TCSS 422 A — Winter 2026
School of Engineering and Technology

1/15/2026

TCSS 422: OPERATING SYSTEMS

Processes &
The Process API

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Winter 2026]

Sy 028 School of Engineering and Technology, University of Washington

OBJECTIVES - 1/15

= Questlons from 1/13 |

= C Review Survey - Closes Jan 17 AOE

= Student Background Survey

= Virtual Machine Survey: VM requests to be sent to SET IT
= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(), exec()

TCSS422: Operating Systems Winter 2026] 52

TR G School of Engineering and Technology, University of Washington - Tacoma

VIRTUAL MACHINE SUPPORT
ON APPLE M1

= |nstalling a Ubuntu Virtual Machine on Apple M1 MacBooks:
= FREE

" https://mac.getutm.app,

= MACs use Apple Silicon ARM-based CPUs
= Motivation: faster, less expensive than Intel-based CPUs

ilcome to
ure of M

TCS5422: Operating Systems Winter 2026]

January1s, 2026 School of Engineering and Technology, University of Washington - Tacoma.

[o]

TEXT BOOK COUPON

= 15% off textbook code: AAC72SAVE15

= https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-
arpaci-dusseau/operating-systems-three-easy-pieces-
hardcover-version-110/hardcover/product-
15gjeeky.html?q=three+easy+pieces+operating+systems&pa

e=1&pageSize=4

= With coupon textbook is only ~ $33.79 + tax & shipping

TCSS422: Operating Systems [Winter 2026] ™

January1s;2026 School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK SURVEYS

= Feedback Survey in Class and on Canvas

= All Quarter: 1-point Extra CredIt for completing online
= Weeks 1-6: 2-polnts Extra CredIt completing in class
= Weeks 7-9: 3-points Extra Credit, 4-points (week 10)

= 46 points = TCS5422A > Assignments
possible
" 2.5% added to 2 ch o
final course Home
grade for Announcements
(46/46) Joom + Upcoming Assignments
= There will be other
opportunlties Syllabus ¢ TCSS422 - Online Daily Feedback Survey - 4/1
etc.) = - I ™ Avallable until Apr 5 at 11:5%pm | DueApr3at 10pm | /1 pts
to earn survey pts
Diccucsinn Auinr o

TCS5422: Computer Operating Systems [Winter 2026]

EETFERED School of Engineering and Technology, University of Washington - Tacoma

[os]

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class:
= 45 of 46 respondents - 97.83%!!
= 36 in-person, 9 online

= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - 6.34 (T - previous 5.83)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.13 (4 - prevlous 5.21)

TCS5422: Computer Operating Systems [Winter 2026] 56

(A EED School of Engineering and Technology, University of Washington -Tacoma

Slides by Wes J. Lloyd

L3.1

https://mac.getutm.app/
https://mac.getutm.app/
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4

TCSS 422 A — Winter 2026
School of Engineering and Technology

FEEDBACK FROM 1/13

= What does the OS do to prevent the corruptions of multiple-
threads?

= The term for “preventing corruption” of memory shared among
multiple threads is called “thread-safe”

= PROMPT GenAl:

= #1: “list all known thread-safe operating systems”

= #2: “are there any operating systems that automatically guarantee
thread safety for the programmer?”

= What synchronlzation methods (tools) are avallable?

= PROMPT GenAl:

= #1: “what thread synchronization methods are available in Linux?”

= Mutexes

= Condition Variables

= Semaphores

TCS5422: Operating Systems [Winter 2026]

‘ fanuany 2026 School of Engineering and Technology, University of Washington - Tacoma.

FEEDBACK - 2

= (3 Key takeaway (exam-ready)

= Linux provides thread synchronization through POSIX
primitives (mutexes, condition variables, semaphores, RW
locks), kernel-assisted futexes, and low-level atomic
operations. Higher-level constructs are built on futexes for
performance and scalability.

TCSS422: Operating Systems Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma e

‘ January 15, 2026

FEEDBACK - 3

= [f two programs see some virtual addresses. how does the 0S
ensure that It does touch its physical memory?
= [nterpretation: ‘how does the OS enable you to use variables
stored in physical memory?’
= You can print the address of anything with %p and ‘&’ the
address of operator:
int x = 1;
printf("x = %d addr=%p\n", x,&x);
= When you modify or print ‘int x’, the OS automatically
translates the virtual addr to the physical addr behind the
scenes to support working with the variable

" int x virtual addr can be Ox7fffffffdf54
= x is a local variables stored on the program’s stack
= notice the stack is near the end of the address range

TC55422; Operating Systems [Winter 2026]
January1s, 2026 School of Engineering and Technology, University of Washington - Tacoma. B

VIRTUAL ADDRESS SPACE

64-BIT LINUX OS

= 48-bit Virtual Address Space (Standard)

= This is the most common configuration, providing a total
usable space of 256 TB.

Region Start Address End Address Size
User Space 0x%0000000000000000 0x00007FFFFFFFFFFF 128 TB
Unused Gap 0x%0000800000000000 OXFFFF7FFFFFFFFFFF ~16 EB

Kernel Space OxFFFF800000000000 OXFFFFFFFFFFFFFFFF 128 TB

= A true 64-bit virtual address space can address 16,384,000
tera-bytes, which is 16,384 peta-bytes, which is 16.384 exa-
bytes

= This much is not needed, so only 48-bits (3/4) of the address
space is typically used

= Larger servers may use a 57-bit address space (128 PB)

TC55422: Operating Systems [Winter 2026]
‘ January1s;2026 School of Engineering and Technology, University of Washington - Tacoma 1310

FEEDBACK - 4

= | didn't really understand the 5 levels of abstraction or how

pages works
= This is called multi-level page tables, and will be discussed in the
future
= Is there a way to access the slides themselves instead of the
Al summary?

= From the ‘Schedule’ tab, of the course website

TCSS422: Operating Systems [Winter 2026]
‘ EETFERED School of Engineering and Technology, University of Washington - Tacoma B

10

FEEDBACK - 5

= Why not put 100 hyperthreads in a CPU?

What's the limitatlon of virtual cores?

= Physical CPUs consist of multiple execution unlts, that decode and
execute the various stages of program code

= Instruction Fetch Unit (IFU), Instruction Decode Unit (IDU),
Execution Units (for example Arithmetic Logic Unit (ALU) + others),
Write-Back Unit (WBU)

= These units make up the CPU’s instruction pipeline:

CPU pipeline: IFU -> IDU - ALU -> WBU

= Hyperthreading shares a pipeline with 2 processes/threads
simultaneously to provide 2 ‘logical’ cores from 1 physical core

= Pr y sharing a pipeline with >2 threads, would induce too
much waiting for individual units
TCS5422: Operating Systems [Winter 2026]
‘ (A EED School of Engineering and Technology, University of Washington - Tacoma B2

11

Slides by Wes J. Lloyd

12

1/15/2026

L3.2

TCSS 422 A — Winter 2026 1/15/2026
School of Engineering and Technology

MOTIVATION FOR LINUX

MOTIVATION FOR LINUX - 2

= |t is worth noting the importance of Linux for today’s = Consider a pricing example where you're asked to develop a web
developers and computer scientists. services backend that requires 10 x 8-CPU-core virtual servers
= The CLOUD runs many virtual machines, recently in 2019 a key = Your organization investigates hosting costs on Amazon cloud

milestone was reached.

= 8-core VM is “c5d.2xlarge”
= Even on Microsoft Azure (the Microsoft Cloud), there were

Windows On Demand cost
more Linux Virtual Machines (> 50%) than Windows. %_
= https://www.zdnet.com/article/microsoft-developer-reveals- oo oy |
o 4 A iy
linux-is-now-more-used-on-azure-than-windows-server, 502000 houriy
= https://www.zdnet.com/article/it-runs-on-the-cloud-and-the- 50.752000 houry]
- -on-li - - i et —
cloud-runs-on-linux-any-questions/ = —
= The majority of application back-ends (server-side), cloud or * Windows hourly price 75.2¢
not, run on Linux. = Linux hourly price 38.4¢
= This is due to licensing costs, example: = See: https://Instances.vantage.sh/
TCSS422: Oy ing Sy Wi 2026] TCSS422: Oy ling Sy Wit 2026]
l fanuany 2026 school ofE:;:;e’:‘\gngy:‘ne:\sﬁL\m’:I‘:;v, Uni]versilvai Washington - Tacoma .13 l fanuarvicg202¢] School of E::i’:e‘e’:igngv:\ed";'se«[:hn:l‘:;{, Unilvers\’ty of Washington - Tacoma 1314

13 14

MOTIVATION FOR LINUX - 2 OBJECTIVES - 1/15

= Questions from 1/13

L] -

= Student Background Survey

= Virtual Machine Survey: VM requests to be sent to SET IT
= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
.8% price premium = Chapter 5: Process API
= fork(), wait(), exec()

= See: https://www.ec2Instances.Info/
TC55422: Operating Systems (Winter 2026] TC55422: Operating Systems (Winter 2026]
l January 15,2026 School of Engineering and Technology, University of Washington - Tacoma. 1315 January 15,2026 School of Engineering and Technology, University of Washington - Tacoma 16

OBJECTIVES - 1/15

= Questions from 1/13
= C Review Survey - Closes Jan 17 AOE

= Virtual Machine Survey: VM requests to be sent to SET IT
= Assignment O

C REVIEW SURVEY -
AVAILABLE THRU 1/17

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(), exec()

TC$S422: Operating Systems [Winter 2026]
Sentayln 2020 School of Engineering and Technology, University of Washington -

TCS5422: Operating Systems [Winter 2026]
l CLERFEETD School of Engineering and Technology, University of Washington - Tacoma 18

17 18

Slides by Wes J. Lloyd L3.3

https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://instances.vantage.sh/
https://www.ec2instances.info/

TCSS 422 A — Winter 2026
School of Engineering and Technology

1/15/2026

STUDENT BACKGROUND SURVEY

=32 of 46 Responses as of 1/15 @ ~8am

Survey
=Please complete the survey by Monday
=Office Hours will be based on the survey

=Please complete the Student Background

shttps://forms.gle/TBZMRUavzhihdUdb8

TCS5422: Operating Systems Winter 2026]

‘ fanuany 2026 School of Engineering and Technology, University of Washington - Tacoma.

13.19

OBJECTIVES - 1/15

® Questions from 1/13
= C Review Survey - Closes Jan 17 AOE
= Student Background Survey
| = Virtual MachIne Survey: VM requests to be sent to SET IT|
= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(), exec()

TCSS422: Operating Systems Winter 2026]

‘ fanuarvicg202¢] School of Engineering and Technology, University of Washington - Tacoma

19

20

VIRTUAL MACHINE SURVEY

a “School of Engineering and Technology” remote
hosted Ubuntu VM

=https://forms.gle/G679XUXXxXcHAffi6

=31 of 46 Responses as of 1/15 @ ~8am

= VM requests will be sent to SETIT
= Survey response not required if no VM desired

= Please complete the Virtual Machine Survey to request

TCS5422: Operating Systems Winter 2026]

‘ S 2028 School of Engineering and Technology, University of Washington - Tacoma.

1321

OBJECTIVES - 1/15

= Questions from 1/13

= C Review Survey - Closes Jan 17 AOE

= Student Background Survey

= Virtual Machine Survey: VM requests to be sent to SET IT

= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(), exec()

TCS5422: Operating Systems [Winter 2026]

‘ fanuanvisizo2e School of Engineering and Technology, University of Washington - Tacoma

21

WE WILL RETURN AT

5:00PM

TCSS422: Operating Systems [Winter 202

6]
T L School of Engineering and Technology, University of Washington -

22

OBJECTIVES - 1/15

= Questions from 1/13

= C Review Survey - Closes Jan 17 AOE

= Student Background Survey

= Virtual Machine Survey: VM requests to be sent to SET IT
= Assignment O

| = Chapter 4: Processes|
= Process states, context switches
= Kernel data structures for processes and threads
= Chapter 5: Process API
= fork(), wait(), exec()

TC55422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

324

‘ January 15, 2026

23

Slides by Wes J. Lloyd

24

L3.4

https://forms.gle/s9j2CTLqpfFneL7ZA
https://forms.gle/s9j2CTLqpfFneL7ZA
https://forms.gle/jSwcL1qeKDy2W9498
https://forms.gle/jSwcL1qeKDy2W9498

TCSS 422 A — Winter 2026 1/15/2026
School of Engineering and Technology

——
Process State

VIRTUALIZING THE CPU) ¢

= How should the CPU be shared?

= Time Sharing:
Run one process, pause it, run another

. = The act of swapping process A out of the CPU to run
CHAPTER 4 process B is called a:

PROCESSES = CONTEXT SWITCH

= How do we SWAP processes in and out of the CPU
efficiently?
= Goal is to minimize overhead of the swap

= OVERHEAD is time spent performing 0S management
activities that don’t help accomplish real work

TCSS422: Operating Systems Winter 2026]

TCSS422: Operating Systems [Winter 2026]
SRR 2 School of Engineering and Technology, University of Washington - Tacoma

School of Engineering and Technology, University of Washington - January 15, 2026

25 26

PROCESS PROCESS API

= Modern OSes provide a Process API for process support
- Greeie

= Create a new process

= Process comprises of: = Destroy
= Terminate a process (ctrl-c)
= Memory

Instructions (“the code”)
Data (heap)

= Wait
= Wait for a process to complete/stop

= Miscellaneous Control
= Suspend process (ctrl-z)

= Registers
* Resume process (fg, bg)

PC: Program counter

Stack pointer = Status

= Obtain process statistics: (top)

TC55422: Operating Systems (Winter 2026] TC55422: Operating Systems (Winter 2026]
‘ S 2028 School of Engineering and Technology, University of Washington - Tacoma 1327 fanuanvisizo2e School of Engineering and Technology, University of Washington - Tacoma 1328

27 28

PROCESS API: CREATE PROCESS API: CREATE
1. Load program code (and static data) into memory 3. Create program’s heap memory
= Program executable code (binary): loaded from disk = For dynamically allocated data
= Static data: also loaded/created in address space
*-_agguo_a_dmg: Load entire program before running 4. Other initialization
= Lazy loading: Only load what is immediately needed = 1/0 Setup
Modern OSes: Supports paging & swapping Each process has three open file descriptors:

Standard Input, Standard Output, Standard Error
2. Run-time stack creation

= Stack: local variables, function params, return address(es) 5. Start program running at the entry point: main ()

= OS transfers CPU control to the new process

School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington - Tacoma

‘ January 15, 2026 TCS5422: Operating Systems [Winter 2026] e ‘ January15, 2026 7CS5422: Operating Systems [Winter 2026] a0

29 30

Slides by Wes J. Lloyd L3.5

TCSS 422

A — Winter 2026

School of Engineering and Technology

cPu Memory
i code
| static data
! heap
stack
Process
[I
J— | —
/' N
S J .
— Loading:
slatiid;ala i Reads program from
heap | disk into the address
g space of process

TCS5422: Operating Systems Winter 2026]

fanuany 2026 School of Engineering and Technology, University of Washington - Tacoma.

1331

31

PROCESS STATES

= RUNNING
= Currently executing instructions

= READY
= Process is ready to run, but has been preempted
= CPU is presently allocated for other tasks

= BLOCKED
= Process is not ready to run. It is waiting for another event
to complete:
Process has already been initialized and run for awhile
Is now waiting on 1/0 from disk(s) or other devices

TCS5422: Operating Systems Winter 2026]

S 2028 School of Engineering and Technology, University of Washington - Tacoma

1333

33

OBSERVING PROCESS META-DATA

= Can inspect the number of CONTEXT SWITCHES made by a
process

= Let’s run mem.c (from chapter 2)

= cat /proc/{process-id}/status

= proc “status” is a virtual file generated by Linux
= Provides a report with process related meta-data

= What appears to happen to the number of context switches

TCS5422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

the longer a process runs? (mem.c)

January 15, 2026

1/15/2026

OBJECTIVES - 1/15

® Questions from 1/13

= C Review Survey - Closes Jan 17 AOE

= Student Background Survey

= Virtual Machine Survey: VM requests to be sent to SET IT
= Assignment O

= Chapter 4: Processes
| = Process states, context switches|
= Kernel data structures for processes and threads
= Chapter 5: Process API
= fork(), wait(), exec()

TCSS422: Operating Systems Winter 2026]

‘ fanuarvicg202¢] School of Engineering and Technology, University of Washington - Tacoma

32

PROCESS STATE TRANSITIONS

TN N

\ Descheduled \
Ready |

| Running | =——|
\ / Scheduled \ /
. A \,,/
1/0: initiat(x - 1/0: done
/ N\
/ \
}: Blocked \

NG

TCSS422: Operating Systems [Winter 2026]

‘ January1s;2026 School of Engineering and Technology, University of Washington - Tacoma

34

OBSERVING PROCESS META-DATA

= Can inspect the number of CONTEXT SWITCHES made by a
process

What is the difference between a

voluntary and a n oluntary context switch ?

= What appears to happen to the number of context switches

TC55422: Operating Systems [Winter 2026]

‘ CLERFEETD School of Engineering and Technology, University of Washington - Tacoma

35

Slides by

Wes J. Lloyd

the longer a process runs? (mem.c)

36

L3.6

TCSS 422 A — Winter 2026
School of Engineering and Technology

1/15/2026

CONTEXT SWITCH

= How long does a context switch take?
= 10,000 to 50,000 ns (.01 to .05 ms)
= 2 000 context switches is near 100ms

Without CPU affinity

TCS5422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma.

13.37

January 15, 2026

ol

) Visualsettings {3} Edit < >

< Activities

Whe isin this state, itis for the Operati stem to 0
perform a CONTEXT SWITCH to perform other work

RUNNING

BLOCKED

e 2
PTG o

37

38

QUESTION: WHEN TO CONTEXT SWITCH

= When a process is about to go into this state, it is
advantageous for the Operating System to perform a
CONTEXT SWITCH to perform other work:

= (a) RUNNING

= (b) READY

= (c) BLOCKED

= (d) All of the above

= (e) None of the above

TCS5422: Operating Systems Winter 2026]

January1s, 2026 School of Engineering and Technology, University of Washington - Tacoma

13.39

OBJECTIVES - 1/15

= Questions from 1/13

= C Review Survey - Closes Jan 17 AOE

= Student Background Survey

= Virtual Machine Survey: VM requests to be sent to SET IT
= Assignment O

= Chapter 4: Processes
= Process states, context switches
|- Kernel data structures for processes and threadsl
= Chapter 5: Process API
= fork(), wait(), exec()

TCS5422: Operating Systems (Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

13.40

January 15, 2026

39

PROCESS DATA STRUCTURES

= OS provides data structures to track process information

= Process list
Process Data
State of process: Ready, Blocked, Running

= Register context

= PCB (Process Control Block)
= A C-structure that contains information about each
process

TCS5422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

13.41

January 15, 2026

40

STRUCT TASK_STRUCT

PROCESS CONTROL BLOCK

process state
process number

=Process Control
Block (PCB)

program counter

=Key data regarding a

process registers

memory limits

list of open files

January 18, 2028 TCSS422: Operating S;/rs‘:‘ems [Winter 2026] L3.42

School of University of - Tacoma

41 42

Slides by Wes J. Lloyd L3.7

TCSS 422 A — Winter 2026

1/15/2026
School of Engineering and Technology

XV6 KERNEL DATA STRUCTURES

= xv6: pedagogical implementation of Linux
= Simplified structures shown in book

ruct context (

1t eip;
1t esp;
nt ebx;
1t ecx;
1t edx;
1t esi;
1t edi;
1t ebp;

enum proc_state { UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE };

TC55422; Operating Systems [Winter 2026]
‘ fanuany 2026 School of Engineering and Technology, University of Washington - Tacoma L343

43

LINUX: STRUCTURES

mstruct task struct, equivalent to struct proc
= The Linux process data structure
= Kernel data type (i.e. record) that describes
individual Linux processes
= Structure is VERY LARGE: 10,000+ bytes
= Defined in:
/usr/src/linux-headers-{kernel version}/include/linux/sched.h
Ubuntu kernel version 6.11, LOC 758 - 1588
Ubuntu kernel version 5.15, LOC: 721 - 1507
Ubuntu kernel version 5.11, LOC: 657 - 1394
Ubuntu kernel version 4.4, LOC: 1391 - 1852

TC55422: Operating Systems (Winter 2026]
‘ January1s, 2026 School of Engineering and Technology, University of Washington - Tacoma 145

45

STRUCT TASK_STRUCT - 2

= Address space of the process:
= “mm” is short for “memory map”

= struct mm_struct *mm; LOC #898
= Parent process, that launched this one

= struct task_struct __rcu *parent; LOC #1009

= Chlld processes (as a list)

= struct list_head children; LOC #1017
= Open flles
" struct files_struct *files; LOC #1121

‘ January 15, 2026 TCS5422: Operating Systems [Winter 2026] 47

School of Engineering and Technology, University of Washington - Tacoma

XV6 KERNEL DATA STRUCTURES - 2

struct proc {
ir *mem;
int sz;
har *kstack;

wum proc_state state;

pid;

t proc *parent;

d *chan; non-
nt killed; non-
r file *ofile[NOFILE];

inode *cwd;

context context;

trapframe *tf;

TC55422; Operating Systems (Winter 2026]
‘ fanuarvicg202¢] School of Engineering and Technology, University of Washington - Tacoma

44

STRUCT TASK_STRUCT

= Key elements (e.g. PCB) in Linux are captured in
struct task_struct: (LOC from Linux kernel v 6.11)
= Process ID
=pid_t pid; LOC #995
= Process State
= /* -1 unrunnable, 0 runnable, >0 stopped: */
= unsigned int __state; LOC #766
= Process time slice
how long the process will run before context switching
= Struct sched_rt_entity used in task_struct contains timeslice:

=struct sched_rt_entity rt; LOC #812
=unsigned int time_slice; LOC #583
TCSS422: Oy iting Syste [Winter 2026]
‘ January1s;2026 School of E:;:ele':fngv:n:mrsecnr:gl:;y, University of Washington - Tacoma 1348

46

LINUX STRUCTURES - 2

= List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

= Description of process data structures:
https://learning.oreilly.com/library/view/linux-kernel-
development/9780768696974/cover.html
3rd edition is online (dated from 2010):
See chapter 3 on Process Management

Safari online - accessible using UW ID SSO login
Linux Kernel Development, 3™ edition

Robert Love

Addison-Wesley

47

Slides by Wes J. Lloyd

7CS5422: Operating Systems [Winter 2026]
‘ (A EED School of Engineering and Technology, University of Washington - Tacoma 1348

48

http://www.tldp.org/LDP/tlk/ds/ds.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html

TCSS 422 A — Winter 2026 1/15/2026
School of Engineering and Technology

OBJECTIVES - 1/15

= Questions from 1/13

= C Review Survey - Closes Jan 17 AOE

= Student Background Survey

= Virtual Machine Survey: VM requests to be sent to SET IT
= Assignment O

= Chapter 4: Processes C PROCESS API

= Process states, context switches

= Kernel data structures for processes and threads
| = Chapter 5: Process API |

= fork(), wait(), exec()

CHAPTER 5:

TC55422; Operating Systems [Winter 2026] TCSS422: Operating Systems [Winter 2026]
‘ T B R School of Engineering and Technology, University of Washington - Tacoma. 1349 L IR School of Engineering and Technology, University of Washington -

49 50

OBJECTIVES - 1/15 fork() ¢

® Questions from 1/13 = Creates a new process - think of “a fork in the road”
= “Parent” process is the original

= C Review Survey - Closes Jan 17 AOE
= Creates “child” process of the program from the current

= Student Background Survey executlon polnt
= Virtual Machine Survey: VM requests to be sent to SET IT = Book says “pretty odd”
= Assignment O = Creates a duplicate program instance (these are processes!)
= Copy of

= Chapter 4: Processes = Address space (memory)

= Process states, context switches * Register

= Kernel data structures for processes and threads ° PRegEm Eemmey (F)
= Chapter 5: Process API| - F_O;:"Le:,:‘[;rlz parent

wait(), exec() = 0 to child
‘ e ioi2028 ;ﬁﬁfﬁg.?;:iﬁﬁ:.ﬁmﬁ:;fﬁlmmor Washington - Tacoma 131 ‘ e aa Schooof ?rpufil:eﬁe':ignzv;'r;";sec[:ﬂ:::;v??:]vemwMWash‘mmn ~Tacoma B

51 52

FORK EXAMPLE FORK EXAMPLE - 2

= pl.c = Non deterministic ordering of execution
#include <stdio.h> prompt> ./pl
#include <stdlib.h> hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)
int main(int argc, char *argv(]){ prompt>
printf ("hello world (pid:%d)\n", (int) getpid()):
l» int rc = fork();
(rc < 0) { or

fprintf (stderr, "fork failed\n");

#include <unistd.h>

exit(1);

} (rc == 0) { ! prompt> ./pl
printf("hello, I am child (pid:%d)\n", (int) getpid()); hello world (pid:29146)

} i) hello, I am child (pid:29147)
printf("hello, I am parent of %d (pid:%d)\n", hello, I am parent of 29147 (pid:29146)
re, (int) getpid()); prompt>

0;

! = CPU scheduler determines which to run first

TCS5422: Operating Systems [Winter 2026] TCS5422: Operating Systems [Winter 2026]
‘ EETFERED School of Engineering and Technology, University of Washington - Tacoma B3 CLERFEETD School of Engineering and Technology, University of Washington - Tacoma sl

53 54

Slides by Wes J. Lloyd L3.9

TCSS 422 A — Winter 2026
School of Engineering and Technology

X

e wed o

TCS5422: Operating Systems Winter 2026]

‘ fanuany 2026 School of Engineering and Technology, University of Washington - Tacoma

13.55

55

wait()

= wait(), waitpid()

= Called by parent process

= Waits for a child process to finish executing

= Not a sleep() function

= Provides some ordering to multi-process execution

TCS5422: Operating Systems Winter 2026]

‘ January1s, 2026 School of Engineering and Technology, University of Washington - Tacoma

57

FORK WITH WAIT - 2

= Deterministic ordering of execution

prompt> ./p2

hello world (pid:29266)

hello, T am child (pid:29267)

hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>

TCS5422: Operating Systems [Winter 2026]

‘ EETFERED School of Engineering and Technology, University of Washington - Tacoma

13.59

59

Slides by Wes J. Lloyd

1/15/2026

OBJECTIVES - 1/15

® Questions from 1/13

= C Review Survey - Closes Jan 17 AOE

= Student Background Survey

= Virtual Machine Survey: VM requests to be sent to SET IT
= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

L] fork() exec()

‘ T AT ‘ TC55422; Operating Systems [Winter 2026]

School of Engineering and Technology, University of Washington - Tacoma 13.58

56

FORK WITH WAIT

#include <stdio.h>
#inc <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

main (arge, *argv(]){
printf("hello world (pid:¥d)\n", (i
re = fork();
(rc < 0) { ;
fprintf (stderr, "fork failed\n");
exit(1);

getpid());

= 0) { (
1o, T am child (pid:%d)\n", (int) getpid());

wait (NULL) ;
printf("hello, I am parent of %d (wc:%d) (pid:¥d)\n",
re, we, (int) getpid();

0;

TC55422: Operating Systems (Winter 2026]
‘ January1s;2026 School of Engineering and Technology, University of Washington - Tacoma 13.58

58

FORK EXAMPLE

= Linux example

7CS5422: Operating Systems [Winter 2026]
‘ (A EED School of Engineering and Technology, University of Washington - Tacoma 1360

60

L3.10

TCSS 422 A — Winter 2026

1/15/2026
School of Engineering and Technology

OBJECTIVES - 1/15 exec() *

= Questions from 1/13
= C Review Survey - Closes Jan 17 AOE
= Student Background Survey

= Supports running an external program by “transferring control”
= 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

= execl(), execlp(), execle(): const char *arg (example: execl.c)
= Virtual Machine Survey: VM requests to be sent to SET IT

i Provide cmd and args as individual params to the function
= Assignment 0 Each arg is a pointer to a null-terminated string
ODD: pass a variable number of args: (arg0, argl, .. argn)
= Chapter 4: Processes
= Process states, context switches = Execv(), execvp(), execvpe() (example: exec.c,
= Kernel data structures for processes and threads Provide cmd and args as an Array of pointers to strings
= Chapter 5: Process API Strings are null-terminated
. First argument is name of command being executed
= fork(), wait mﬂ
0 ()- Fixed number of args passed in
[i ams [T e e W 200 wnsingon - e s [manisams [T e s e 2000 gt o

EXEC() - 2 EXEC EXAMPLE

= Common use case:

. . # Luds dio.h>
= Write a new program which wraps a legacy one binolude iztﬁb.m

. . . # clude <u td.h
= Provide a new interface to an old system: Web services el cebrinehs

#include <string.h>

= Legacy program thought of as a “black box” Finelude <oye/uait.ns

main (rgc, char *argv(]){

printf("hello world (pid:%d)\n", (getpid());
, . re = fork();

= We don’t want to know what is inside... ©

fprintf (stderr, "fork failed\n");

exit (1)
} (re == 0) {

- printf("hello, I am child (pid:sd)\n", (int) getpid());
Cutput l
gt ——]

char *myargs[
nternalbehovior of the code s unksown

TC55422: Operating Systems (Winter 2026] TC55422: Operating Systems (Winter 2026]
‘ January1s, 2026 School of Engineering and Technology, University of Washington - Tacoma 1363 January1s;2026 School of Engineering and Technology, University of Washington - Tacoma 1364

EXEC EXAMPLE - 2 EXEC WITH FILE REDIRECTION (OUTPUT)

‘ execvp (myargs (0], myargs);
, _,PEAnEE"this shouan’c print out™);) nelude <stdio.ns
we = wait (NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
e, we, (int) getpid();

#include <sys/wait.h>

main(int argc, char *argv([]){
t re = fork();

(re < 0) 1 ;
fprintf (stderr, "fork failed\n");
exit(l);
prompt> ./p3 }
hello world (pid:29383) NO) ;
hello, T am child (pid:29384) - open (" /pd.output”, O_CREAT|O_WRONLY|O_TRUNC, S_TRWXU);
29 107 1030 p3.c
hello, I am parent of 29384 (wc:29384) (pid:29383)
prompt>
TCSS422: Operating Systems [Winter 2026] TCSS422: Operating Systems [Winter 2026]
‘ (I e S B e e o O G S T 1365 ‘ FIE S 2 ‘ School of Engneeing and Technoloy, Unversityof Washigton - Tacoma oo

65 66

Slides by Wes J. Lloyd L3.11

TCSS 422 A — Winter 2026 1/15/2026
School of Engineering and Technology

FILE MODE BITS EXEC W/ FILE REDIRECTION (OUTPUT) - 2

) [s_trixo

read, write, execute/search by owner
S_IRUSR

read permission, owner

S_IWUSR . -
write permission, owner char *myargs[3];

S_IXUSR strdup ("we") ;
execute/search permission, owner strdup ("pd.c");
S_IRWXG NULL;

read, write, execute/search by group) EXSTVP““Y@“!S[“]' Targsyi 0 e e ot
S_IRGRP int wc = wait (NULL);

read permission, group }
S_IWGRP

write permission, group

S_IXGRP

execute/search permission, group
S_IRWXO

read, write, execute/search by others

S_IROTH prompt> ./pd
read permission, others prompt> cat pd.output
S_IWOTH 32 109 846 pd.c

write permission, others prompt>

School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington - Tacoma

l January 15, 2026 TCS5422: Operating Systems [Winter 2026] 1367 l January 15, 2026 TC55422: Operating Systems [Winter 2026]

67 68

.11) < Activities &) Visual settings) Edit < >

QUESTION: PROCESS API

= Which Process API call is used to launch a different

Which Process API call is used to launch a different program from the . program from the current prOgram?
current program?
= (a) Fork()
G (o wart)
= (c) Wait()
D o) Al o the abave
= (e) All of the above
! EE— - - 4
TCS5422: O ing Sy (Wi 2026
l January 15,2026 School of Erp;i:e“e':igngv::"}sec[hv:zl':;y, Uni{ers\’ty of Washington - Tacoma 1370
.]

69 70

QUESTIONS

71

Slides by Wes J. Lloyd L3.12

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 1/15
	Slide 3: Virtual Machine support on APPLE m1
	Slide 4: Text book coupon
	Slide 5: feedback surveys
	Slide 6: Material / pace
	Slide 7: Feedback from 1/13
	Slide 8: Feedback - 2
	Slide 9: Feedback - 3
	Slide 10: Virtual address space 64-bit linux OS
	Slide 11: Feedback - 4
	Slide 12: Feedback - 5
	Slide 13: Motivation for linux
	Slide 14: Motivation for linux - 2
	Slide 15: Motivation for linux - 2
	Slide 16: OBJECTIVES – 1/15
	Slide 17: C Review Survey - available thru 1/17
	Slide 18: OBJECTIVES – 1/15
	Slide 19: student Background survey
	Slide 20: OBJECTIVES – 1/15
	Slide 21: Virtual machine survey
	Slide 22: OBJECTIVES – 1/15
	Slide 23: We will return at 5:00pm
	Slide 24: OBJECTIVES – 1/15
	Slide 25: Chapter 4: processes
	Slide 26: Virtualizing the cpu
	Slide 27: Process
	Slide 28: Process API
	Slide 29: Process api: create
	Slide 30: Process api: create
	Slide 31
	Slide 32: OBJECTIVES – 1/15
	Slide 33: Process states
	Slide 34: Process state transitions
	Slide 35: Observing process meta-data
	Slide 36: Observing process meta-data
	Slide 37: Context switch
	Slide 38
	Slide 39: Question: WHEN TO CONTEXT SWITCH
	Slide 40: OBJECTIVES – 1/15
	Slide 41: Process data structures
	Slide 42: Struct Task_struct process control block
	Slide 43: Xv6 kernel data structures
	Slide 44: Xv6 kernel data structures - 2
	Slide 45: Linux: structures
	Slide 46: Struct Task_struct
	Slide 47: Struct task_struct - 2
	Slide 48: Linux structures - 2
	Slide 49: OBJECTIVES – 1/15
	Slide 50: Chapter 5: C process api
	Slide 51: OBJECTIVES – 1/15
	Slide 52: fork()
	Slide 53: Fork example
	Slide 54: Fork example - 2
	Slide 55: :(){ :|: & };:
	Slide 56: OBJECTIVES – 1/15
	Slide 57: wait()
	Slide 58: Fork With wait
	Slide 59: Fork with wait - 2
	Slide 60: Fork example
	Slide 61: OBJECTIVES – 1/15
	Slide 62: exec()
	Slide 63: Exec() - 2
	Slide 64: Exec example
	Slide 65: Exec example - 2
	Slide 66: Exec with file redirection (output)
	Slide 67: File mode bits
	Slide 68: exec w/ File redirection (output) - 2
	Slide 69
	Slide 70: Question: PROCESS API
	Slide 71: Questions

