
TCSS 422 A – Winter 2026
School of Engineering and Technology

1/15/2026

L3.1Slides by Wes J. Lloyd

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

Processes &
The Process API

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 1/13

 C Review Survey – Closes Jan 17 AOE

 Student Background Survey

 Virtual Machine Survey: VM requests to be sent to SET IT

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.2

OBJECTIVES – 1/15

 Installing a Ubuntu Vir tual Machine on Apple M1 MacBooks:

 FREE

 https://mac.getutm.app/

 MACs use Apple Silicon ARM-based CPUs

▪ Motivation: faster, less expensive than Intel-based CPUs

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.3

VIRTUAL MACHINE SUPPORT

ON APPLE M1

 15% off textbook code: AAC72SAVE15

 https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-

arpaci-dusseau/operating-systems-three-easy-pieces-

hardcover-version-110/hardcover/product -

15gjeeky.html?q=three+easy+pieces+operating+systems&pag

e=1&pageSize=4

 With coupon textbook is only ~ $33.79 + tax & shipping

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.4

TEXT BOOK COUPON

 Feedback Survey in Class and on Canvas

 All Quarter: 1 -point Extra Credit for completing online

 Weeks 1-6: 2-points Extra Credit completing in class

 Weeks 7-9: 3-points Extra Credit , 4-points (week 10)

 46 points

possible

 2.5% added to

final course

grade for

(46/46)
 T h ere w i l l b e o ther

o p p ortunit ies

(s eminars, e tc .)

to e a rn s u r vey p t s

January 15, 2026
TCSS422: Computer Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.5

FEEDBACK SURVEYS

 Please classify your perspective on material covered in today’s

class:

▪ 45 of 46 respondents – 97.83%!!

▪ 36 in-person, 9 online

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.34 ( - previous 5.83)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.13 ( - previous 5.21)

January 15, 2026
TCSS422: Computer Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.6

MATERIAL / PACE

1 2

3 4

5 6

https://mac.getutm.app/
https://mac.getutm.app/
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/15/2026

L3.2Slides by Wes J. Lloyd

 What does the OS do to prevent the corruptions of multiple-
threads?

▪ The term for “preventing corruption” of memory shared among
multiple threads is called “thread-safe”

▪ PROMPT GenAI:

▪ #1: “list all known thread-safe operating systems”

▪ #2: “are there any operating systems that automatically guarantee
thread safety for the programmer?”

 What synchronization methods (tools) are available?

▪ PROMPT GenAI:

▪ #1: “what thread synchronization methods are available in Linux?”

▪ Mutexes

▪ Condition Variables

▪ Semaphores

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.7

FEEDBACK FROM 1/13

 Key takeaway (exam-ready)

 Linux provides thread synchronization through POSIX

primitives (mutexes, condition variables, semaphores, RW

locks), kernel-assisted futexes, and low-level atomic

operations. Higher -level constructs are built on futexes for

performance and scalability.

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.8

FEEDBACK - 2

 I f two programs see some vir tual addresses. how does the OS
ensure that it does touch its physical memory?

 Interpretation: ‘how does the OS enable you to use variables
stored in physical memory?’

 You can print the address of anything with %p and ‘&’ the
address of operator:

 int x = 1;

 printf("x = %d addr=%p\n",x,&x);

 When you modify or print ‘int x’, the OS automatically
translates the vir tual addr to the physical addr behind the
scenes to support working with the variable

 int x vir tual addr can be 0x7ff f f f ffdf54

 x is a local variables stored on the program’s stack

 notice the stack is near the end of the address range

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.9

FEEDBACK - 3

 48-bit Vir tual Address Space (Standard)

 This is the most common configuration, providing a total

usable space of 256 TB.

Region Start Address End Address _______Size__

User Space 0x0000000000000000 0x00007FFFFFFFFFFF 128 TB

Unused Gap 0x0000800000000000 0xFFFF7FFFFFFFFFFF ~16 EB

Kernel Space 0xFFFF800000000000 0xFFFFFFFFFFFFFFFF 128 TB

 A true 64-bit vir tual address space can address 16,384,000

tera-bytes, which is 16,384 peta -bytes, which is 16.384 exa-

bytes

 This much is not needed, so only 48-bits (3/4) of the address

space is typically used

▪ Larger servers may use a 57-bit address space (128 PB)

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.10

VIRTUAL ADDRESS SPACE

64-BIT LINUX OS

 I d idn't really understand the 5 levels of abstraction or how

pages works

▪ This is called multi-level page tables, and will be discussed in the

future

 Is there a way to access the s l ides themselves instead of the

AI summary?

▪ From the ‘Schedule’ tab, of the course website

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.11

FEEDBACK - 4

 Why not put 100 hyperthreads in a CPU?

What’s the l imitation of vir tual cores?

▪ Physical CPUs consist of multiple execution units, that decode and

execute the various stages of program code

▪ Instruction Fetch Unit (IFU), Instruction Decode Unit (IDU),

Execution Units (for example Arithmetic Logic Unit (ALU) + others),

Write-Back Unit (WBU)

▪ These units make up the CPU’s instruction pipeline :

CPU pipeline: IFU → IDU → ALU → WBU

▪ Hyperthreading shares a pipeline with 2 processes/threads

simultaneously to provide 2 ‘logical’ cores from 1 physical core

▪ Presumably sharing a pipeline with >2 threads, would induce too

much waiting for individual units

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.12

FEEDBACK - 5

7 8

9 10

11 12

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/15/2026

L3.3Slides by Wes J. Lloyd

 It is worth noting the importance of Linux for today’s
developers and computer scientists.

 The CLOUD runs many vir tual machines, recently in 2019 a key
milestone was reached.

 Even on Microsoft Azure (the Microsoft Cloud), there were
more Linux Vir tual Machines (> 50%) than Windows.

 https://www.zdnet.com/article/microsoft -developer-reveals-
linux-is-now-more-used-on-azure-than-windows-server/

 https://www.zdnet.com/article/it -runs-on-the-cloud-and-the-
cloud-runs-on-linux-any-questions/

 The majority of application back-ends (server-side), cloud or
not, run on Linux.

 This is due to licensing costs, example:

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.13

MOTIVATION FOR LINUX

 Consider a pricing example where you’re asked to develop a web

services backend that requires 10 x 8 -CPU-core vir tual servers

 Your organizat ion invest igates host ing costs on Amazon cloud

 8-core VM is “c5d.2xlarge”

 Windows hourly price 75.2

 Linux hourly price 38.4

 See: https://instances.vantage.sh/

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.14

MOTIVATION FOR LINUX - 2

 Consider an example where you’re asked to develop a web
services backend that requires 10 x 8 -CPU-core vir tual servers

 Your organization investigates hosting costs on Amazon cloud

 8-core VM is “c5d.2xlarge”

 Windows hourly price 75.2

 Linux hourly price 38.4

 See: https://www.ec2instances.info/

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.15

MOTIVATION FOR LINUX - 2

One year cloud hosting cost:

WINDOWS

10 VMs x 8,760 hours x $.752 = $65,875.20

Linux
10 VMs x 8,760 hours x $.384 = $33,638.40

Windows comes at a 95.8% price premium

 Questions from 1/13

 C Review Survey – Closes Jan 17 AOE

 Student Background Survey

 Virtual Machine Survey: VM requests to be sent to SET IT

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.16

OBJECTIVES – 1/15

C REVIEW SURVEY -

AVAILABLE THRU 1/17

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L3.17

 Questions from 1/13

 C Review Survey – Closes Jan 17 AOE

 Student Background Survey

 Virtual Machine Survey: VM requests to be sent to SET IT

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.18

OBJECTIVES – 1/15

13 14

15 16

17 18

https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://instances.vantage.sh/
https://www.ec2instances.info/

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/15/2026

L3.4Slides by Wes J. Lloyd

32 of 46 Responses as of 1/15 @ ~8am

Please complete the Student Background

Survey

▪Please complete the survey by Monday

▪Office Hours will be based on the survey

https://forms.gle/TBZMRUavzhihdUdb8

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.19

STUDENT BACKGROUND SURVEY

 Questions from 1/13

 C Review Survey – Closes Jan 17 AOE

 Student Background Survey

 Vir tual Machine Survey: VM requests to be sent to SET IT

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.20

OBJECTIVES – 1/15

 Please complete the Virtual Machine Survey to request

a “School of Engineering and Technology” remote

hosted Ubuntu VM

https://forms.gle/G679XUXXxXcHAffi6

31 of 46 Responses as of 1/15 @ ~8am

 VM requests will be sent to SET IT

 Survey response not required if no VM desired

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.21

VIRTUAL MACHINE SURVEY

 Questions from 1/13

 C Review Survey – Closes Jan 17 AOE

 Student Background Survey

 Virtual Machine Survey: VM requests to be sent to SET IT

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.22

OBJECTIVES – 1/15

WE WILL RETURN AT

5:00PM

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L3.23

 Questions from 1/13

 C Review Survey – Closes Jan 17 AOE

 Student Background Survey

 Virtual Machine Survey: VM requests to be sent to SET IT

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.24

OBJECTIVES – 1/15

19 20

21 22

23 24

https://forms.gle/s9j2CTLqpfFneL7ZA
https://forms.gle/s9j2CTLqpfFneL7ZA
https://forms.gle/jSwcL1qeKDy2W9498
https://forms.gle/jSwcL1qeKDy2W9498

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/15/2026

L3.5Slides by Wes J. Lloyd

CHAPTER 4:

PROCESSES

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L3.25

 How should the CPU be shared?

 Time Sharing:
Run one process, pause it, run another

 The act of swapping process A out of the CPU to run
process B is called a:

▪ CONTEXT SWITCH

 How do we SWAP processes in and out of the CPU
efficiently?

▪ Goal is to minimize overhead of the swap

 OVERHEAD is time spent performing OS management
activities that don’t help accomplish real work

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.26

VIRTUALIZING THE CPU

 Process comprises of:

▪Memory

▪ Instructions (“the code”)

▪ Data (heap)

▪ Registers

▪ PC: Program counter

▪ Stack pointer

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.27

PROCESS

A process is a running program.

 Modern OSes provide a Process API for process support

 Create

▪ Create a new process

 Destroy

▪ Terminate a process (ctrl -c)

 Wait

▪ Wait for a process to complete/stop

 Miscellaneous Control

▪ Suspend process (ctrl -z)

▪ Resume process (fg, bg)

 Status

▪ Obtain process statistics: (top)

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.28

PROCESS API

1. Load program code (and static data) into memory

▪ Program executable code (binary): loaded from disk

▪ Static data: also loaded/created in address space

▪ Eager loading: Load entire program before running

▪ Lazy loading: Only load what is immediately needed

▪ Modern OSes: Supports paging & swapping

2. Run-time stack creation

▪ Stack: local variables, function params, return address(es)

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.29

PROCESS API: CREATE

3. Create program’s heap memory

▪ For dynamically allocated data

4. Other initialization

▪ I/O Setup

▪ Each process has three open file descriptors:

Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main()

▪ OS transfers CPU control to the new process

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.30

PROCESS API: CREATE

25 26

27 28

29 30

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/15/2026

L3.6Slides by Wes J. Lloyd

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.31

code
static data

heap

stack

Process

Memory

code
static data

heap

Program

Loading:
Reads program from
disk into the address

space of process

CPU

 Questions from 1/13

 C Review Survey – Closes Jan 17 AOE

 Student Background Survey

 Virtual Machine Survey: VM requests to be sent to SET IT

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.32

OBJECTIVES – 1/15

 RUNNING

▪ Currently executing instructions

 READY

▪ Process is ready to run, but has been preempted

▪ CPU is presently allocated for other tasks

 BLOCKED

▪ Process is not ready to run. It is waiting for another event

to complete:

▪ Process has already been initialized and run for awhile

▪ Is now waiting on I/O from disk(s) or other devices

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.33

PROCESS STATES

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.34

PROCESS STATE TRANSITIONS

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate

 Can inspect the number of CONTEXT SWITCHES made by a
process

 Let’s run mem.c (from chapter 2)

 cat /proc/{process-id}/status

 proc “status” is a vir tual file generated by Linux

 Provides a report with process related meta -data

 What appears to happen to the number of context switches
the longer a process runs? (mem.c)

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.35

OBSERVING PROCESS META-DATA

 Can inspect the number of CONTEXT SWITCHES made by a
process

 Let’s run mem.c (from chapter 2)

 cat /proc/{process -id}/status

 proc “status” is a vir tual file generated by Linux

 Provides a report with process related meta -data

 What appears to happen to the number of context switches
the longer a process runs? (mem.c)

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.36

OBSERVING PROCESS META-DATA

What is the difference between a
voluntary and a non-voluntary context switch ?

31 32

33 34

35 36

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/15/2026

L3.7Slides by Wes J. Lloyd

 How long does a context switch take?

 10,000 to 50,000 ns (.01 to .05 ms)

 2,000 context switches is near 100ms

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.37

CONTEXT SWITCH

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L3.38

 When a process is about to go into this state, it is

advantageous for the Operating System to perform a

CONTEXT SWITCH to perform other work:

 (a) RUNNING

 (b) READY

 (c) BLOCKED

 (d) All of the above

 (e) None of the above

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.39

QUESTION: WHEN TO CONTEXT SWITCH

 Questions from 1/13

 C Review Survey – Closes Jan 17 AOE

 Student Background Survey

 Virtual Machine Survey: VM requests to be sent to SET IT

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.40

OBJECTIVES – 1/15

 OS provides data structures to track process information

▪ Process list

▪ Process Data

▪ State of process: Ready, Blocked, Running

▪ Register context

 PCB (Process Control Block)

▪ A C-structure that contains information about each

process

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.41

PROCESS DATA STRUCTURES

Process Control

Block (PCB)

Key data regarding a

process

STRUCT TASK_STRUCT
PROCESS CONTROL BLOCK

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.42

37 38

39 40

41 42

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/15/2026

L3.8Slides by Wes J. Lloyd

 xv6: pedagogical implementation of Linux

 Simplified structures shown in book

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.43

XV6 KERNEL DATA STRUCTURES

// the registers xv6 will save and restore

// to stop and subsequently restart a process

struct context {

 int eip; // Index pointer register

 int esp; // Stack pointer register

 int ebx; // Called the base register

 int ecx; // Called the counter register

 int edx; // Called the data register

 int esi; // Source index register

 int edi; // Destination index register

 int ebp; // Stack base pointer register

};

// the different states a process can be in

enum proc_state { UNUSED, EMBRYO, SLEEPING,

 RUNNABLE, RUNNING, ZOMBIE };

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.44

XV6 KERNEL DATA STRUCTURES - 2

// the information xv6 tracks about each process

// including its register context and state

struct proc {

 char *mem; // Start of process memory

 uint sz; // Size of process memory

 char *kstack; // Bottom of kernel stack

 // for this process

 enum proc_state state; // Process state

 int pid; // Process ID

 struct proc *parent; // Parent process

 void *chan; // If non-zero, sleeping on chan

 int killed; // If non-zero, have been killed

 struct file *ofile[NOFILE]; // Open files

 struct inode *cwd; // Current directory

 struct context context; // Switch here to run process

 struct trapframe *tf; // Trap frame for the

 // current interrupt

};

struct task_struct, equivalent to struct proc

▪ The Linux process data structure

▪ Kernel data type (i.e. record) that describes
individual Linux processes

▪ Structure is VERY LARGE: 10,000+ bytes

▪ Defined in:
/usr/src/linux-headers-{kernel version}/include/linux/sched.h

▪ Ubuntu kernel version 6.11, LOC 758 – 1588

▪ Ubuntu kernel version 5.15, LOC: 721 - 1507

▪ Ubuntu kernel version 5.11, LOC: 657 – 1394

▪ Ubuntu kernel version 4.4, LOC: 1391 – 1852

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.45

LINUX: STRUCTURES

 Key elements (e.g. PCB) in Linux are captured in

struct task_struct: (LOC from Linux kernel v 6.11)

 Process ID

 pid_t pid; LOC #995

 Process State

 /* -1 unrunnable, 0 runnable, >0 stopped: */

 unsigned int __state; LOC #766

 Process t ime s l ice

how long the process will run before context switching

 Struct sched_rt_entity used in task_struct contains timeslice:

▪ struct sched_rt_entity rt; LOC #812

▪ unsigned int time_slice; LOC #583

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.46

STRUCT TASK_STRUCT

 Address space of the process:

 “mm” is short for “memory map”

 struct mm_struct *mm; LOC #898

 Parent process, that launched this one

 struct task_struct __rcu *parent; LOC #1009

 Child processes (as a list)

 struct list_head children; LOC #1017

 Open f i les

 struct files_struct *files; LOC #1121

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.47

STRUCT TASK_STRUCT - 2

 List of Linux data structures:

 http://www.tldp.org/LDP/tlk/ds/ds.html

 Description of process data structures:

https://learning.oreilly.com/library/view/linux-kernel-

development/9780768696974/cover.html

 3rd edition is online (dated from 2010):

 See chapter 3 on Process Management

 Safari online – accessible using UW ID SSO login

 Linux Kernel Development, 3 rd edition

 Robert Love

 Addison-Wesley

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.48

LINUX STRUCTURES - 2

43 44

45 46

47 48

http://www.tldp.org/LDP/tlk/ds/ds.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/15/2026

L3.9Slides by Wes J. Lloyd

 Questions from 1/13

 C Review Survey – Closes Jan 17 AOE

 Student Background Survey

 Virtual Machine Survey: VM requests to be sent to SET IT

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.49

OBJECTIVES – 1/15

CHAPTER 5:

C PROCESS API

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L3.50

 Questions from 1/13

 C Review Survey – Closes Jan 17 AOE

 Student Background Survey

 Virtual Machine Survey: VM requests to be sent to SET IT

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.51

OBJECTIVES – 1/15

 Creates a new process - think of “a fork in the road”

 “Parent” process is the original

 Creates “child” process of the program from the current
execution point

 Book says “pretty odd”

 Creates a duplicate program instance (these are processes!)

 Copy of

▪ Address space (memory)

▪ Register

▪ Program Counter (PC)

 Fork returns

▪ child PID to parent

▪ 0 to child

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.52

fork()

 p1.c

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.53

FORK EXAMPLE

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char *argv[]){

 printf("hello world (pid:%d)\n", (int) getpid());

 int rc = fork();

 if (rc < 0) { // fork failed; exit

 fprintf(stderr, "fork failed\n");

 exit(1);

 } else if (rc == 0) { // child (new process)

 printf("hello, I am child (pid:%d)\n", (int) getpid());

 } else { // parent goes down this path (main)

 printf("hello, I am parent of %d (pid:%d)\n",

 rc, (int) getpid());

 }

 return 0;

}

 Non deterministic ordering of execution

or

 CPU scheduler determines which to run first

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.54

FORK EXAMPLE - 2

prompt> ./p1

hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)

hello, I am child (pid:29147)

prompt>

prompt> ./p1

hello world (pid:29146)

hello, I am child (pid:29147)

hello, I am parent of 29147 (pid:29146)

prompt>

49 50

51 52

53 54

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/15/2026

L3.10Slides by Wes J. Lloyd

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.55

:(){ :|: & };:

 Questions from 1/13

 C Review Survey – Closes Jan 17 AOE

 Student Background Survey

 Virtual Machine Survey: VM requests to be sent to SET IT

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.56

OBJECTIVES – 1/15

 wait(), waitpid()

 Called by parent process

 Waits for a child process to finish executing

 Not a sleep() function

 Provides some ordering to multi -process execution

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.57

wait()

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.58

FORK WITH WAIT

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/wait.h>

int main(int argc, char *argv[]){

 printf("hello world (pid:%d)\n", (int) getpid());

 int rc = fork();

 if (rc < 0) { // fork failed; exit

 fprintf(stderr, "fork failed\n");

 exit(1);

 } else if (rc == 0) { // child (new process)

 printf("hello, I am child (pid:%d)\n", (int) getpid());

 } else { // parent goes down this path (main)

 int wc = wait(NULL);

 printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

 rc, wc, (int) getpid());

 }

 return 0;

}

 Deterministic ordering of execution

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.59

FORK WITH WAIT - 2

prompt> ./p2

hello world (pid:29266)

hello, I am child (pid:29267)

hello, I am parent of 29267 (wc:29267) (pid:29266)

prompt>

 Linux example

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.60

FORK EXAMPLE

55 56

57 58

59 60

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/15/2026

L3.11Slides by Wes J. Lloyd

 Questions from 1/13

 C Review Survey – Closes Jan 17 AOE

 Student Background Survey

 Virtual Machine Survey: VM requests to be sent to SET IT

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.61

OBJECTIVES – 1/15

 Supports running an external program by “transferring control”

 6 types: execl() , execlp() , execle() , execv(), execvp(), execvpe()

 execl() , execlp() , execle() : const char *arg (example: execl.c)

Provide cmd and args as individual params to the function

Each arg is a pointer to a null -terminated string

ODD: pass a variable number of args: (arg0, arg1, . . argn)

 Execv(), execvp(), execvpe() (example: exec.c)

Provide cmd and args as an Array of pointers to strings

Strings are null -terminated

First argument is name of command being executed

Fixed number of args passed in

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.62

exec()

 Common use case:

 Write a new program which wraps a legacy one

 Provide a new inter face to an old system: Web services

 Legacy program thought of as a “black box”

 We don’t want to know what is inside…

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.63

EXEC() - 2

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.64

EXEC EXAMPLE

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <sys/wait.h>

int main(int argc, char *argv[]){

 printf("hello world (pid:%d)\n", (int) getpid());

 int rc = fork();

 if (rc < 0) { // fork failed; exit

 fprintf(stderr, "fork failed\n");

 exit(1);

 } else if (rc == 0) { // child (new process)

 printf("hello, I am child (pid:%d)\n", (int) getpid());

 char *myargs[3];

 myargs[0] = strdup("wc"); // program: "wc" (word count)

 myargs[1] = strdup("p3.c"); // argument: file to count

 myargs[2] = NULL; // marks end of array

 …

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.65

EXEC EXAMPLE - 2

…

 execvp(myargs[0], myargs); // runs word count

 printf("this shouldn’t print out");

 } else { // parent goes down this path (main)

 int wc = wait(NULL);

 printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

 rc, wc, (int) getpid());

 }

 return 0;

}

prompt> ./p3

hello world (pid:29383)

hello, I am child (pid:29384)

29 107 1030 p3.c

hello, I am parent of 29384 (wc:29384) (pid:29383)

prompt>

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.66

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <fcntl.h>

#include <sys/wait.h>

int

main(int argc, char *argv[]){

 int rc = fork();

 if (rc < 0) { // fork failed; exit

 fprintf(stderr, "fork failed\n");

 exit(1);

 } else if (rc == 0) { // child: redirect standard output to a file

 close(STDOUT_FILENO);

 open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

 …

61 62

63 64

65 66

TCSS 422 A – Winter 2026
School of Engineering and Technology

1/15/2026

L3.12Slides by Wes J. Lloyd

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.67

FILE MODE BITS

S_IRWXU

read, write, execute/search by owner

S_IRUSR

read permission, owner

S_IWUSR

write permission, owner

S_IXUSR

execute/search permission, owner

S_IRWXG

read, write, execute/search by group

S_IRGRP

read permission, group

S_IWGRP

write permission, group

S_IXGRP

execute/search permission, group

S_IRWXO

read, write, execute/search by others

S_IROTH

read permission, others

S_IWOTH

write permission, others

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.68

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

…

 // now exec "wc"...

 char *myargs[3];

 myargs[0] = strdup("wc"); // program: "wc" (word count)

 myargs[1] = strdup("p4.c"); // argument: file to count

 myargs[2] = NULL; // marks end of array

 execvp(myargs[0], myargs); // runs word count

 } else { // parent goes down this path (main)

 int wc = wait(NULL);

 }

 return 0;

}

prompt> ./p4

prompt> cat p4.output

32 109 846 p4.c

prompt>

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma L3.69

 Which Process API call is used to launch a different

program from the current program?

 (a) Fork()

 (b) Exec()

 (c) Wait()

 (d) None of the above

 (e) All of the above

January 15, 2026
TCSS422: Operating Systems [Winter 2026]
School of Engineering and Technology, University of Washington - Tacoma

L3.70

QUESTION: PROCESS API

QUESTIONS

67 68

69 70

71

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 1/15
	Slide 3: Virtual Machine support on APPLE m1
	Slide 4: Text book coupon
	Slide 5: feedback surveys
	Slide 6: Material / pace
	Slide 7: Feedback from 1/13
	Slide 8: Feedback - 2
	Slide 9: Feedback - 3
	Slide 10: Virtual address space 64-bit linux OS
	Slide 11: Feedback - 4
	Slide 12: Feedback - 5
	Slide 13: Motivation for linux
	Slide 14: Motivation for linux - 2
	Slide 15: Motivation for linux - 2
	Slide 16: OBJECTIVES – 1/15
	Slide 17: C Review Survey - available thru 1/17
	Slide 18: OBJECTIVES – 1/15
	Slide 19: student Background survey
	Slide 20: OBJECTIVES – 1/15
	Slide 21: Virtual machine survey
	Slide 22: OBJECTIVES – 1/15
	Slide 23: We will return at 5:00pm
	Slide 24: OBJECTIVES – 1/15
	Slide 25: Chapter 4: processes
	Slide 26: Virtualizing the cpu
	Slide 27: Process
	Slide 28: Process API
	Slide 29: Process api: create
	Slide 30: Process api: create
	Slide 31
	Slide 32: OBJECTIVES – 1/15
	Slide 33: Process states
	Slide 34: Process state transitions
	Slide 35: Observing process meta-data
	Slide 36: Observing process meta-data
	Slide 37: Context switch
	Slide 38
	Slide 39: Question: WHEN TO CONTEXT SWITCH
	Slide 40: OBJECTIVES – 1/15
	Slide 41: Process data structures
	Slide 42: Struct Task_struct process control block
	Slide 43: Xv6 kernel data structures
	Slide 44: Xv6 kernel data structures - 2
	Slide 45: Linux: structures
	Slide 46: Struct Task_struct
	Slide 47: Struct task_struct - 2
	Slide 48: Linux structures - 2
	Slide 49: OBJECTIVES – 1/15
	Slide 50: Chapter 5: C process api
	Slide 51: OBJECTIVES – 1/15
	Slide 52: fork()
	Slide 53: Fork example
	Slide 54: Fork example - 2
	Slide 55: :(){ :|: & };:
	Slide 56: OBJECTIVES – 1/15
	Slide 57: wait()
	Slide 58: Fork With wait
	Slide 59: Fork with wait - 2
	Slide 60: Fork example
	Slide 61: OBJECTIVES – 1/15
	Slide 62: exec()
	Slide 63: Exec() - 2
	Slide 64: Exec example
	Slide 65: Exec example - 2
	Slide 66: Exec with file redirection (output)
	Slide 67: File mode bits
	Slide 68: exec w/ File redirection (output) - 2
	Slide 69
	Slide 70: Question: PROCESS API
	Slide 71: Questions

