With coupon textbook is only $33.79 + tax & shipping

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.3

TEXT BOOK COUPON

 Tuesdays after class until 7:00pm

Hybrid (In-person/Zoom)

▪ This session will be in person in CP 229.

▪ Zoom will be monitored when no student is in CP 229.

 Thursdays after class until 7:00pm – Hybrid (In-person/Zoom)

▪ Additional office time will be held on Thursdays after class

when there is high demand indicated by a busy Tuesday

office hour

▪When Thursday Office Hours are planned, Zoom links will

be shared via Canvas

▪ Questions after class on Thursdays are always entertained

even when the formal office hour is not scheduled

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.4

TCSS 422 – OFFICE HRS – SPRING 2024

3

4

https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.3Slides by Wes J. Lloyd

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

April 4, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.5

ONLINE DAILY FEEDBACK SURVEY

April 4, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L4.6

5

6

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.4Slides by Wes J. Lloyd

 Please classify your perspective on material covered in today’s

class (32 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.56 (- previous 6.49)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.38 (- previous 5.31)

April 4, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.7

MATERIAL / PACE

 I am interested in dif ferentiating the responsibilities between
the run-time stack and the memory heap. I understand the
gist of these ideas but stil l feel unfamiliar with their specifics.

▪ What data is stored on the heap?

▪ What data is stored on the stack?

 What is the dif ference between voluntary and involuntary
context switches (C/S)?

▪ A voluntary C/S occurs when a process performs privileged
operations such as I/O that BLOCK and WAIT for a response

▪ This is considered a voluntary C/S because the user program has
elected to perform the I/O and needs to WAIT anyways.

▪ It’s a perfect time to for the CPU to C/S and perform other work

 UNCLEAR: The processes of going from running to blocked to
ready then back to running.

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.8

FEEDBACK FROM 4/2

7

8

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.5Slides by Wes J. Lloyd

 I understand that using malloc() while a program is
running requires using free() if we want to prevent
memory leaks, but isn’t it true that most modern
operating systems recover the allocated memory after a
program exits?

 YES, when the process ends, the operating system will
claim all memory allocated for the code, stack, heap, and
data segments

 If the program only runs for a short time, then it may be
acceptable not to “free()” memory on the heap

 The issue is with programs that run forever (i.e. servers)

▪ Web applications may “run forever”

▪ if there is a memory leak in a web application, it could cause
the web application server to eventually crash

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.9

FEEDBACK FROM 4/4

 I originally thought one of the main reasons we program

in C on our Virtual Machines was so that we did not

accidentally use malloc() and cause permanent damage

to our memory by making it nonreusable.

 When writing privileged kernel -level code, you may use

“kmalloc()” which stands for “kernel malloc”.

 Errors with dynamic memory allocation in the kernel may

result in the corruption of the kernel’s memory which is

catastrophic if not recoverable

 If a user program fails, it is no big deal to the system

 If the kernel errors, the system may go down

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.10

FEEDBACK - 2

9

10

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.6Slides by Wes J. Lloyd

 We covered context switches quickly so I wonder how exactly

they are implemented and better examples of where we use

them?

 A programmer can “use” a voluntary context switch by

performing a blocking operation where the system must wait

for I/O etc. In this case the CPU is not busy, and is reclaimed

for some other process by the OS

 Otherwise the user does not cause or enact a context switch.

Context switches are generated by the operating system when

a process runs for more than a “time slice” which is from

~ 3 to 10 milliseconds depending how busy the system is

 We will cover context switches in more detail in Chapter 6

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.11

FEEDBACK - 3

 Please join the TCSS 422 A – Spring 2024 Discord Server

https://discord.gg/H7PPZ5ArFW

 Under Edit Server Profile:

Please update your ‘Server Nickname’

to your real name or UW NET ID

THANK YOU

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.12

TCSS 422 DISCORD SERVER

11

12

https://discord.gg/H7PPZ5ArFW

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.7Slides by Wes J. Lloyd

 Questions from 4/2

 C Review Survey – Closes Friday April 5

 Assignment 0

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.13

OBJECTIVES – 4/4

C REVIEW SURVEY -

AVAILABLE THRU 4/7

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L4.14

13

14

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.8Slides by Wes J. Lloyd

 Questions from 4/2

 C Review Survey – Closes Friday April 5

 Assignment 0

 Chapter 4: Linux process data structure - task_struct

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.15

OBJECTIVES – 4/4

 In the homework, it specifies to use “non -interactive”
commands. What does this mean exactly?

 An non-interactive command does not require any input
from the user (i.e. from the keyboard)

 Non-interactive commands and scripts can run entirely on
their own without intervention

 These commands are considered “headless” in
that they don’t feature a USER INTERFACE,
either a GUI, or TUI

 What is a TUI?

▪ *Text-based User Interface

▪ TUI is also a bird →

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.16

FEEDBACK ON ASSIGNMENT 0

15

16

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.9Slides by Wes J. Lloyd

 Request submitted for School of Engineering and Technology

hosted Ubuntu 22.04 VMs for TCSS 422 – Spring 2024

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.17

TCSS 422 – SET VMS

 Questions from 4/2

 C Review Survey – Closes Friday April 5

 Assignment 0

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking
April 4, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.18

OBJECTIVES – 4/4

17

18

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.10Slides by Wes J. Lloyd

CHAPTER 5:

C PROCESS API

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L4.19

 Creates a new process - think of “a fork in the road”

 “Parent” process is the original

 Creates “child” process of the program from the current
execution point

 Book says “pretty odd”

 Creates a duplicate program instance (these are processes!)

 Copy of

▪ Address space (memory)

▪ Register

▪ Program Counter (PC)

 Fork returns

▪ child PID to parent

▪ 0 to child

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.20

fork()

19

20

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.11Slides by Wes J. Lloyd

 p1.c

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.21

FORK EXAMPLE

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char *argv[]){

 printf("hello world (pid:%d)\n", (int) getpid());

 int rc = fork();

 if (rc < 0) { // fork failed; exit

 fprintf(stderr, "fork failed\n");

 exit(1);

 } else if (rc == 0) { // child (new process)

 printf("hello, I am child (pid:%d)\n", (int) getpid());

 } else { // parent goes down this path (main)

 printf("hello, I am parent of %d (pid:%d)\n",

 rc, (int) getpid());

 }

 return 0;

}

 Non deterministic ordering of execution

or

 CPU scheduler determines which to run first

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.22

FORK EXAMPLE - 2

prompt> ./p1

hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)

hello, I am child (pid:29147)

prompt>

prompt> ./p1

hello world (pid:29146)

hello, I am child (pid:29147)

hello, I am parent of 29147 (pid:29146)

prompt>

21

22

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.12Slides by Wes J. Lloyd

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.23

:(){ :|: & };:

 Questions from 4/2

 C Review Survey – Closes Friday April 5

 Assignment 0

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking
April 4, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.24

OBJECTIVES – 4/4

23

24

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.13Slides by Wes J. Lloyd

 wait(), waitpid()

 Called by parent process

 Waits for a child process to finish executing

 Not a sleep() function

 Provides some ordering to multi -process execution

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.25

wait()

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.26

FORK WITH WAIT

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/wait.h>

int main(int argc, char *argv[]){

 printf("hello world (pid:%d)\n", (int) getpid());

 int rc = fork();

 if (rc < 0) { // fork failed; exit

 fprintf(stderr, "fork failed\n");

 exit(1);

 } else if (rc == 0) { // child (new process)

 printf("hello, I am child (pid:%d)\n", (int) getpid());

 } else { // parent goes down this path (main)

 int wc = wait(NULL);

 printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

 rc, wc, (int) getpid());

 }

 return 0;

}

25

26

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.14Slides by Wes J. Lloyd

 Deterministic ordering of execution

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.27

FORK WITH WAIT - 2

prompt> ./p2

hello world (pid:29266)

hello, I am child (pid:29267)

hello, I am parent of 29267 (wc:29267) (pid:29266)

prompt>

 Linux example

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.28

FORK EXAMPLE

27

28

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.15Slides by Wes J. Lloyd

 Questions from 4/2

 C Review Survey – Closes Friday April 5

 Assignment 0

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking
April 4, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.29

OBJECTIVES – 4/4

 Supports running an external program by “transferring control”

 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

 execl(), execlp(), execle(): const char *arg (example: execl.c)

Provide cmd and args as individual params to the function

Each arg is a pointer to a null -terminated string

ODD: pass a variable number of args: (arg0, arg1, .. argn)

 execv(), execvp(), execvpe() (example: exec.c)

Provide cmd and args as an Array of pointers to strings

Strings are null -terminated

First argument is name of command being executed

Fixed number of args passed in

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.30

exec()

29

30

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.16Slides by Wes J. Lloyd

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.31

EXEC EXAMPLE

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <sys/wait.h>

int main(int argc, char *argv[]){

 printf("hello world (pid:%d)\n", (int) getpid());

 int rc = fork();

 if (rc < 0) { // fork failed; exit

 fprintf(stderr, "fork failed\n");

 exit(1);

 } else if (rc == 0) { // child (new process)

 printf("hello, I am child (pid:%d)\n", (int) getpid());

 char *myargs[3];

 myargs[0] = strdup("wc"); // program: "wc" (word count)

 myargs[1] = strdup("p3.c"); // argument: file to count

 myargs[2] = NULL; // marks end of array

 …

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.32

EXEC EXAMPLE - 2

…

 execvp(myargs[0], myargs); // runs word count

 printf("this shouldn’t print out");

 } else { // parent goes down this path (main)

 int wc = wait(NULL);

 printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

 rc, wc, (int) getpid());

 }

 return 0;

}

prompt> ./p3

hello world (pid:29383)

hello, I am child (pid:29384)

29 107 1030 p3.c

hello, I am parent of 29384 (wc:29384) (pid:29383)

prompt>

31

32

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.17Slides by Wes J. Lloyd

 Example:
https://faculty.washington.edu/wlloyd/courses/tcss422/examples/exec2.c

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.33

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <fcntl.h>

#include <sys/wait.h>

int

main(int argc, char *argv[]){

 int rc = fork();

 if (rc < 0) { // fork failed; exit

 fprintf(stderr, "fork failed\n");

 exit(1);

 } else if (rc == 0) { // child: redirect standard output to a file

 close(STDOUT_FILENO);

 open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

 …

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.34

FILE MODE BITS

S_IRWXU

read, write, execute/search by owner

S_IRUSR

read permission, owner

S_IWUSR

write permission, owner

S_IXUSR

execute/search permission, owner

S_IRWXG

read, write, execute/search by group

S_IRGRP

read permission, group

S_IWGRP

write permission, group

S_IXGRP

execute/search permission, group

S_IRWXO

read, write, execute/search by others

S_IROTH

read permission, others

S_IWOTH

write permission, others

33

34

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.18Slides by Wes J. Lloyd

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.35

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

…

 // now exec "wc"...

 char *myargs[3];

 myargs[0] = strdup("wc"); // program: "wc" (word count)

 myargs[1] = strdup("p4.c"); // argument: file to count

 myargs[2] = NULL; // marks end of array

 execvp(myargs[0], myargs); // runs word count

 } else { // parent goes down this path (main)

 int wc = wait(NULL);

 }

 return 0;

}

prompt> ./p4

prompt> cat p4.output

32 109 846 p4.c

prompt>

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L4.36

35

36

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.19Slides by Wes J. Lloyd

 Which Process API call is used to launch a different

program from the current program?

 (a) Fork()

 (b) Exec()

 (c) Wait()

 (d) None of the above

 (e) All of the above

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.37

QUESTION: PROCESS API

 Questions from 4/2

 C Review Survey – Closes Friday April 5

 Assignment 0

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking
April 4, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.38

OBJECTIVES – 4/4

37

38

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.20Slides by Wes J. Lloyd

CH. 6:

LIMITED DIRECT

EXECUTION

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L4.39

 Questions from 4/2

 C Review Survey – Closes Friday April 5

 Assignment 0

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.40

OBJECTIVES – 4/4

39

40

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.21Slides by Wes J. Lloyd

 How does the CPU support running so many jobs

simultaneously?

 Time Sharing

 Tradeoffs:

▪ Performance

▪ Excessive overhead

▪ Control

▪ Fairness

▪ Security

 Both HW and OS support

is used

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.41

VIRTUALIZING THE CPU

 What if programs could directly control the CPU / system?

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.42

COMPUTER BOOT SEQUENCE:

OS WITH DIRECT EXECUTION

OS Program

1. Create entry for process list
2. Allocate memory for
program
3. Load program into memory
4. Set up stack with argc /
argv

5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

41

42

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.22Slides by Wes J. Lloyd

 What if programs could directly control the CPU / system?

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.43

COMPUTER BOOT SEQUENCE:

OS WITH DIRECT EXECUTION

OS Program

1. Create entry for process list
2. Allocate memory for
program
3. Load program into memory
4. Set up stack with argc /
argv

5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

Without limits on running programs,
the OS wouldn’t be in control of anything

and would “just be a library”

 With direct execution:

How does the OS stop a program from running, and switch

to another to support time sharing?

How do programs share disks and perform I/O if they are

given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures

such as linked lists grow over time?

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.44

DIRECT EXECUTION - 2

43

44

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.23Slides by Wes J. Lloyd

 Too little control:

▪ No security

▪ No time sharing

 Too much control:

▪ Too much OS overhead

▪ Poor performance for compute & I/O

▪ Complex APIs (system calls), difficult to use

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.45

CONTROL TRADEOFF

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.46

CONTEXT SWITCHING OVERHEAD

Time

Overhead

45

46

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.24Slides by Wes J. Lloyd

WE WILL RETURN AT

2:40PM

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L4.47

 Questions from 4/2

 C Review Survey – Closes Friday April 5

 Assignment 0

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.48

OBJECTIVES – 4/4

47

48

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.25Slides by Wes J. Lloyd

 OS implements LDE to support time/resource sharing

 Limited direct execution means “only limited” processes

can execute DIRECTLY on the CPU in trusted mode

 TRUSTED means the process is trusted, and it can do

anything… (e.g. it is a system / kernel level process)

 Enabled by protected (safe) control transfer

 CPU supported context switch

 Provides data isolation

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.49

LIMITED DIRECT EXECUTION

 Questions from 4/2

 C Review Survey – Closes Friday April 5

 Assignment 0

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.50

OBJECTIVES – 4/4

49

50

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.26Slides by Wes J. Lloyd

 Utilize CPU Privilege Rings (Intel x86)

▪ rings 0 (kernel), 1 (VM kernel), 2 (unused), 3 (user)

 User mode:

Application is running, but w/o direct I/O access

 Kernel mode:

OS kernel is running performing restricted operations

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.51

CPU MODES

access no access

 User mode: ring 3 - untrusted

▪ Some instructions and registers are disabled by the CPU

▪ Exception registers

▪ HALT instruction

▪MMU instructions

▪ OS memory access

▪ I/O device access

 Kernel mode: ring 0 – trusted

▪ All instructions and registers enabled

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.52

CPU MODES

51

52

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.27Slides by Wes J. Lloyd

 Questions from 4/2

 C Review Survey – Closes Friday April 5

 Assignment 0

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.53

OBJECTIVES – 4/4

 Implement restricted “OS” operations

 Kernel exposes key functions through an API:

▪ Device I/O (e.g. file I/O)

▪ Task swapping: context switching between processes

▪Memory management/allocation: malloc()

▪ Creating/destroying processes

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.54

SYSTEM CALLS

53

54

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.28Slides by Wes J. Lloyd

 Trap: any transfer to kernel mode

 Three kinds of traps

▪ System call: (planned) user → kernel

▪ SYSCALL for I/O, etc.

▪ Exception: (error) user → kernel

▪ Div by zero, page fault, page protection error

▪ Interrupt: (event) user → kernel

▪ Non-maskable vs. maskable

▪ Keyboard event, network packet arrival, timer ticks

▪ Memory parity error (ECC), hard drive failure

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.55

TRAPS:

SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Exception type
Synchronous vs.

asynchronous

User request vs.

coerced

User maskable vs.

nonmaskable

Within vs. between

instructions
Resume vs. terminate

I/O device request Asynchronous Coerced Nonmaskable Between Resume

Invoke operating system Synchronous User request Nonmaskable Between Resume

Tracing instruction execution Synchronous User request User maskable Between Resume

Breakpoint Synchronous User request User maskable Between Resume

Integer arithmetic overflow Synchronous Coerced User maskable Within Resume

Floating-point arithmetic overflow

or underflow
Synchronous Coerced User maskable Within Resume

Page fault Synchronous Coerced Nonmaskable Within Resume

Misaligned memory accesses Synchronous Coerced User maskable Within Resume

Memory protection violation Synchronous Coerced Nonmaskable Within Resume

Using undefined instruction Synchronous Coerced Nonmaskable Within Terminate

Hardware malfunction Asynchronous Coerced Nonmaskable Within Terminate

Power failure Asynchronous Coerced Nonmaskable Within Terminate

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.56

EXCEPTION TYPES

55

56

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.29Slides by Wes J. Lloyd

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L4.57

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L4.58

Computer BOOT Sequence:
OS with Limited Direct Execution

57

58

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.30Slides by Wes J. Lloyd

 Questions from 4/2

 C Review Survey – Closes Friday April 5

 Assignment 0

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.59

OBJECTIVES – 4/4

 How/when should the OS regain control of the CPU to

switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

▪ < Windows 95, Mac OSX

▪ Opportunistic: running programs must give up control

▪ User programs must call a special yield system call

▪ When performing I/O

▪ Illegal operations

▪ (POLLEV)

What problems could you for see with this approach?

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.60

MULTITASKING

59

60

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.31Slides by Wes J. Lloyd

 How/when should the OS regain control of the CPU to

switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

▪ < Windows 95, Mac OSX

▪ Opportunistic: running programs must give up control

▪ User programs must call a special yield system call

▪ When performing I/O

▪ Illegal operations

▪ (POLLEV)

What problems could you for see with this approach?

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.61

MULTITASKING

A process gets stuck in an infinite loop.

→ Reboot the machine

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L4.62

61

62

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.32Slides by Wes J. Lloyd

What problems exist for regaining the control of

the CPU with cooperative multitasking OSes?

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.63

QUESTION: MULTITASKING

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt

▪ Raised at some regular interval (in ms)

▪ Interrupt handling

1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.64

MULTITASKING - 2

63

64

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.33Slides by Wes J. Lloyd

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt

▪ Raised at some regular interval (in ms)

▪ Interrupt handling

1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.65

MULTITASKING - 2

A timer interrupt gives OS the ability to
run again on a CPU.

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L4.66

65

66

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.34Slides by Wes J. Lloyd

For an OS that uses a system timer to force

arbitrary context switches to share the CPU, what

is a good value (in seconds) for the timer

interrupt?

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.67

QUESTION: TIME SLICE

For an OS that uses a system timer to force

arbitrary context switches to share the CPU, what

is a good value (in seconds) for the timer

interrupt?

▪ Typical time slice for process execution is

10 to 100 milliseconds

▪ Typical context switch overhead is (switch between processes)

0.01 milliseconds

▪ 0.1% of the time slice (1/1000 th)

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.68

QUESTION: TIME SLICE

67

68

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.35Slides by Wes J. Lloyd

 Questions from 4/2

 C Review Survey – Closes Friday April 5

 Assignment 0

 Chapter 5: Process API

▪ fork(), wait(), exec()

 Chapter 6: Limited Direct Execution

▪ Direct execution

▪ Limited direct execution

▪ CPU modes

▪ System calls and traps

▪ Cooperative multi-tasking

▪ Context switching and preemptive multi -tasking

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.69

OBJECTIVES – 4/4

 Preemptive multitasking initiates “trap”

into the OS code to determine:

 Whether to continue running the current process,

or switch to a dif ferent one.

 If the decision is made to switch, the OS performs a context

switch swapping out the current process for a new one.

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.70

CONTEXT SWITCH

69

70

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.36Slides by Wes J. Lloyd

1. Save register values of the current process to its kernel

stack

▪ General purpose registers

▪ PC: program counter (instruction pointer)

▪ kernel stack pointer

2. Restore soon-to-be-executing process from its kernel

stack

3. Switch to the kernel stack for the soon-to-be-executing

process

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.71

CONTEXT SWITCH - 2

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L4.72

71

72

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.37Slides by Wes J. Lloyd

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L4.73

Context Switch

 What happens if during an interrupt (trap to kernel

mode), another interrupt occurs?

 Linux

▪ < 2.6 kernel: non-preemptive kernel

▪ >= 2.6 kernel: preemptive kernel

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.74

INTERRUPTED INTERRUPTS

73

74

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/4/2024

L4.38Slides by Wes J. Lloyd

Use “locks” as markers of regions of non -

preemptibility (non-maskable interrupt)

Preemption counter (preempt_count)

▪ begins at zero

▪ increments for each lock acquired (not safe to preempt)

▪ decrements when locks are released

 Interrupt can be interrupted when preempt_count=0

▪ It is safe to preempt (maskable interrupt)

▪ the interrupt is more important

April 4, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.75

PREEMPTIVE KERNEL

QUESTIONS

75

76

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 4/4
	Slide 3: Text book coupon
	Slide 4: Tcss 422 – office hrs – spring 2024
	Slide 5: Online daily feedback survey
	Slide 6
	Slide 7: Material / pace
	Slide 8: Feedback from 4/2
	Slide 9: Feedback from 4/4
	Slide 10: Feedback - 2
	Slide 11: Feedback - 3
	Slide 12: TCSS 422 Discord server
	Slide 13: OBJECTIVES – 4/4
	Slide 14: C Review Survey - available thru 4/7
	Slide 15: OBJECTIVES – 4/4
	Slide 16: Feedback on assignment 0
	Slide 17: TCSS 422 – SET VMs
	Slide 18: OBJECTIVES – 4/4
	Slide 19: Chapter 5: C process api
	Slide 20: fork()
	Slide 21: Fork example
	Slide 22: Fork example - 2
	Slide 23: :(){ :|: & };:
	Slide 24: OBJECTIVES – 4/4
	Slide 25: wait()
	Slide 26: Fork With wait
	Slide 27: Fork with wait - 2
	Slide 28: Fork example
	Slide 29: OBJECTIVES – 4/4
	Slide 30: exec()
	Slide 31: Exec example
	Slide 32: Exec example - 2
	Slide 33: Exec with file redirection (output)
	Slide 34: File mode bits
	Slide 35: exec w/ File redirection (output) - 2
	Slide 36
	Slide 37: Question: PROCESS API
	Slide 38: OBJECTIVES – 4/4
	Slide 39: CH. 6: Limited direct execution
	Slide 40: OBJECTIVES – 4/4
	Slide 41: Virtualizing the cpu
	Slide 42: Computer boot sequence: OS with Direct execution
	Slide 43: Computer boot sequence: OS with Direct execution
	Slide 44: Direct execution - 2
	Slide 45: Control tradeoff
	Slide 46: Context switching overhead
	Slide 47: We will return at 2:40pm
	Slide 48: OBJECTIVES – 4/4
	Slide 49: Limited direct execution
	Slide 50: OBJECTIVES – 4/4
	Slide 51: Cpu modes
	Slide 52: CPU modes
	Slide 53: OBJECTIVES – 4/4
	Slide 54: System calls
	Slide 55: TRAPS: System calls, Exceptions, interrupts
	Slide 56: Exception types
	Slide 57
	Slide 58
	Slide 59: OBJECTIVES – 4/4
	Slide 60: multitasking
	Slide 61: multitasking
	Slide 62
	Slide 63: Question: multitasking
	Slide 64: Multitasking - 2
	Slide 65: Multitasking - 2
	Slide 66
	Slide 67: QUESTION: TIME SLICE
	Slide 68: QUESTION: TIME SLICE
	Slide 69: OBJECTIVES – 4/4
	Slide 70: Context switch
	Slide 71: Context switch - 2
	Slide 72
	Slide 73
	Slide 74: Interrupted interrupts
	Slide 75: Preemptive kernel
	Slide 76: Questions

