TCSS 422 A — Spring 2025 4/8/2025
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Processes &
The Process API

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2025]

April8, 2025 School of Engineering and Technology, University of Washington jll Tacoma

OBJECTIVES - 4/8

| = Questions from 4/3 |
= C Review Survey - Late After Apr 9, Closes Apr 11
® Student Background Survey
® Virtual Machine Survey: VM to be sent to S. Miasishchev
= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
® Chapter 5: Process API

= fork(), wait(), exec()

TCSS422: Operating Systems [Spring 2025] | 132 |

Pyl 205 School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L3.1

TCSS 422 A — Spring 2025 4/8/2025

School of Engineering and Technology

VIRTUAL MACHINE SUPPORT

ON APPLE M1

® |nstalling a Ubuntu Virtual Machine on Apple M1 MacBooks:

FREE
https://mac.getutm.app/

® MACs have switched to using ARM-based CPUs
= Motivation: faster, less expensive than Intel-based CPUs

icometo
ture of M«

TCSS422: Operating Systems [Spring 2025] 133
School of Engineering and Technology, University of Washington - Tacoma :

April 8, 2025

TEXT BOOK COUPON

= 15% off textbook code: PUBLISHPAGES15 (through Fri Apr 11)

= https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-
arpaci-dusseau/operating-systems-three-easy-pieces-
hardcover-version-110/hardcover/product-
15gjeeky.html?q=three+easy+pieces+operating+systems&pag
e=1&pageSize=4

= With coupon textbook is only ~ $33.79 + tax & shipping

" TCSS422: Operating Systems [Spring 2025]
April 8, 2025 School of Engineering and Technology, University of Washington - Tacoma L34

Slides by Wes J. Lloyd L3.2

https://mac.getutm.app/
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4

TCSS 422 A — Spring 2025 4/8/2025
School of Engineering and Technology

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
® Tuesday surveys: due by ~ Wed @ 9p, closes 11:59p
® Thursday surveys: due ~ Mon @ 9p, closes 11:59p
— TCSS 422 A » Assignments

Spring 2021
Home

Announcements

* Upcoming Assignments

School of Engineering and Technology, University of Washington - Tacoma

Zoom
Syllabus . .
* TCSS 422 - Online Daily Feedback Survey - 4/1
Available until Apr 5 at 11:59pm | Due Apr 5 at 10pm | -/1pts
Nicriiscinng Piiiz O - hael [BT
April 8, 2025 TCSS422: Computer Operating Systems [Spring 2025] | 135 |

5
TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions
[Z| Question 1 0.5 pts
On a scale of 1 to 10, please classify your perspective on material covered in today's
class:
1 2 3 4 5 6 7 8 9 16
Mostly Equal Mostly
Review To Me New and Review NeWw to Me
[| Question 2 0.5 pts
Please rate the pace of today’s class:
el 2 3 4 5 6 7 9 10
slow Just Right Fast
. TCSS422: Computer Operating Systems [Spring 2025]
Ll Gy 207D School of Engineering and Technology, University of Washington - Tacoma L3.6
6

Slides by Wes J. Lloyd L3.3

TCSS 422 A — Spring 2025 4/8/2025
School of Engineering and Technology

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (57 of 63 respondents - 90.48% !!):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 5.86 (- previous 5.92)

= Please rate the pace of today’s class:
m 1-slow, 5-just right, 10-fast
= Average - 5.11 (J - previous 5.26)

" TCSS422: Computer Operating Systems [Spring 2025]
L3.7
April 8,2025 School of Engineering and Technology, University of Washington - Tacoma 3

FEEDBACK FROM 4/3

® | do not understand how a virtual address space can be the same
size as the physical address space. If the entire 4GB virtual address
space is full for a single program, won't the entire 4GB physical
address space be full with no space left for the other programs?

Oses use lazy loading. Code pages are only read into memory when
they are needed. In the rare event that a single program consumes
all of the physical memory, Linux augments RAM with Swap space

= Swap space is a disk volume used as extended memory
® Commands to check your swap space:

free

cat /proc/swaps

lsblk | grep -C 5 -i swap

swapon -s

vmstat 1

" TCSS422: Operating Systems [Spring 2025]
Pyl 205 School of Engineering and Technology, University of Washington - Tacoma 138

Slides by Wes J. Lloyd L3.4

TCSS 422 A — Spring 2025 4/8/2025
School of Engineering and Technology

FEEDBACK - 2

= Are we using ubuntu as our main OS to work from?
or are we allowed to use windows/Mac0S?

= The OS directly installed on your computer which boots the
computer is called the host operating system.

® This can be Windows, MacOS, Linux, etc.
® Ubuntu will be installed on a virtual machine (VM)
= The OS installed on a VM is called a guest operating system.

April 8, 2025 TCSS422: Operating Systems [Spring 2025] | 3.9 |

School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK - 3

= What exactly is the difference between processes and threads
in regards to OS' virtualization of memory?

= |f my understanding is correct, then | know that many threads
can share the same physical address space via virtualization,
but does the same apply to processes?

® Threads share the same virtual memory space as the parent
process.

= This sharing of memory is what causes synchronization errors
when two threads try to modify shared memory at the same
time without proper coordination

= Every process has its own distinct virtual memory space

TCSS422: Operating Systems [Spring 2025]

Pyl 205 School of Engineering and Technology, University of Washington - Tacoma

13.10

10

Slides by Wes J. Lloyd L3.5

TCSS 422 A — Spring 2025
School of Engineering and Technology

FEEDBACK - 4

= What counts as a process?
Does a running program constitute a single process?
Or are there many processes in a single program?

m As we see when inspecting running processes using tools like
‘top’, ‘htop’, and ‘ps aux’, programs like Zoom and Chrome
have multiple processes

= Not every program uses multiple processes

® The issue with multiple processes is they * don’t * share
memory, so it is hard to coordinate multiple processes

® Linux features IPC - Inter Process Communication

= This is the notion of use “I/0 streams” similar to files called
pipes to allow programs to open various streams between
each other

TCSS422: Operating Systems [Spring 2025]

13.11
School of Engineering and Technology, University of Washington - Tacoma 3

April 8, 2025

11

FEEDBACK - 5

= Why does the shared counter work at smaller loop Ilengths
but not at larger loops?

= | would expect it to be unstable at all scales.

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 312

April 8, 2025

12

Slides by Wes J. Lloyd

4/8/2025

L3.6

TCSS 422 A — Spring 2025 4/8/2025
School of Engineering and Technology

MOTIVATION FOR LINUX

® |t is worth noting the importance of Linux for today’s
developers and computer scientists.

® The CLOUD runs many virtual machines, recently in 2019 a key
milestone was reached.

= Even on Microsoft Azure (the Microsoft Cloud), there were
more Linux Virtual Machines (> 50%) than Windows.

= https://www.zdnet.com/article/microsoft-developer-reveals-
linux-is-now-more-used-on-azure-than-windows-server/

= https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any-questions/

= The majority of application back-ends (server-side), cloud or
not, run on Linux.

® This is due to licensing costs, example:

TCSS422: Operating Systems [Spring 2025]

L3.1
School of Engineering and Technology, University of Washington - Tacoma 3.13

April 8, 2025

13

MOTIVATION FOR LINUX - 2

= Consider an example where you're asked to develop a web
services backend that requires 10 x 8-CPU-core virtual servers

® Your organization investigates hosting costs on Amazon cloud
= 8-core VM is “cbd.2xlarge”

Name Instance type | Memory vCPUs | Linux On Demand cost | Windows On Demand cost

C5 High-CPU Extra Large c5d.xlarge 8.0 GIE | 4vCPUs £0.192000 hourly £0.376000 hourly

IC5 High-CPU 18xlarge c5d.18xlarge | 144.0 GIiB | 72 vCPUs 3.456000 hourly 6.768000 hourly

C5 High-CPU Large c5d.large 4.0 GiB 2 vCPUs £0.096000 hourly £0.188000 hourly

C5 High-CPU 24xlarge c5d.24xlarge | 192.0 GIiB | 96 vCPUs £4.608000 hourly 9.024000 hourly

C5 High-CPU Quadruple Extra Large c5d.4xlarge 32.0 GiB | 16 vCPUs §0.768000 hourly 1.504000 hourly

[N THR Y P Sl [T ENW=T-M M-V TH A EnRDND. hon WY TaTTa—

LCE High-CPU Double Extra Lar c5d. 2xlar 16.0 GiE_| 8 vCPUs 50.384000 hourl 50.752000 hourl J

AN W12 R 7. A 77 TR
C5 High-CPU 9xlarge c5d.9xlarge 72.0 GIB_| 36 vCPUs 1.728000 hourly $3.384000 hourly

= Windows hourly price 75.2¢
® Linux hourly price 38.4¢
= See: https://instances.vantage.sh/

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 1314

April 8, 2025

14

Slides by Wes J. Lloyd L3.7

https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://instances.vantage.sh/

TCSS 422 A — Spring 2025 4/8/2025
School of Engineering and Technology

MOTIVATION FOR LINUX - 2

= See: https://www.ec2instances.info/

TCSS422: Operating Systems [Spring 2025]

L3.1!
School of Engineering and Technology, University of Washington - Tacoma 3.15

| April 8, 2025

15

OBJECTIVES - 4/8

® Questions from 4/3
| = C Review Survey - Late After Apr 9, Closes Apr 11 |
® Student Background Survey
® Virtual Machine Survey: VM to be sent to S. Miasishchev
= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
® Chapter 5: Process API

= fork(), wait(), exec()

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 1316

April 8, 2025

16

Slides by Wes J. Lloyd L3.8

https://www.ec2instances.info/

TCSS 422 A — Spring 2025 4/8/2025
School of Engineering and Technology

C REVIEW SURVEY -
AVAILABLE THRU 4/5

TCSS422: Operating Systems [Spring 2025]

Ll s School of Engineering and Technology, University of Washington -

OBJECTIVES - 4/8

® Questions from 4/3
= C Review Survey - Late After Apr 9, Closes Apr 11
L= Student Backeround Survey |
® Virtual Machine Survey: VM to be sent to S. Miasishchev
= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
® Chapter 5: Process API

= fork(), wait(), exec()

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 1318

April 8, 2025

18

Slides by Wes J. Lloyd L3.9

TCSS 422 A — Spring 2025
School of Engineering and Technology

STUDENT BACKGROUND SURVEY

=46 of 63 Responses as of 4/8 @ ~12am
®Current Standings:
=Best Office Hours times so far:

Rank #1: Wednesday morning (before noon) \/
(47.7%)

Rank #2: Friday early afternoon v (12-2p) (45.5%)
*Format:
Rank #1: Prefer online (Zoom) v (54.5%)

TCSS422: Operating Systems [Spring 2025]

April 8,2025 School of Engineering and Technology, University of Washington - Tacoma

13.19

19

TCSS 422 - OFFICE HRS - SPRING 2025

= Session 1. Wednesday 11am to noon
= This session will be held by zoom.
u Session 2. Fridays noon to 1pm (zZoom)
= This session will mostly be held on zoom.

= Some Fridays will be canceled due to instructor scheduling
conflicts

Known conflicts on 4/11, 4/18, 5/16 (?)
mZoom links for Office Hours will be shared via Canvas

® Also available after class on Tuesdays and Thursdays
in CP 229 at 6pm

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 1320

April 8, 2025

20

Slides by Wes J. Lloyd

4/8/2025

L3.10

TCSS 422 A — Spring 2025
School of Engineering and Technology

OBJECTIVES - 4/8

® Questions from 4/3
= C Review Survey - Late After Apr 9, Closes Apr 11
® Student Background Survey

= Virtual Machine Survey: VM to be sent to S. Miasishchev

® Assignment O

® Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
® Chapter 5: Process API

= fork(), wait(), exec()

TCSS422: Operating Systems [Spring 2025]

April 8,2025 School of Engineering and Technology, University of Washington - Tacoma

13.21

21

VIRTUAL MACHINE SURVEY

® Please complete the Virtual Machine Survey to request
a “School of Engineering and Technology” remote
hosted Ubuntu VM

"https://forms.gle/jSwclL1qgeKDy2W9498

= VM requests have been sent to SET sys admin Slava
Miasishchev for set up

= |f you missed the survey, and need a VM,
please complete it

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 8, 2025 13.22

22

Slides by Wes J. Lloyd

4/8/2025

L3.11

https://forms.gle/jSwcL1qeKDy2W9498

TCSS 422 A — Spring 2025 4/8/2025
School of Engineering and Technology

OBJECTIVES - 4/8

® Questions from 4/3

= C Review Survey - Late After Apr 9, Closes Apr 11

® Student Background Survey

® Virtual Machine Survey: VM to be sent to S. Miasishchev
= Assignment O

® Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
® Chapter 5: Process API

= fork(), wait(), exec()

TCSS422: Operating Systems [Spring 2025]

April 8,2025 School of Engineering and Technology, University of Washington - Tacoma

13.23

23

CHAPTER 2 SUMMARY :

OPERATING SYSTEM DESIGN GOALS

= ABSTRACTING THE HARDWARE
= Makes programming code easier to write
= Automate sharing resources - save programmer burden

= PROVIDE HIGH PERFORMANCE

= Minimize overhead from OS abstraction
(Virtualization of CPU, RAM, 1/0)

= Share resources fairly

= Attempt to tradeoff performance vs. fairness = consider
priority

= PROVIDE ISOLATION

= User programs can’t interfere with each other’s virtual
machines, the underlying OS, or the sharing of resources

TCSS422: Operating Systems [Spring 2025]

Pyl 205 School of Engineering and Technology, University of Washington - Tacoma

13.24

24

Slides by Wes J. Lloyd L3.12

TCSS 422 A — Spring 2025 4/8/2025
School of Engineering and Technology

CHAPTER 2 SUMMARY :

OPERATING SYSTEM DESIGN GOALS - 2

= RELIABILITY
= OS must not crash, 24/7 Up-time
= Poor user programs must not bring down the system:

Blue Screen

m Other Issues:
= Energy-efficiency
= Security (of data)
= Cloud: Virtual Machines

TCSS422: Operating Systems [Spring 2025]

April 8,2025 School of Engineering and Technology, University of Washington - Tacoma

13.25

25

OBJECTIVES - 4/8

® Questions from 4/3

= C Review Survey - Late After Apr 9, Closes Apr 11

= Student Background Survey

® Virtual Machine Survey: VM to be sent to S. Miasishchev
= Assignment O

= Chapter 4: Processes
= Process states, context switches
= Kernel data structures for processes and threads
® Chapter 5: Process API
= fork(), wait(), exec()

TCSS422: Operating Systems [Spring 2025]

Pyl 205 School of Engineering and Technology, University of Washington - Tacoma

13.26

26

Slides by Wes J. Lloyd L3.13

TCSS 422 A — Spring 2025 4/8/2025
School of Engineering and Technology

|
Process State

CHAPTER 4:
PROCESSES

TCSS422: Operating Systems [Spring 2025]

Ll s School of Engineering and Technology, University of Washington -

VIRTUALIZING THE CPU

® How should the CPU be shared?

= Time Sharing:
Run one process, pause it, run another

®The act of swapping process A out of the CPU to run
process B is called a:

= CONTEXT SWITCH

® How do we SWAP processes in and out of the CPU
efficiently?

= Goal is to minimize overhead of the swap

= OVERHEAD is time spent performing OS management
activities that don’t help accomplish real work

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

13.28

April 8, 2025

28

Slides by Wes J. Lloyd L3.14

TCSS 422 A — Spring 2025
School of Engineering and Technology

= Memory

= Registers
PC: Program counter
Stack pointer

PROCESS

running program

® Process comprises of:

Instructions (“the code”)
Data (heap)

April 8, 2025

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma

13.29

29

= Create

= Destroy

= Wait

= Status

PROCESS API

= Modern OSes provide a Process API for process support
= Create a new process
= Terminate a process (ctrl-c)
= Wait for a process to complete/stop

= Miscellaneous Control

= Suspend process (ctrl-z)
= Resume process (fg, bg)

= Obtain process statistics: (top)

April 8, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

13.30

30

Slides by Wes J. Lloyd

4/8/2025

L3.15

TCSS 422 A — Spring 2025
School of Engineering and Technology

PROCESS API: CREATE

1. Load program code (and static data) into memory
= Program executable code (binary): loaded from disk
= Static data: also loaded/created in address space

= Eager loading: Load entire program before running

= Lazy loading: Only load what is immediately needed
Modern OSes: Supports paging & swapping

2. Run-time stack creation
= Stack: local variables, function params, return address(es)

TCSS422: Operating Systems [Spring 2025]

April 8,2025 School of Engineering and Technology, University of Washington - Tacoma

13.31

31

PROCESS API: CREATE

3. Create program’s heap memory
= For dynamically allocated data

4. Other initialization

= |/0 Setup
Each process has three open file descriptors:
Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main ()
= OS transfers CPU control to the new process

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 1332

April 8, 2025

32

Slides by Wes J. Lloyd

4/8/2025

L3.16

TCSS 422 A — Spring 2025

School of Engineering and Technology

CPU Memory

code
static data
heap

<

Loading:
Reads program from
disk into the address

space of process

Program

TCSS422: Operating Systems [Spring 2025]

April 8,2025 School of Engineering and Technology, University of Washington - Tacoma

L3.33

33

WE WILL RETURN AT

5:00PM

TCSS422: Operating Systems [Spring 2025]

LAl 214D School of Engineering and Technology, University of Washington -

34

Slides by Wes J. Lloyd

4/8/2025

L3.17

TCSS 422 A — Spring 2025
School of Engineering and Technology

OBJECTIVES - 4/8

® Questions from 4/3

= C Review Survey - Late After Apr 9, Closes Apr 11

® Student Background Survey

® Virtual Machine Survey: VM to be sent to S. Miasishchev
® Assignment O

® Chapter 4: Processes

| = Process states, context switches|

= Kernel data structures for processes and threads
® Chapter 5: Process API

= fork(), wait(), exec()

TCSS422: Operating Systems [Spring 2025]

L3.
School of Engineering and Technology, University of Washington - Tacoma 3.35

April 8, 2025

35

PROCESS STATES

= RUNNING
= Currently executing instructions

= READY
= Process is ready to run, but has been preempted
= CPU is presently allocated for other tasks

= BLOCKED
= Process is hot ready to run. It is waiting for another event
to complete:
Process has already been initialized and run for awhile
Is now waiting on I/0 from disk(s) or other devices

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 1336

April 8, 2025

36

Slides by Wes J. Lloyd

4/8/2025

L3.18

TCSS 422 A — Spring 2025
School of Engineering and Technology

PROCESS STATE TRANSITIONS

Descheduled

P Ready
Scheduled
1/0: initiate I/O: done
Blocked

TCSS422: Operating Systems [Spring 2025]

April 8,2025 School of Engineering and Technology, University of Washington - Tacoma

13.37

37

OBSERVING PROCESS META-DATA

® Can inspect the number of CONTEXT SWITCHES made by a
process

® Let’s run mem.c (from chapter 2)

= cat /proc/{process-id}/status
Speculatio tore_Bypass: thread vulnerable
ff

e-7
0000000 ,00000001

® proc “status” is a virtual file generated by Linux
® Provides a report with process related meta-data

= What appears to happen to the number of context switches
the longer a process runs? (mem.c)

TCSS422: Operating Systems [Spring 2025]

Pyl 205 School of Engineering and Technology, University of Washington - Tacoma

13.38

38

Slides by Wes J. Lloyd

4/8/2025

L3.19

TCSS 422 A — Spring 2025
School of Engineering and Technology

Time 1 context switch (ns)

50000
45000
40000
35000
30000
25000
20000
15000
10000

5000

CONTEXT SWITCH

= How long does a context switch take?
= 10,000 to 50,000 ns (.01 to .05 ms)
® 2 000 context switches is near 100ms

Without CPU affinity

Cost of context swi iching on & dual Inted 5150

2
Time 1o wnle a spge (ns)

Context swiich 0
White a page

) 0 220 3 4 s 60 T0 80 90 100
Working set size (KB)

source: bl

April 8, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

13.39

39

0 < Activities

£7) Visual settings & Edit < >

Current responses

FY
G
e when pallis activeresacnd at - PollEwcomjweslioyd Serd weslloyd o 17373
When a process is in this state, it is advantageous for the Operating System to
perform a CONTEXT SWITCH to perform other work
|

40

Slides by Wes J. Lloyd

4/8/2025

L3.20

TCSS 422 A — Spring 2025 4/8/2025
School of Engineering and Technology

QUESTION: WHEN TO CONTEXT SWITCH

® When a process is about to go into this state, it is
advantageous for the Operating System to perform a
CONTEXT SWITCH to perform other work:

® (a) RUNNING

= (b) READY

= (c) BLOCKED

® (d) All of the above

= (e) None of the above

TCSS422: Operating Systems [Spring 2025]

April 8,2025 School of Engineering and Technology, University of Washington - Tacoma

13.41

41

OBJECTIVES - 4/8

® Questions from 4/3

= C Review Survey - Late After Apr 9, Closes Apr 11

= Student Background Survey

® Virtual Machine Survey: VM to be sent to S. Miasishchev
= Assignment O

® Chapter 4: Processes

= Process states, context switches

I- Kernel data structures for processes and threadsl
® Chapter 5: Process API

= fork(), wait(), exec()

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

13.42

| April 8, 2025

42

Slides by Wes J. Lloyd L3.21

TCSS 422 A — Spring 2025
School of Engineering and Technology

PROCESS DATA STRUCTURES

® OS provides data structures to track process information

= Process list
Process Data
State of process: Ready, Blocked, Running

= Register context

= PCB (Process Control Block)

= A C-structure that contains information about each
process

TCSS422: Operating Systems [Spring 2025]

April 8,2025 School of Engineering and Technology, University of Washington - Tacoma

L3.43

43

STRUCT TASK_STRUCT

PROCESS CONTROL BLOCK

®Process Control process state
Block (PCB) process number
program counter

mKey data regarding a .
process registers

memory limits

list of open files

TCSS422: Operating Systems [Spring 2025] L3.44

APHES 12028 School of Engineering and Technology, University of Washington - Tacoma

44

Slides by Wes J. Lloyd

4/8/2025

L3.22

TCSS 422 A — Spring 2025

School of Engineering and Technology

XV6 KERNEL DATA STRUCTURES

m xv6: pedagogical implementation of Linux
= Simplified structures shown in book

restor

struct context
int eip;
int esp;
int ebx;
int ecx;
int edx;
int esi;
int edi;
int ebp;

/7 different stat s can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE };

TCSS422: Operating Systems [Spring 2025]

April 8,2025 School of Engineering and Technology, University of Washington - Tacoma

L3.45

45

XV6 KERNEL DATA STRUCTURES - 2

/]t info
// including i
struct proc {
char *mem; // nory
uint sz; /] < »f process nory
char *kstack;

XV6 about ez
egister context and state

enum proc_state state;
int pid;

struct proc *parent;
void *chan;

int killed;

struct file *ofile[NOFILE];

struct inode *cwd; //
struct context context; //
struct trapframe *tf; //

TCSS422: Operating Systems [Spring 2025]

Pyl 205 School of Engineering and Technology, University of Washington - Tacoma

L3.46

46

Slides by Wes J. Lloyd

4/8/2025

L3.23

TCSS 422 A — Spring 2025
School of Engineering and Technology

LINUX: STRUCTURES

Estruct task struct, equivalent to struct proc
= The Linux process data structure

= Kernel data type (i.e. record) that describes
individual Linux processes

= Structure is VERY LARGE: 10,000+ bytes

= Defined in:
/ust/src/linux-headers-{kernel version}/include/linux/sched.h
Ubuntu kernel version 6.11, LOC 758 - 1588
Ubuntu kernel version 5.15, LOC: 721 - 1507
Ubuntu kernel version 5.11, LOC: 657 - 1394
Ubuntu kernel version 4.4, LOC: 1391 - 1852

TCSS422: Operating Systems [Spring 2025]

L3.47
School of Engineering and Technology, University of Washington - Tacoma 3

April 8, 2025

47

STRUCT TASK_STRUCT

= Key elements (e.g. PCB) in Linux are captured in
struct task_struct: (LOC from Linux kernel v 6.11)

= Process ID

= pid_t pid; LOC #995
= Process State

= /* -1 unrunnable, 0 runnable, >0 stopped: */
munsigned int __state; LOC #766

= Process time slice
how long the process will run before context switching

® Struct sched_rt_entity used in task_struct contains timeslice:

= struct sched_rt_entity rt; LOC #812
=unsigned int time_slice; LOC #583
" TCSS422: Operating Systems [Spring 2025]
Gl &, 205 School of Engineering and Technology, University of Washington - Tacoma 13.48

48

Slides by Wes J. Lloyd

4/8/2025

L3.24

TCSS 422 A — Spring 2025
School of Engineering and Technology

STRUCT TASK_STRUCT - 2

= Address space of the process:
B “‘mm” is short for “memory map”
= struct mm_struct *mm;

= Parent process, that launched this one
= struct task_struct __rcu *parent;

= Child processes (as a list)
mstruct list_head children;

= Open files
mstruct files_struct *files;

LOC #898

LOC #1009

LOC #1017

LOC #1121

April 8, 2025 TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma

L3.49

49

LINUX STRUCTURES - 2

® List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

® Description of process data structures:

https://learning.oreilly.com/library/view/linux-kernel-

development/9780768696974/cover.html

3rd edition is online (dated from 2010):
See chapter 3 on Process Management

Safari online - accessible using UW ID SSO login

Linux Kernel Development, 3 edition
Robert Love
Addison-Wesley

April 8, 2025 TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma

L3.50

50

Slides by Wes J. Lloyd

4/8/2025

L3.25

http://www.tldp.org/LDP/tlk/ds/ds.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html

TCSS 422 A — Spring 2025
School of Engineering and Technology

OBJECTIVES - 4/8

® Questions from 4/3

= C Review Survey - Late After Apr 9, Closes Apr 11

® Student Background Survey

® Virtual Machine Survey: VM to be sent to S. Miasishchev
® Assignment O

= Chapter 4: Processes
= Process states, context switches
= Kernel data structures for processes and threads
| = Chapter 5: Process APl |
= fork(), wait(), exec()

TCSS422: Operating Systems [Spring 2025]

April 8,2025 School of Engineering and Technology, University of Washington - Tacoma

L3.51

51

CHAPTER 5:

C PROCESS API

TCSS422: Operating Systems [Spring 2025]

LAl 214D School of Engineering and Technology, University of Washington -

52

Slides by Wes J. Lloyd

4/8/2025

L3.26

TCSS 422 A — Spring 2025
School of Engineering and Technology

OBJECTIVES - 4/8

® Questions from 4/3

= C Review Survey - Late After Apr 9, Closes Apr 11

® Student Background Survey

® Virtual Machine Survey: VM to be sent to S. Miasishchev
® Assignment O

® Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

wait(), exec()

TCSS422: Operating Systems [Spring 2025]

April 8,2025 School of Engineering and Technology, University of Washington - Tacoma

L3.53

53

fork()

m Creates a new process - think of “a fork in the road”
= “Parent” process is the original
® Creates “child” process of the program from the current
execution point
= Book says “pretty odd”
= Creates a duplicate program instance (these are processes!)
= Copy of
= Address space (memory)
= Register
= Program Counter (PC)
= Fork returns
= child PID to parent
= 0 to child

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 8, 2025 L3.54

54

Slides by Wes J. Lloyd

4/8/2025

L3.27

TCSS 422 A — Spring 2025

School of Engineering and Technology

FORK EXAMPLE

= pl.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]) {
printf ("hello world (pid:%d)\n", (int) getpid());

‘ int rc = fork();
f (rc < 0) { fork t

// ailed; ex
fprintf (stderr, "fork failed\n");
exit (1) ;
} else if (rc == 0) { // child (new ¢ cess)
printf ("hello, I am child (pid:%d)\n", (int) getpid());
} else { // parent goe yn this path (main)

printf("hello, I am parent of %d (pid:%d)\n",
re, (int) getpid());
}

return 0;

TCSS422: Operating Systems [Spring 2025]

April 8,2025 School of Engineering and Technology, University of Washington - Tacoma

L3.55

55

FORK EXAMPLE - 2

= Non deterministic ordering of execution

prompt> ./pl

hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)

prompt>

or

prompt> ./pl

hello world (pid:29146)

hello, I am child (pid:29147)

hello, I am parent of 29147 (pid:29146)
prompt>

® CPU scheduler determines which to run first

TCSS422: Operating Systems [Spring 2025]

Pyl 205 School of Engineering and Technology, University of Washington - Tacoma

L3.56

56

Slides by Wes J. Lloyd

4/8/2025

L3.28

TCSS 422 A — Spring 2025 4/8/2025
School of Engineering and Technology

@ Py L S
D Lo SO L W

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 8, 2025 13.57

57

OBJECTIVES - 4/8

® Questions from 4/3

= C Review Survey - Late After Apr 9, Closes Apr 11

= Student Background Survey

® Virtual Machine Survey: VM to be sent to S. Miasishchev
= Assignment O

® Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork() exec()

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 8, 2025 13.58

58

Slides by Wes J. Lloyd L3.29

TCSS 422 A — Spring 2025
School of Engineering and Technology

= wait(), waitpid()

= Called by parent process

= Waits for a child process to finish executing

= Not a sleep() function

= Provides some ordering to multi-process execution

TCSS422: Operating Systems [Spring 2025]

L3.
School of Engineering and Technology, University of Washington - Tacoma 3.59

April 8, 2025

59

FORK WITH WAIT

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int main(int argc, char *argv([]) {
printf ("hello world (pid:%d)\n", (int) getpid());
int rc = fork();

if (rc < 0) { // fork failed; exit

fprintf (stderr, "fork failed\n");

exit (1) ;
} else if (rc == 0) { // child (new process

printf ("hello, I am child (pid:%d)\n", (int) getpid());
} else { // parent goes down this path (main)

‘ int we = wait (NULL);

printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
rc, wc, (int) getpid());
}

return 0;

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 1360

April 8, 2025

60

Slides by Wes J. Lloyd

4/8/2025

L3.30

TCSS 422 A — Spring 2025
School of Engineering and Technology

FORK WITH WAIT - 2

®m Deterministic ordering of execution

prompt> ./p2

prompt>

hello world (pid:29266)
hello, I am child (pid:29267)
hello, I am parent of 29267 (wc:29267) (pid:29266)

April 8, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

13.61

61

® Linux example

FORK EXAMPLE

April 8, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

13.62

62

Slides by Wes J. Lloyd

4/8/2025

L3.31

TCSS 422 A — Spring 2025 4/8/2025
School of Engineering and Technology

OBJECTIVES - 4/8

® Questions from 4/3

= C Review Survey - Late After Apr 9, Closes Apr 11

® Student Background Survey

® Virtual Machine Survey: VM to be sent to S. Miasishchev
® Assignment O

® Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(), exec()

TCSS422: Operating Systems [Spring 2025]

April 8,2025 School of Engineering and Technology, University of Washington - Tacoma

L3.63

63

exec()

® Supports running an external program by “transferring control”
= 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

= execl(), execlp(), execle(): const char *arg (example: execl.c)

Provide cmd and args as individual params to the function
Each arg is a pointer to a null-terminated string
ODD: pass a variable number of args: (arg0, argl, .. argn)

= Execv(), execvp(), execvpe() (example: exec.c)
Provide cmd and args as an Array of pointers to strings

Strings are null-terminated
First argument is name of command being executed
Fixed number of args passed in

TCSS422: Operating Systems [Spring 2025]

Pyl 205 School of Engineering and Technology, University of Washington - Tacoma

L3.64

64

Slides by Wes J. Lloyd L3.32

TCSS 422 A — Spring 2025
School of Engineering and Technology

EXEC() - 2

= Common use case:
= Write a new program which wraps a legacy one

= Provide a new interface to an old system: Web services

= Legacy program thought of as a “black box”

= We don’t want to know what is inside...

Output
Input —>

internal behavior of the code is unkrewn

April 8, 2025

TCSS422: Operating Systems [Spring 2025]

L3.
School of Engineering and Technology, University of Washington - Tacoma 3.65

65

EXEC EXAMPLE

#include
#include
#include
#include
#include

int main
prin
int
iE(

} e

=

<stdio.h>
<stdlib.h>
<unistd.h>
<string.h>
<sys/wait.h>

(int argc, char *argvl[]) {
tf("hello world (pid:%d)\n", (int) getpid());
rc = fork();

rc < 0) { // fork failed; exit
fprintf (stderr, "fork failed\n");

exit (1) ;

se if (rc == 0) { / child (new pr
printf("hello, I am child (pid:%d)\n

char *myargs([3];

myargs[0] = strdup("wc");
myargs[1] = strdup("p3.c");
myargs[2] = NULL;

ss)
", (int) getpid());

April 8, 2025

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 1366

66

Slides by Wes J. Lloyd

4/8/2025

L3.33

TCSS 422 A — Spring 2025

School of Engineering and Technology

EXEC EXAMPLE - 2

- execvp (myargs[0], myargs); // runs word count

printf ("this shouldn’t print out");
} else { //
int wc = wait (NULL);
printf ("hello, I am parent of %d (wc:%d) (pid:%d)\n",
rc, wc, (int) getpid());

parent dlown this pat

(mair

)

prompt> ./p3

hello world (pid:29383)

hello, I am child (pid:29384)

29 107 1030 p3.c

hello, I am parent of 29384 (wc:29384) (pid:29383)
prompt>

TCSS422: Operating Systems [Spring 2025]

April 8,2025 School of Engineering and Technology, University of Washington - Tacoma

L3.67

67

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <sys/wait.h>

int
main (int argc, char *argv[]) {
int rc = fork();

it (rc < 0) { // fork failed; exit
fprintf (stderr, "fork failed\n");
exit(1);
} else if (rc == 0) { // child: redirect ste ard output to a

close (STDOUT_FILENO) ;
- open ("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

EXEC WITH FILE REDIRECTION (OUTPUT)

TCSS422: Operating Systems [Spring 2025]

Pyl 205 School of Engineering and Technology, University of Washington - Tacoma

13.68

68

Slides by Wes J. Lloyd

4/8/2025

L3.34

TCSS 422 A — Spring 2025

School of Engineering and Technology

FILE MODE BITS

‘ S_IRWXU
read, write, execute/search by owner
S_IRUSR
read permission, owner
S_IWUSR
write permission, owner
S_IXUSR
execute/search permission, owner
S_IRWXG
read, write, execute/search by group
S_IRGRP
read permission, group
S_IWGRP
write permission, group
S_IXGRP
execute/search permission, group
S_IRWXO
read, write, execute/search by others
S_IROTH
read permission, others
S_IWOTH
write permission, others

April 8, 2025

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma

L3.69

69

W exec wWC ...
char *myargs[3];

myargs[0] = strdup("wc");
myargs[1] = strdup("p4.c");
myargs[2] = NULL;

execvp (myargs[0], myargs);

} else {
int wc = wait (NULL);
}

return 0;

prompt> ./p4

prompt> cat p4.output
32 109 846 p4d.c
prompt>

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

April 8, 2025

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma

L3.70

70

Slides by Wes J. Lloyd

4/8/2025

L3.35

TCSS 422 A — Spring 2025 4/8/2025
School of Engineering and Technology

0 < Activities €3 Visual settings & Edit < >
ol 3
1O
Join by Wek: PollEv.comiweslioyd Join by Text Send woalloyd i 22333
Which Process APl call is used to launch a different program from the
current program?
Current responses hd
71

QUESTION: PROCESS API

= Which Process API call is used to launch a different
program from the current program?

= (a) Fork()

= (b) Exec()

E (¢) Wait()

= (d) None of the above
® (e) All of the above

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma 1.72

April 8, 2025

72

Slides by Wes J. Lloyd L3.36

TCSS 422 A — Spring 2025 4/8/2025
School of Engineering and Technology

QUESTIONS

73

Slides by Wes J. Lloyd L3.37

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 4/8
	Slide 3: Virtual Machine support on APPLE m1
	Slide 4: Text book coupon
	Slide 5: Online daily feedback survey
	Slide 6
	Slide 7: Material / pace
	Slide 8: Feedback from 4/3
	Slide 9: Feedback - 2
	Slide 10: Feedback - 3
	Slide 11: Feedback - 4
	Slide 12: Feedback - 5
	Slide 13: Motivation for linux
	Slide 14: Motivation for linux - 2
	Slide 15: Motivation for linux - 2
	Slide 16: OBJECTIVES – 4/8
	Slide 17: C Review Survey - available thru 4/5
	Slide 18: OBJECTIVES – 4/8
	Slide 19: student Background survey
	Slide 20: Tcss 422 – office hrs – Spring 2025
	Slide 21: OBJECTIVES – 4/8
	Slide 22: Virtual machine survey
	Slide 23: OBJECTIVES – 4/8
	Slide 24: Chapter 2 summary : operating system design goals
	Slide 25: Chapter 2 summary : operating system design goals - 2
	Slide 26: OBJECTIVES – 4/8
	Slide 27: Chapter 4: processes
	Slide 28: Virtualizing the cpu
	Slide 29: Process
	Slide 30: Process API
	Slide 31: Process api: create
	Slide 32: Process api: create
	Slide 33
	Slide 34: We will return at 5:00pm
	Slide 35: OBJECTIVES – 4/8
	Slide 36: Process states
	Slide 37: Process state transitions
	Slide 38: Observing process meta-data
	Slide 39: Context switch
	Slide 40
	Slide 41: Question: WHEN TO CONTEXT SWITCH
	Slide 42: OBJECTIVES – 4/8
	Slide 43: Process data structures
	Slide 44: Struct Task_struct process control block
	Slide 45: Xv6 kernel data structures
	Slide 46: Xv6 kernel data structures - 2
	Slide 47: Linux: structures
	Slide 48: Struct Task_struct
	Slide 49: Struct task_struct - 2
	Slide 50: Linux structures - 2
	Slide 51: OBJECTIVES – 4/8
	Slide 52: Chapter 5: C process api
	Slide 53: OBJECTIVES – 4/8
	Slide 54: fork()
	Slide 55: Fork example
	Slide 56: Fork example - 2
	Slide 57: :(){ :|: & };:
	Slide 58: OBJECTIVES – 4/8
	Slide 59: wait()
	Slide 60: Fork With wait
	Slide 61: Fork with wait - 2
	Slide 62: Fork example
	Slide 63: OBJECTIVES – 4/8
	Slide 64: exec()
	Slide 65: Exec() - 2
	Slide 66: Exec example
	Slide 67: Exec example - 2
	Slide 68: Exec with file redirection (output)
	Slide 69: File mode bits
	Slide 70: exec w/ File redirection (output) - 2
	Slide 71
	Slide 72: Question: PROCESS API
	Slide 73: Questions

