TCSS 422 A — Winter 2026 1/15/2026
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Processes &
The Process API

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2026]

Lantanji2026 School of Engineering and Technology, University of Washington jll Tacoma

OBJECTIVES - 1/15

| = Questions from 1/13 |
= C Review Survey - Closes Jan 17 AOE
® Student Background Survey
® Virtual Machine Survey: VM requests to be sent to SET IT
= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
® Chapter 5: Process API

= fork(), wait(), exec()

TCSS422: Operating Systems [Winter 2026] | 132 |

LantaivaLS 12026 School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L3.1

TCSS 422 A — Winter 2026 1/15/2026
School of Engineering and Technology

VIRTUAL MACHINE SUPPORT

ON APPLE M1

® |nstalling a Ubuntu Virtual Machine on Apple M1 MacBooks:
FREE
https://mac.getutm.app/

® MACs use Apple Silicon ARM-based CPUs
= Motivation: faster, less expensive than Intel-based CPUs

icometo
ture of M«

TCSS422: Operating Systems [Winter 2026] 133
School of Engineering and Technology, University of Washington - Tacoma :

January 15, 2026

TEXT BOOK COUPON

® 15% off textbook code: AAC72SAVE15

= https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remazi-
arpaci-dusseau/operating-systems-three-easy-pieces-
hardcover-version-110/hardcover/product-
15gjeeky.html?q=threet+easy+pieces+operating+systems&pag
e=1&pageSize=4

= With coupon textbook is only ~ $33.79 + tax & shipping

January 15, 2026 TCSS422: Operating Systems [Winter 2026] | 3.4 |

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L3.2

https://mac.getutm.app/
https://mac.getutm.app/
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4

TCSS 422 A — Winter 2026 1/15/2026
School of Engineering and Technology

FEEDBACK SURVEYS

= Feedback Survey in Class and on Canvas

= All Quarter: 1-point Extra Credit for completing online
= Weeks 1-6: 2-points Extra Credit completing in class
= Weeks 7-9: 3-points Extra Credit, 4-points (week 10)

® 46 points — TCSS422 A > Assignments
possible
= 2.5% added to w22 PR
final course Home
grade for Announcements
(46/46) Zoom * Upcoming Assignments
= There will be other
opportunities Syllabus « TCSS 422- Online Daily Feedback Survey - 4/1
(seminars, etc.) “* Available until Apr 5 at 11:59pm | Due Apr 5 at 10pm | -/1pts
to earn survey pts
Disrnssinns iz D - el o parrrr
TCSS422: Computer Operating Systems [Winter 2026]
January|15,2026 School of Engineering and Technology, University of Washington - Tacoma | 135 |

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class:
= 45 of 46 respondents - 97.83%!!
= 36 in-person, 9 online

= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - 6.34 (T - previous 5.83)

= Please rate the pace of today’s class:
® 1-slow, 5-just right, 10-fast
= Average - 5.13 (| - previous 5.21)

January 15, 2026 TCSS422: Computer Operating Systems [Winter 2026] | 136 |

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L3.3

TCSS 422 A — Winter 2026 1/15/2026
School of Engineering and Technology

FEEDBACK FROM 1/13

= What does the OS do to prevent the corruptions of multiple-
threads?

= The term for “preventing corruption” of memory shared among
multiple threads is called “thread-safe”

= PROMPT GenAl:
= #1: “list all known thread-safe operating systems”

= #2: “are there any operating systems that automatically guarantee
thread safety for the programmer?”

= What synchronization methods (tools) are available?
= PROMPT GenAl:
= #1: “what thread synchronization methods are available in Linux?”
= Mutexes
= Condition Variables
= Semaphores

January 15, 2026 TCSS422: Operating Systems [Winter 2026] | 137 |

School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK - 2

= @ Key takeaway (exam-ready)

® Linux provides thread synchronization through POSIX
primitives (mutexes, condition variables, semaphores, RW
locks), kernel-assisted futexes, and low-level atomic
operations. Higher-level constructs are built on futexes for
performance and scalability.

January 15, 2026 TCSS422: Operating Systems [Winter 2026] | 138 |

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L3.4

TCSS 422 A — Winter 2026
School of Engineering and Technology

FEEDBACK - 3

= |f two programs see some virtual addresses. how does the 0S
ensure that it does touch its physical memory?

= Interpretation: ‘how does the OS enable you to use variables
stored in physical memory?’

= You can print the address of anything with %p and ‘&’ the
address of operator:

int x = 1;
printf("x = %d addr=%p\n", x, &x) ;
® When you modify or print ‘int x’, the OS automatically

translates the virtual addr to the physical addr behind the
scenes to support working with the variable

® int x virtual addr can be Ox7fffffffdf54
= x is a local variables stored on the program’s stack
® notice the stack is near the end of the address range

January 15, 2026 TCSS422: Operating Systems [Winter 2026] | 3.9 |

School of Engineering and Technology, University of Washington - Tacoma

VIRTUAL ADDRESS SPACE

64-BIT LINUX OS

m 48-bit Virtual Address Space (Standard)

= This is the most common configuration, providing a total
usable space of 256 TB.

Region Start Address End Address Size
User Space 0x0000000000000000 0x00007FFFFFFFFFFF 128 TB
Unused Gap 0x0000800000000000 OxXFFFFTFFFFFFFFFFF ~16 EB

Kernel Space OxFFFF800000000000 OxFFFFFFFFFFFFFFFF 128 TB

= A true 64-bit virtual address space can address 16,384,000
tera-bytes, which is 16,384 peta-bytes, which is 16.384 exa-
bytes

= This much is not needed, so only 48-bits (3/4) of the address
space is typically used

= Larger servers may use a 57-bit address space (128 PB)

TCSS422: Operating Systems [Winter 2026]

LantaivaLS 12026 School of Engineering and Technology, University of Washington - Tacoma

13.10

10

Slides by Wes J. Lloyd

1/15/2026

L3.5

TCSS 422 A — Winter 2026
School of Engineering and Technology

FEEDBACK - 4

= | didn't really understand the 5 levels of abstraction or how
pages works

= This is called multi-level page tables, and will be discussed in the
future

u |s there a way to access the slides themselves instead of the

Al summary?
= From the ‘Schedule’ tab, of the course website

TCSS422: Operating Systems [Winter 2026]

13.11
School of Engineering and Technology, University of Washington - Tacoma 3

January 15, 2026

11

FEEDBACK - 5

= Why not put 100 hyperthreads in a CPU?
What'’s the limitation of virtual cores?
= Physical CPUs consist of multiple execution units, that decode and
execute the various stages of program code

= Instruction Fetch Unit (IFU), Instruction Decode Unit (IDU),
Execution Units (for example Arithmetic Logic Unit (ALU) + others),
Write-Back Unit (WBU)

= These units make up the CPU’s instruction pipeline:

CPU pipeline: IFU - IDU - ALU -> WBU

= Hyperthreading shares a pipeline with 2 processes/threads
simultaneously to provide 2 ‘logical’ cores from 1 physical core

= Presumably sharing a pipeline with >2 threads, would induce too
much waiting for individual units

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma 312

January 15, 2026

12

Slides by Wes J. Lloyd

1/15/2026

L3.6

TCSS 422 A — Winter 2026 1/15/2026
School of Engineering and Technology

MOTIVATION FOR LINUX

® |t is worth noting the importance of Linux for today’s
developers and computer scientists.

® The CLOUD runs many virtual machines, recently in 2019 a key
milestone was reached.

= Even on Microsoft Azure (the Microsoft Cloud), there were
more Linux Virtual Machines (> 50%) than Windows.

= https://www.zdnet.com/article/microsoft-developer-reveals-
linux-is-now-more-used-on-azure-than-windows-server/

= https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any-questions/

= The majority of application back-ends (server-side), cloud or
not, run on Linux.

® This is due to licensing costs, example:

TCSS422: Operating Systems [Winter 2026]

L3.1
School of Engineering and Technology, University of Washington - Tacoma 3.13

January 15, 2026

13

MOTIVATION FOR LINUX - 2

= Consider a pricing example where you're asked to develop a web
services backend that requires 10 x 8-CPU-core virtual servers

® Your organization investigates hosting costs on Amazon cloud
= 8-core VM is “c5d.2xlarge”

Name Instance type | Memory vCPUs | Linux On Demand cost | Windows On Demand cost

C5 High-CPU Extra Large c5d.xlarge 8.0 GIE | 4vCPUs £0.192000 hourly £0.376000 hourly

IC5 High-CPU 18xlarge c5d.18xlarge | 144.0 GIiB | 72 vCPUs 3.456000 hourly 6.768000 hourly

C5 High-CPU Large c5d.large 4.0 GiB 2 vCPUs £0.096000 hourly £0.188000 hourly

C5 High-CPU 24xlarge c5d.24xlarge | 192.0 GIiB | 96 vCPUs £4.608000 hourly 9.024000 hourly

C5 High-CPU Quadruple Extra Large c5d.4xlarge 32.0 GiB | 16 vCPUs §0.768000 hourly 1.504000 hourly

[N THR Y P Sl [T ENW=T-M M-V TH A EnRDND. hon WY TaTTa—

I.CE High-CPU Double Extra Lar c5d. 2xlar 16.0 GiE_| 8 vCPUs 50.384000 hourl 50.752000 hourl J

AN W12 R 7. A 77 TR
C5 High-CPU 9xlarge c5d.9xlarge 72.0 GIB_| 36 vCPUs 1.728000 hourly $3.384000 hourly

= Windows hourly price 75.2¢
= Linux hourly price 38.4¢
= See: https://instances.vantage.sh/

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma 1314

January 15, 2026

14

Slides by Wes J. Lloyd L3.7

https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://instances.vantage.sh/

TCSS 422 A — Winter 2026 1/15/2026
School of Engineering and Technology

MOTIVATION FOR LINUX - 2

= See: https://www.ec2instances.info/

TCSS422: Operating Systems [Winter 2026]

L3.1!
School of Engineering and Technology, University of Washington - Tacoma 3.15

| January 15, 2026

15

OBJECTIVES - 1/15

® Questions from 1/13
| = C Review Survey - Closes Jan 17 AOE |
® Student Background Survey
® Virtual Machine Survey: VM requests to be sent to SET IT
= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
® Chapter 5: Process API

= fork(), wait(), exec()

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma 1316

January 15, 2026

16

Slides by Wes J. Lloyd L3.8

https://www.ec2instances.info/

TCSS 422 A — Winter 2026 1/15/2026
School of Engineering and Technology

C REVIEW SURVEY -
AVAILABLE THRU 1/17

TCSS422: Operating Systems [Winter 2026]
fantangiug202e School of Engineering and Technology, University of Washington -

OBJECTIVES - 1/15

® Questions from 1/13
® C Review Survey - Closes Jan 17 AOE
L= Student Backeround Survey |
= Virtual Machine Survey: VM requests to be sent to SET IT
= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
® Chapter 5: Process API

= fork(), wait(), exec()

TCSS422: Operating Systems [Winter 2026]

fantanviis 42026 School of Engineering and Technology, University of Washington - Tacoma 1318

18

Slides by Wes J. Lloyd L3.9

TCSS 422 A — Winter 2026
School of Engineering and Technology

STUDENT BACKGROUND SURVEY

=32 of 46 Responses as of 1/15 @ ~8am

®Please complete the Student Background
Survey

="Please complete the survey by Monday
=Office Hours will be based on the survey

shttps://forms.gle/TBZMRUavzhihdUdb8

TCSS422: Operating Systems [Winter 2026]

January|15,2026 School of Engineering and Technology, University of Washington - Tacoma

13.19

19

OBJECTIVES - 1/15

® Questions from 1/13
= C Review Survey - Closes Jan 17 AOE
= Student Background Survey
| = Virtual Machine Survey: VM requests to be sent to SET IT|
= Assignment O

® Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
® Chapter 5: Process API

= fork(), wait(), exec()

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma 1320

January 15, 2026

20

Slides by Wes J. Lloyd

1/15/2026

L3.10

https://forms.gle/s9j2CTLqpfFneL7ZA
https://forms.gle/s9j2CTLqpfFneL7ZA

TCSS 422 A — Winter 2026
School of Engineering and Technology

VIRTUAL MACHINE SURVEY

® Please complete the Virtual Machine Survey to request
a “School of Engineering and Technology” remote
hosted Ubuntu VM

®https://forms.gle/G679XUXXxXcHAffi6

=31 of 46 Responses as of 1/15 @ ~8am

= VM requests will be sent to SET IT
= Survey response not required if no VM desired

TCSS422: Operating Systems [Winter 2026]

13.21
School of Engineering and Technology, University of Washington - Tacoma 3

January 15, 2026

21

OBJECTIVES - 1/15

® Questions from 1/13

= C Review Survey - Closes Jan 17 AOE

= Student Background Survey

® Virtual Machine Survey: VM requests to be sent to SET IT

= Assignment O

® Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
® Chapter 5: Process API

= fork(), wait(), exec()

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

January 15, 2026 13.22

22

Slides by Wes J. Lloyd

1/15/2026

L3.11

https://forms.gle/jSwcL1qeKDy2W9498
https://forms.gle/jSwcL1qeKDy2W9498

TCSS 422 A — Winter 2026 1/15/2026

School of Engineering and Technology

WE WILL RETURN AT
5:00PM

TCSS422: Operating Systems [Winter 2026]
fantangiug202e School of Engineering and Technology, University of Washington -

OBJECTIVES - 1/15

® Questions from 1/13

= C Review Survey - Closes Jan 17 AOE

® Student Background Survey

® Virtual Machine Survey: VM requests to be sent to SET IT

= Assignment O

| = Chapter 4: Processes|
= Process states, context switches
= Kernel data structures for processes and threads
® Chapter 5: Process API
= fork(), wait(), exec()

TCSS422: Operating Systems [Winter 2026]

fantanviis 42026 School of Engineering and Technology, University of Washington - Tacoma 1324

24

Slides by Wes J. Lloyd L3.12

TCSS 422 A — Winter 2026 1/15/2026
School of Engineering and Technology

|
Process State

CHAPTER 4:
PROCESSES

TCSS422: Operating Systems [Winter 2026]

fantangiug202e School of Engineering and Technology, University of Washington -

VIRTUALIZING THE CPU

® How should the CPU be shared?

= Time Sharing:
Run one process, pause it, run another

®The act of swapping process A out of the CPU to run
process B is called a:

= CONTEXT SWITCH

® How do we SWAP processes in and out of the CPU
efficiently?

= Goal is to minimize overhead of the swap

= OVERHEAD is time spent performing OS management
activities that don’t help accomplish real work

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

13.26

January 15, 2026

26

Slides by Wes J. Lloyd L3.13

TCSS 422 A — Winter 2026
School of Engineering and Technology

= Memory

= Registers
PC: Program counter
Stack pointer

PROCESS

running program

® Process comprises of:

Instructions (“the code”)
Data (heap)

January 15, 2026

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma

13.27

27

= Create

= Destroy

= Wait

= Status

PROCESS API

= Modern OSes provide a Process API for process support
= Create a new process
= Terminate a process (ctrl-c)
= Wait for a process to complete/stop

= Miscellaneous Control

= Suspend process (ctrl-z)
= Resume process (fg, bg)

= Obtain process statistics: (top)

January 15, 2026

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

13.28

28

Slides by Wes J. Lloyd

1/15/2026

L3.14

TCSS 422 A — Winter 2026
School of Engineering and Technology

PROCESS API: CREATE

1. Load program code (and static data) into memory
= Program executable code (binary): loaded from disk
= Static data: also loaded/created in address space

i%- Eager loading: Load entire program before running

= Lazy loading: Only load what is immediately needed
Modern OSes: Supports paging & swapping

2. Run-time stack creation
= Stack: local variables, function params, return address(es)

TCSS422: Operating Systems [Winter 2026]

January|15,2026 School of Engineering and Technology, University of Washington - Tacoma

13.29

29

PROCESS API: CREATE

3. Create program’s heap memory
= For dynamically allocated data

4. Other initialization

= |/0 Setup
Each process has three open file descriptors:
Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main ()
= OS transfers CPU control to the new process

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma 1330

January 15, 2026

30

Slides by Wes J. Lloyd

1/15/2026

L3.15

TCSS 422 A — Winter 2026
School of Engineering and Technology

CPU Memory
code
static data
heap
stack
Process
I I
Loading:
Reads program from
disk into the address
Program space of process
TCSS422: Operating Systems [Winter 2026]
January|15,2026 School of Engineering and Technology, University of Washington - Tacoma

13.31

31

= Assignment O

OBJECTIVES - 1/15

® Questions from 1/13

= C Review Survey - Closes Jan 17 AOE
= Student Background Survey

® Virtual Machine Survey: VM requests to be sent to SET IT

® Chapter 4: Processes

| = Process states, context switches|

= fork(), wait(),

= Kernel data structures for processes and threads
® Chapter 5: Process API

exec()

January 15, 2026

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

13.32

32

Slides by Wes J. Lloyd

1/15/2026

L3.16

TCSS 422 A — Winter 2026

School of Engineering and Technology

PROCESS STATES

= RUNNING

= Currently executing instructions

= READY

= Process is ready to run, but has been preempted
= CPU is presently allocated for other tasks

= BLOCKED

= Process is not ready to run. It is waiting for another event

to complete:
Process has already been initialized and run for awhile
Is now waiting on I/0 from disk(s) or other devices

TCSS422: Operating Systems [Winter 2026]

January|15,2026 School of Engineering and Technology, University of Washington - Tacoma

L3.33

33

PROCESS STATE TRANSITIONS

Descheduled

- Ready
Scheduled
1/0: initiatx //O: done
Blocked

TCSS422: Operating Systems [Winter 2026]

LantaivaLS 12026 School of Engineering and Technology, University of Washington - Tacoma

13.34

34

Slides by Wes J. Lloyd

1/15/2026

L3.17

TCSS 422 A — Winter 2026
School of Engineering and Technology

OBSERVING PROCESS META-DATA

® Can inspect the number of CONTEXT SWITCHES made by a
process

® Let’s run mem.c (from chapter 2)

= cat /proc/{process-id}/status

Speculation_Store_Bypass: thread vulnerable

0-7
00000001

oluntary_ctxt_ g 1377
voluntary ctxt switches:
e

= proc “status” is a virtual file generated by Linux
= Provides a report with process related meta-data

= What appears to happen to the number of context switches
the longer a process runs? (mem.c)

TCSS422: Operating Systems [Winter 2026]

January|15,2026 School of Engineering and Technology, University of Washington - Tacoma

L3.35

35

OBSERVING PROCESS META-DATA

® Can inspect the number of CONTEXT SWITCHES made by a
process

of’

What is the difference between a

voluntary and a non-voluntary context switch ?

= What appears to happen to the nhumber of context switches
the longer a process runs? (mem.c)

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma 1336

January 15, 2026

36

Slides by Wes J. Lloyd

1/15/2026

L3.18

TCSS 422 A — Winter 2026
School of Engineering and Technology

CONTEXT SWITCH

= How long does a context switch take?
= 10,000 to 50,000 ns (.01 to .05 ms)

® 2 000 context switches is near 100ms

Without CPU affinity

Cost of context swi iching on & dual Inted 5150

50000 240
45000 w
g » 3
i 35000 - E
30000 -
] 00 5
§ B §
3 140 E
s 15000 - e
10000 Conteat swikh — | 0
5000 i . " H " . —lN 80
10 F] 30 w0 50 0 ™ 80 %0 100
Working set s ze (KB)
TCSS422: Operating Systems [Winter 2026]
January|15,2026 School of Engineering and Technology, University of Washington - Tacoma 1337
37
0 < Activities €3 visual settings {8} Edit < >

5l

E
‘iten poll s active respond 3t PollEv.comjweslioyd Senc weslloyd i 22333

When a process is in this state, it is advantageous for the Operating System to
perform a CONTEXT SWITCH to perform other work

Current responses

»

38

Slides by Wes J. Lloyd

1/15/2026

L3.19

TCSS 422 A — Winter 2026
School of Engineering and Technology

QUESTION: WHEN TO CONTEXT SWITCH

® When a process is about to go into this state, it is
advantageous for the Operating System to perform a
CONTEXT SWITCH to perform other work:

® (a) RUNNING

= (b) READY

= (c) BLOCKED

® (d) All of the above

= (e) None of the above

TCSS422: Operating Systems [Winter 2026]

January|15,2026 School of Engineering and Technology, University of Washington - Tacoma

13.39

39

OBJECTIVES - 1/15

® Questions from 1/13

= C Review Survey - Closes Jan 17 AOE

= Student Background Survey

® Virtual Machine Survey: VM requests to be sent to SET IT
= Assignment O

® Chapter 4: Processes

= Process states, context switches

I- Kernel data structures for processes and threadsl
® Chapter 5: Process API

= fork(), wait(), exec()

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

| January 15, 2026 13.40

40

Slides by Wes J. Lloyd

1/15/2026

L3.20

TCSS 422 A — Winter 2026
School of Engineering and Technology

PROCESS DATA STRUCTURES

® OS provides data structures to track process information

= Process list
Process Data
State of process: Ready, Blocked, Running

= Register context

= PCB (Process Control Block)

= A C-structure that contains information about each
process

TCSS422: Operating Systems [Winter 2026]

January|15,2026 School of Engineering and Technology, University of Washington - Tacoma

13.41

41

STRUCT TASK_STRUCT

PROCESS CONTROL BLOCK

®Process Control process state
Block (PCB) process number
program counter

mKey data regarding a .
process registers

memory limits

list of open files

TCSS422: Operating Systems [Winter 2026] L.3.42

SSpuan/S 12026 School of Engineering and Technology, University of Washington - Tacoma

42

Slides by Wes J. Lloyd

1/15/2026

L3.21

TCSS 422 A — Winter 2026

School of Engineering and Technology

XV6 KERNEL DATA STRUCTURES

m xv6: pedagogical implementation of Linux
= Simplified structures shown in book

restor

struct context
int eip;
int esp;
int ebx;
int ecx;
int edx;
int esi;
int edi;
int ebp;

/7 different stat s can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE };

TCSS422: Operating Systems [Winter 2026]

January|15,2026 School of Engineering and Technology, University of Washington - Tacoma

L3.43

43

XV6 KERNEL DATA STRUCTURES - 2

/]t info
// including i
struct proc {
char *mem; // nory
uint sz; /] < »f process nory
char *kstack;

about

XV6 E
egister context and state

enum proc_state state;
int pid;

struct proc *parent;
void *chan;

int killed;

struct file *ofile[NOFILE];

struct inode *cwd; //
struct context context; //
struct trapframe *tf; //

TCSS422: Operating Systems [Winter 2026]

LantaivaLS 12026 School of Engineering and Technology, University of Washington - Tacoma

13.44

44

Slides by Wes J. Lloyd

1/15/2026

L3.22

TCSS 422 A — Winter 2026
School of Engineering and Technology

LINUX: STRUCTURES

Estruct task struct, equivalent to struct proc
= The Linux process data structure

= Kernel data type (i.e. record) that describes
individual Linux processes

= Structure is VERY LARGE: 10,000+ bytes

= Defined in:
/ust/src/linux-headers-{kernel version}/include/linux/sched.h
Ubuntu kernel version 6.11, LOC 758 - 1588
Ubuntu kernel version 5.15, LOC: 721 - 1507
Ubuntu kernel version 5.11, LOC: 657 - 1394
Ubuntu kernel version 4.4, LOC: 1391 - 1852

TCSS422: Operating Systems [Winter 2026]

L3.4
School of Engineering and Technology, University of Washington - Tacoma 345

January 15, 2026

45

STRUCT TASK_STRUCT

= Key elements (e.g. PCB) in Linux are captured in
struct task_struct: (LOC from Linux kernel v 6.11)

= Process ID

= pid_t pid; LOC #995

= Process State

= /* -1 unrunnable, 0 runnable, >0 stopped: */

= unsigned int __state; LOC #766

= Process time slice
how long the process will run before context switching

® Struct sched_rt_entity used in task_struct contains timeslice:
= struct sched_rt_entity rt; LOC #812
=unsigned int time_slice; LOC #583

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma 13.46

January 15, 2026

46

Slides by Wes J. Lloyd

1/15/2026

L3.23

TCSS 422 A — Winter 2026
School of Engineering and Technology

STRUCT TASK_STRUCT - 2

= Address space of the process:
B “‘mm” is short for “memory map”
= struct mm_struct *mm;

= Parent process, that launched this one
= struct task_struct __rcu *parent;

= Child processes (as a list)
mstruct list_head children;

= Open files
mstruct files_struct *files;

LOC #898

LOC #1009

LOC #1017

LOC #1121

January 15, 2026 TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma

L3.47

47

LINUX STRUCTURES - 2

® List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

® Description of process data structures:

https://learning.oreilly.com/library/view/linux-kernel-

development/9780768696974/cover.html

3rd edition is online (dated from 2010):
See chapter 3 on Process Management

Safari online - accessible using UW ID SSO login

Linux Kernel Development, 3 edition
Robert Love
Addison-Wesley

January 15, 2026 TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma

13.48

48

Slides by Wes J. Lloyd

1/15/2026

L3.24

http://www.tldp.org/LDP/tlk/ds/ds.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html

TCSS 422 A — Winter 2026
School of Engineering and Technology

OBJECTIVES - 1/15

® Questions from 1/13

= C Review Survey - Closes Jan 17 AOE

® Student Background Survey

® Virtual Machine Survey: VM requests to be sent to SET IT
® Assignment O

= Chapter 4: Processes
= Process states, context switches
= Kernel data structures for processes and threads
| = Chapter 5: Process APl |
= fork(), wait(), exec()

TCSS422: Operating Systems [Winter 2026]

January|15,2026 School of Engineering and Technology, University of Washington - Tacoma

L3.49

49

CHAPTER 5:

C PROCESS API

TCSS422: Operating Systems [Winter 2026]

EantavaoR2028 School of Engineering and Technology, University of Washington -

50

Slides by Wes J. Lloyd

1/15/2026

L3.25

TCSS 422 A — Winter 2026
School of Engineering and Technology

OBJECTIVES - 1/15

® Questions from 1/13

= C Review Survey - Closes Jan 17 AOE

® Student Background Survey

® Virtual Machine Survey: VM requests to be sent to SET IT
® Assignment O

® Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

wait(), exec()

TCSS422: Operating Systems [Winter 2026]

January|15,2026 School of Engineering and Technology, University of Washington - Tacoma

L3.51

51

fork()

m Creates a new process - think of “a fork in the road”
= “Parent” process is the original
® Creates “child” process of the program from the current
execution point
= Book says “pretty odd”
= Creates a duplicate program instance (these are processes!)
= Copy of
= Address space (memory)
= Register
= Program Counter (PC)
= Fork returns
= child PID to parent
= 0 to child

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

January 15, 2026 13.52

52

Slides by Wes J. Lloyd

1/15/2026

L3.26

TCSS 422 A — Winter 2026
School of Engineering and Technology

FORK EXAMPLE

dio.h>
dlib.h>
istd.h>

argc, char *argv[]) {

hello world (pid:%d)\n", (int) getpid());

fork();

0) { // fork failed; exit

ntf (stderr, "fork failed\n");

(1) 7

f (rc == 0) { // child (new ¢ cess)
tf("hello, I am child (pid:%d)\n", (int) getpid());

// parent goe vn this path (main)

tf("hello, I am parent of %d (pid:%d)\n",

(int) getpid());

;

= pl.c
#include <st
#include <st
#include <un
int main (int
printf ("
‘ int rc
£ (rc <
fpri
exit
} else 1
prin
} else {
prin
rc,
}
return 0
}
January 15, 2026

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.53

53

FORK EXAMPLE - 2

= Non deterministic ordering of execution

prompt> ./pl
hello world

prompt>

(pid:29146)

hello, I am parent of 29147 (pid:29146
hello, I am child (pid:29147)

or

prompt> ./pl
hello world

prompt>

(pid:29146)

hello, I am child (pid:29147)
hello, I am parent of 29147 (pid:29146

® CPU scheduler determines which to run first

January 15, 2026

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.54

54

Slides by Wes J. Lloyd

1/15/2026

L3.27

TCSS 422 A — Winter 2026
School of Engineering and Technology

‘_, 3 ¥> ’
Y L SR o Y

e

January 15, 2026

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.55

55

= Assignment O

OBJECTIVES - 1/15

® Questions from 1/13

= C Review Survey - Closes Jan 17 AOE
= Student Background Survey

® Virtual Machine Survey: VM requests to be sent to SET IT

® Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork() exec()

January 15, 2026

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.56

56

Slides by Wes J. Lloyd

1/15/2026

L3.28

TCSS 422 A — Winter 2026

School of Engineering and Technology

= wait(), waitpid()

= Called by parent process

= Waits for a child process to finish executing

= Not a sleep() function

= Provides some ordering to multi-process execution

TCSS422: Operating Systems [Winter 2026]

January|15,2026 School of Engineering and Technology, University of Washington - Tacoma

57

FORK WITH WAIT

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int main(int argc, char *argv([]) {
printf ("hello world (pid:%d)\n", (int) getpid());
int rc = fork();

if (rc < 0) { // fork failed; exit
fprintf (stderr, "fork failed\n");
exit (1) ;

} else if (rc == 0) { // child (new proc

} else { // parent goes down this path (main)
‘ int wc = wait (NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
rc, wc, (int) getpid());
}

return 0;

printf ("hello, I am child (pid a)\n", (int) getpid());

TCSS422: Operating Systems [Winter 2026]

LantaivaLS 12026 School of Engineering and Technology, University of Washington - Tacoma

L3.58

58

Slides by Wes J. Lloyd

1/15/2026

L3.29

TCSS 422 A — Winter 2026
School of Engineering and Technology

FORK WITH WAIT - 2

®m Deterministic ordering of execution

prompt> ./p2

prompt>

hello world (pid:29266)
hello, I am child (pid:29267)
hello, I am parent of 29267 (wc:29267) (pid:29266)

January 15, 2026

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.59

59

® Linux example

FORK EXAMPLE

January 15, 2026

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.60

60

Slides by Wes J. Lloyd

1/15/2026

L3.30

TCSS 422 A — Winter 2026 1/15/2026
School of Engineering and Technology

OBJECTIVES - 1/15

® Questions from 1/13

= C Review Survey - Closes Jan 17 AOE

® Student Background Survey

® Virtual Machine Survey: VM requests to be sent to SET IT
® Assignment O

® Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(),

TCSS422: Operating Systems [Winter 2026]

January|15,2026 School of Engineering and Technology, University of Washington - Tacoma

13.61 |

61

exec()) ¢

® Supports running an external program by “transferring control”
= 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

= execl(), execlp(), execle(): const char *arg (example: execl.c)

Provide cmd and args as individual params to the function
Each arg is a pointer to a null-terminated string
ODD: pass a variable number of args: (arg0, argl, .. argn)

= Execv(), execvp(), execvpe() (example: exec.c)
Provide cmd and args as an Array of pointers to strings

Strings are null-terminated
First argument is name of command being executed
Fixed number of args passed in

TCSS422: Operating Systems [Winter 2026]

LantaivaLS 12026 School of Engineering and Technology, University of Washington - Tacoma

13.62

62

Slides by Wes J. Lloyd L3.31

TCSS 422 A — Winter 2026
School of Engineering and Technology

® Common use case:

EXEC() - 2

= Write a new program which wraps a legacy one
= Provide a new interface to an old system: Web services
= Legacy program thought of as a “black box”

= We don’t want to know what is inside...

Output
Input —>

internal behavior of the code is unkrewn

January 15, 2026

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.63

63

EXEC EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/wait.h>

int main(int argc, char
printf ("hello world
int rc = fork();
if (rc < 0) {
fprintf (stderr,
exit (1) ;

*argv[]) {
(pid:%d) \n", (int) getpid());

// fork failed; exit
"fork failed\n");

{ child (new process)

} else if (rc == 0) / c C
printf("hello, I am child (pid:%d)\n
‘ char *myargs[3];
myargs[0] = strdup("wc");
myargs[1] = strdup("p3.c");
myargs[2] =

", (int) getpid());

NULL;

January 15, 2026

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma 1364

64

Slides by Wes J. Lloyd

1/15/2026

L3.32

TCSS 422 A — Winter 2026
School of Engineering and Technology

EXEC EXAMPLE - 2

- execvp (myargs[0], myargs); // runc

printf ("this shouldn’t print out");
} else { //
int wc = wait (NULL);
printf ("hello, I am parent of %d (wc:%d) (pid:%d)\n"
rc, wc, (int) getpid());

parent gc dlown this

(main)

prompt> ./p3

hello world (pid:29383)

hello, I am child (pid:29384)

29 107 1030 p3.c

hello, I am parent of 29384 (wc:29384) (pid:29383)
prompt>

TCSS422: Operating Systems [Winter 2026]

January|15,2026 School of Engineering and Technology, University of Washington - Tacoma

L3.65

65

EXEC WITH FILE REDIRECTION (OUTPUT)

#include
#include
#include
#include
#include
#include

int
main (int

<stdio.h>
<stdlib.h>
<unistd.h>
<string.h>
<fcntl.h>
<sys/wait.h>

argc, char *argv([]){

close (STDOUT_FILENO) ;

int rc = fork();

it (rc < 0) { // fork failec
fprintf (stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // chi

=

open ("./p4.output", O_CREAT|O_WRONLY|O_ TRUNC, S_IRWXU);

| January 15, 2026

TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.66

66

Slides by Wes J. Lloyd

1/15/2026

L3.33

TCSS 422 A — Winter 2026

School of Engineering and Technology

FILE MODE BITS

‘ S_IRWXU
read, write, execute/search by owner
S_IRUSR
read permission, owner
S_IWUSR
write permission, owner
S_IXUSR
execute/search permission, owner
S_IRWXG
read, write, execute/search by group
S_IRGRP
read permission, group
S_IWGRP
write permission, group
S_IXGRP
execute/search permission, group
S_IRWXO
read, write, execute/search by others
S_IROTH
read permission, others
S_IWOTH
write permission, others

January 15, 2026

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma

L3.67

67

W exec wWC ...
char *myargs[3];

myargs[0] = strdup("wc");
myargs[1] = strdup("p4.c");
myargs[2] = NULL;

execvp (myargs[0], myargs);

} else {
int wc = wait (NULL);
}

return 0;

prompt> ./p4

prompt> cat p4.output
32 109 846 p4d.c
prompt>

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

January 15, 2026

TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma

13.68

68

Slides by Wes J. Lloyd

1/15/2026

L3.34

TCSS 422 A — Winter 2026
School of Engineering and Technology

0 < Activities @ Visual settings

1ol

EJ
e JuinbyWeb POEV.COM/WSIOYd Join by Text Send waslioyd 1o 22333

current program?

£} Edit

Which Process APl call is used to launch a different program from the

< >

»

Current responses

69

program from the current program?

= (a) Fork()

= (b) Exec()

E (¢) Wait()

= (d) None of the above
® (e) All of the above

QUESTION: PROCESS API

® Which Process API call is used to launch a different

January 15, 2026 TCSS422: Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma

L3.70

70

Slides by Wes J. Lloyd

1/15/2026

L3.35

TCSS 422 A — Winter 2026 1/15/2026
School of Engineering and Technology

QUESTIONS

71

Slides by Wes J. Lloyd L3.36

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 1/15
	Slide 3: Virtual Machine support on APPLE m1
	Slide 4: Text book coupon
	Slide 5: feedback surveys
	Slide 6: Material / pace
	Slide 7: Feedback from 1/13
	Slide 8: Feedback - 2
	Slide 9: Feedback - 3
	Slide 10: Virtual address space 64-bit linux OS
	Slide 11: Feedback - 4
	Slide 12: Feedback - 5
	Slide 13: Motivation for linux
	Slide 14: Motivation for linux - 2
	Slide 15: Motivation for linux - 2
	Slide 16: OBJECTIVES – 1/15
	Slide 17: C Review Survey - available thru 1/17
	Slide 18: OBJECTIVES – 1/15
	Slide 19: student Background survey
	Slide 20: OBJECTIVES – 1/15
	Slide 21: Virtual machine survey
	Slide 22: OBJECTIVES – 1/15
	Slide 23: We will return at 5:00pm
	Slide 24: OBJECTIVES – 1/15
	Slide 25: Chapter 4: processes
	Slide 26: Virtualizing the cpu
	Slide 27: Process
	Slide 28: Process API
	Slide 29: Process api: create
	Slide 30: Process api: create
	Slide 31
	Slide 32: OBJECTIVES – 1/15
	Slide 33: Process states
	Slide 34: Process state transitions
	Slide 35: Observing process meta-data
	Slide 36: Observing process meta-data
	Slide 37: Context switch
	Slide 38
	Slide 39: Question: WHEN TO CONTEXT SWITCH
	Slide 40: OBJECTIVES – 1/15
	Slide 41: Process data structures
	Slide 42: Struct Task_struct process control block
	Slide 43: Xv6 kernel data structures
	Slide 44: Xv6 kernel data structures - 2
	Slide 45: Linux: structures
	Slide 46: Struct Task_struct
	Slide 47: Struct task_struct - 2
	Slide 48: Linux structures - 2
	Slide 49: OBJECTIVES – 1/15
	Slide 50: Chapter 5: C process api
	Slide 51: OBJECTIVES – 1/15
	Slide 52: fork()
	Slide 53: Fork example
	Slide 54: Fork example - 2
	Slide 55: :(){ :|: & };:
	Slide 56: OBJECTIVES – 1/15
	Slide 57: wait()
	Slide 58: Fork With wait
	Slide 59: Fork with wait - 2
	Slide 60: Fork example
	Slide 61: OBJECTIVES – 1/15
	Slide 62: exec()
	Slide 63: Exec() - 2
	Slide 64: Exec example
	Slide 65: Exec example - 2
	Slide 66: Exec with file redirection (output)
	Slide 67: File mode bits
	Slide 68: exec w/ File redirection (output) - 2
	Slide 69
	Slide 70: Question: PROCESS API
	Slide 71: Questions

