TCSS 422 A — Spring 2025 4/8/2025

School of Engineering and Technology

Processes &
The Process API

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2025

Sl s School of Engineering and Technology, University of Washington

TCSS 422: OPERATING SYSTEMS

OBJECTIVES - 4/8

|= Questlons from 4/3 |
= C Review Survey - Late After Apr 9, Closes Apr 11
= Student Background Survey
= Virtual Machine Survey: VM to be sent to S. Miasishchev
= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(), exec()

‘TCSS422: Operating Systems [Spring 2025] B2

SprlS202 School of Engineering and Technology, University of Washington - Tacoma

VIRTUAL MACHINE SUPPORT
ON APPLE M1

= FREE

" https://mac.getutm.app,

= MACs have switched to using ARM-based CPUs
= Motivation: faster, less expensive than Intel-based CPUs

ilcome to
ure of M

= |nstalling a Ubuntu Virtual Machine on Apple M1 MacBooks:

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

April 8, 2025

[o]

TEXT BOOK COUPON

= 15% off textbook code: PUBLISHPAGES15 (through Fri Apr 11)

= https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-

arpaci-dusseau/operating-systems-three-easy-pieces-
hardcover-version-110/hardcover/product-
15gjeeky.html?q=three+easy+pieces+operating+systems&pa
e=1&pageSize=4

= With coupon textbook is only ~ $33.79 + tax & shipping

TCS5422: Operating Systems [Spring 2025] 134

April 8, 2025 School of Engineering and Technology, University of Washington - Tacoma

ONLINE DAILY FEEDBACK SURVEY

= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 9p, closes 11:59p
= Thursday surveys: due ~ Mon @ 9p, closes 11:59p

= TCS5422A > Assignments

Spring 2021
Home
Announcements

Zoom ~ Upcoming Assignments

= Daily Feedback Quiz in Canvas - Available After Each Class

Syllabus

“ TCSS 422 - Online Daily Feedback Survey - 4/1
“* Avallable until Apr 5 at 11:5%m | Due Apr 3 at 10pm

s

[]

Auian. e

Tcs: uter Operating Systems [Spring 20251
School of Engineering and Technology, University of Washington - Tacoma

April 8, 2025

[os]

TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions

Question 1 05ps

On.a scale of 1 to 10, please classify your perspective on material covered in today's
el

1 2 3 s s s 7 8 % 1

macly. el metly

Revses 18 e and neview e
Question 2 05pt

Piease rale the pace of today's class:

TCSS422: Computer Operating Systems [Spring 2025]

Sedie 202 School of Engineering and Technology, University of Washington - Tacoma L36

Slides by Wes J. Lloyd

L3.1

https://mac.getutm.app/
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4

TCSS 422 A — Spring 2025
School of Engineering and Technology

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (57 of 63 respondents - 90.48% !!):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 5.86 (- previous 5.92)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.11 (- previous 5.26)

TCS5422: Computer Operating Systems [Spring 2025]

[Spale 202> School of Engineering and Technology, University of Washington - Tacoma

4/8/2025

FEEDBACK FROM 4/3

= | do not understand how a virtual address space can be the same
size as the physical address space. If the entire 4GB virtual address
space is full for a single program, won't the entire 4GB physical
address space be full with no space left for the other programs?

= Oses use lazy loading. Code pages are only read into memory when
they are needed. In the rare event that a single program consumes
all of the physical memory, Linux augments RAM with Swap space

Swap space is a disk volume used as extended memory
Commands to check your swap space:

free

cat /proc/swaps

1sblk | grep -C 5 -i swap

swapon -s

vmstat 1

‘TCSS422: Operating Systems [Spring 2025)

School of Engineering and Technology, University of Washington - Tacoma e

‘ April 8, 2025

FEEDBACK - 2

= Are we using ubuntu as our maln OS to work from?
r are we allowed to use windows/Mac0S?

= The OS directly installed on your computer which boots the
computer is called the host operating system.

= This can be Windows, MacOS, Linux, etc.

= Ubuntu will be installed on a virtual machine (VM)

= The OS installed on a VM is called a guest operating system.

‘TCSS422: Operating Systems [Spring 2025]

April 8, 2025 School of Engineering and Technology, University of Washington - Tacoma.

[s]

FEEDBACK - 3

= What exactly is the difference between processes and threads
in regards to OS' virtualization of memory?

= If my understanding is correct, then | know that many threads
can share the same physical address space via virtualizatlon,

t th m ly to pr ?

= Threads share the same virtual memory space as the parent

process.

This sharing of memory is what causes synchronization errors

when two threads try to modify shared memory at the same

time without proper coordination

= Every process has its own distinct virtual memory space

TCS5422: Operating Systems [Spring 2025]

‘ April 8, 2025 School of Engineering and Technology, University of Washington - Tacoma

1310

FEEDBACK - 4

= What counts as a process?
Does a running program constitute a single process?
Or are there many processes In a single program?

= As we see when inspecting running processes using tools like
‘top’, ‘htop’, and ‘ps aux’, programs like Zoom and Chrome
have multiple processes

= Not every program uses multiple processes

= The issue with multiple processes is they * don’t * share
memory, so it is hard to coordinate multiple processes

® Linux features IPC - Inter Process Communication

= This is the notion of use “I/0 streams” similar to files called
pipes to allow programs to open various streams between
each other

TCS5422: Operating Systems [Spring 2025]

e School of Engineering and Technology, University of Washington - Tacoma

13.11

10

FEEDBACK - 5

= Why does the shared counter work at smaller loop lengths
n larger |

= | would expect It to be unstable at all scales.

TC55422: Operating Systems [Spring 2025]

‘ REIGZTS School of Engineering and Technology, University of Washington - Tacoma

1312

11

Slides by Wes J. Lloyd

12

L3.2

TCSS 422 A — Spring 2025 4/8/2025
School of Engineering and Technology

MOTIVATION FOR LINUX MOTIVATION FOR LINUX - 2
= |t is worth noting the importance of Linux for today’s = Consider an example where you're asked to develop a web
developers and computer scientists. services backend that requires 10 x 8-CPU-core virtual servers
= The CLOUD runs many virtual machines, recently in 2019 a key = Your organization investigates hosting costs on Amazon cloud

milestone was reached.

= 8-core VM is “c5d.2xlarge”
= Even on Microsoft Azure (the Microsoft Cloud), there were —_—

Windows On Demand cost
more Linux Virtual Machines (> 50%) than Windows. %_
= https://www.zdnet.com/article/microsoft-developer-reveals- oo oy |
o 4 A iy
linux-is-now-more-used-on-azure-than-windows-server, 502000 houriy
= https://www.zdnet.com/article/it-runs-on-the-cloud-and-the- 50.752000 houry]
cloud-runs-on-linux-any-questions/ —
283000 haurty |
= The majority of application back-ends (server-side), cloud or = Windows hourly price 75.2¢
not, run on Linux. = Linux hourly price 38.4¢
= This is due to licensing costs, example: = See: https://instances.vantage.sh/
TCSS422: Oy ating Syste [Spring 2025] TCSS422: Oy iting Syste [Spring 2025]
l [Spale 202> school ofE:;:ee’:‘\gngy:ne:\sTem:n::lggv, University of Washington - Tacoma .13 l [pdle;2025) [School of E:;i’:ee’:igngvaned"“:ech:allfgy, University of Washington - Tacoma 1314

13 14

MOTIVATION FOR LINUX - 2 OBJECTIVES - 4/8

= Questions from 4/3

= Student Background Survey
= Virtual Machine Survey: VM to be sent to S. Miasishchev
= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
.8% price premium = Chapter 5: Process API
= fork(), wait(), exec()

= See: https://www.ec2Instances.Info/
TCS5422: Operating Systems [(Spring 20251 TC55422: Operating Systems (Spring 2025]
l (Apnl 3,202 School of Engineering and Technology, University of Washington - Tacoma. 13.15 April 8, 2025 School of Engineering and Technology, University of Washington - Tacoma 16

15 16

OBJECTIVES - 4/8

= Questions from 4/3
= C Review Survey - Late After Apr 9, Closes Apr 11

= Virtual Machine Survey: VM to be sent to S. Miasishchev
= Assignment O

C REVIEW SURVEY -
AVAILABLE THRU 4/5

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(), exec()

0TS TCSS422: Operating Systems [Spring 2025]
ks School of Engineering and Technology, University of Washington -

TC55422: Operating Systems [Spring 2025]
l e School of Engineering and Technology, University of Washington - Tacoma 18

17 18

Slides by Wes J. Lloyd L3.3

https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://instances.vantage.sh/
https://www.ec2instances.info/

TCSS 422 A — Spring 2025
School of Engineering and Technology

STUDENT BACKGROUND SURVEY

246 of 63 Responses as of 4/8 @ ~12am
E=Current Standings:
=Best Office Hours times so far:

(47.7%)

=Format:
Rank #1: Prefer online (Zoom) v (54.5%)

Rank #1: Wednesday morning (before noon) ‘l

Rank #2: Friday early afternoon Y (12-2p) (45.5%)

TCSS422: Operating Systems [Spring 2025]

‘ [Spale 202> School of Engineering and Technology, University of Washington - Tacoma

13.19

19

OBJECTIVES - 4/8

= Questions from 4/3
= C Review Survey - Late After Apr 9, Closes Apr 11
= Student Background Survey

| = Virtual MachIne Survey: VM to be sent to S. Mlasishchev |

= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(), exec()

TCSS422: Operating Systems [Spring 2025]

‘ April 8, 2025 School of Engineering and Technology, University of Washington - Tacoma.

1321

4/8/2025

TCSS 422 - OFFICE HRS - SPRING 2025

= Sesslon 1. Wednesday 11am to noon
= This session will be held by zoom.
= Sesslon 2. Fridays noon to 1pm (zoom)
= This session will mostly be held on zoom.
=Some Fridays will be canceled due to instructor scheduling
conflicts
Known conflicts on 4/11, 4/18,5/16 (?)
= Zoom links for Office Hours will be shared via Canvas
= Also available after class on Tuesdays and Thursdays
in CP 229 at 6pm

‘TCSS422: Operating Systems [Spring 2025]

‘ SprlS202 School of Engineering and Technology, University of Washington - Tacoma

20

VIRTUAL MACHINE SURVEY

= Please complete the Virtual Machine Survey to request
a “School of Engineering and Technology” remote
hosted Ubuntu VM

=https://forms.gle/jSwclL1qeKDy2W9498

= VM requests have been sent to SET sys admin Slava
Miasishchev for set up

= If you missed the survey, and need a VM,
please complete it

TCS5422: Operating Systems [Spring 2025]
‘ April 8,2025 School of Engineering and Technology, University of Washington - Tacoma 522

21

OBJECTIVES - 4/8

= Questions from 4/3
= C Review Survey - Late After Apr 9, Closes Apr 11
= Student Background Survey

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(), exec()

= Virtual Machine Survey: VM to be sent to S. Miasishchev

TCS5422: Operating Systems [Spring 2025

‘ e School of Engineering and Technology, University of Washington - Tacoma

13.23

22

CHAPTER 2 SUMMARY :
OPERATING SYSTEM DESIGN GOALS

= ABSTRACTING THE HARDWARE
= Makes programming code easier to write
= Automate sharing resources - save programmer burden

= PROVIDE HIGH PERFORMANCE
= Minimize overhead from OS abstraction
(Virtualization of CPU, RAM, I/0)

= Share resources fairly

= Attempt to tradeoff performance vs. fairness - consider
priority

= PROVIDE ISOLATION

= User programs can'’t interfere with each other’s virtual
machines, the underlying 0S, or the sharing of resources

TCS3422: Operating Systems [Spring 2025] 524
School of Engineering and Technology, University of Washington - Tacoma

‘ April 8, 2025

23

Slides by Wes J. Lloyd

24

L3.4

https://forms.gle/jSwcL1qeKDy2W9498

TCSS 422 A — Spring 2025 4/8/2025
School of Engineering and Technology

CHAPTER 2 SUMMARY : OBJECTIVES - 4/8

OPERATING SYSTEM DESIGN GOAL

= RELIABILITY = Questions from 4/3
= 0S must not crash, 24/7 Up-time = C Review Survey - Late After Apr 9, Closes Apr 11
= Poor user programs must not bring down the system: = Student Background Survey

= Virtual Machine Survey: VM to be sent to S. Miasishchev

Blue Screen = Assignment O

Il Chapter 4: Processesl
= Process states, context switches

= Other Issues:
= Energy-efficiency
= Security (of data)
= Cloud: Virtual Machines

= Kernel data structures for processes and threads
= Chapter 5: Process API
= fork(), wait(), exec()

TCS5422: Operating Systems [Spring 2025] TC55422: Operating Systems (Spring 2025]
‘ [Spale 202> School of Engineering and Technology, University of Washington - Tacoma 1325 [pdle;2025) School of Engineering and Technology, University of Washington - Tacoma 13.26

25 26

——
Process State

VIRTUALIZING THE CPU

= How should the CPU be shared?

= Time Sharing:
Run one process, pause it, run another

. = The act of swapping process A out of the CPU to run
CHAPTER 4 process B is called a:

PROCESSES * CONTEXT SWITCH

= How do we SWAP processes in and out of the CPU
efficiently?
= Goal is to minimize overhead of the swap

= OVERHEAD is time spent performing 0S management
activities that don’t help accomplish real work

: TCSS422: Operating Systems [Spring 2025] TCS5422: Operating Systems [Spring 2025]
APCLE 2028 School of Engineering and Technology, University of Washington - (IR School of Engineering and Technology, University of Washington - Tacoma o

= Modern OSes provide a Process API for process support
running program O Grean

= Create a new process

= Process comprises of: = Destroy
= Terminate a process (ctrl-c)
= Memory

Instructions (“the code”)
Data (heap)

= Wait

= Wait for a process to complete/stop
= Miscellaneous Control

= Suspend process (ctrl-z)

= Registers
= Resume process (fg, bg)

PC: Program counter

Stack pointer = Status

= Obtain process statistics: (top)

TCS5422: Operating Systems [Spring 2025] TC55422: Operating Systems [Spring 2025]
‘ April 8, 2025 School of Engineering and Technology, University of Washington - Tacoma 120 e School of Engineering and Technology, University of Washington -Tacoma 1330

29 30

Slides by Wes J. Lloyd L3.5

TCSS 422 A — Spring 2025
School of Engineering and Technology

PROCESS API: CREATE

1. Load program code (and static data) into memory
= Program executable code (binary): loaded from disk
= Static data: also loaded/created in address space

= Eager loading: Load entire program before running

= Lazy loadIng: Only load what is immediately needed
Modern OSes: Supports paging & swapping

2. Run-time stack creation

= Stack: local variables, function params, return address(es)

TCSS422: Operating Systems [Spring 2025]

4/8/2025

PROCESS API: CREATE

3. Create program’s heap memory
= For dynamically allocated data

4. Other initialization
= 1/0 Setup
Each process has three open file descriptors:
Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main ()
= OS transfers CPU control to the new process

‘TCSS422: Operating Systems [Spring 2025]

[pdle;2025) School of Engineering and Technology, University of Washington - Tacoma

‘ [Spale 202> School of Engineering and Technology, University of Washington - Tacoma 31
cPU Memory
7 code !
| static data !
[
Loading:
Reads program from
H disk into the address
L Frogram P; space of process
TCSS422: Operating Systems [Spring 2025]
‘ (Apnl 3,202 School of Engineering and Technology, University of Washington - Tacoma. 1333

32

33

WE WILL RETURN AT
5:00PM

TCSS422: Operating Systems [Spring 2025]

Rl 202 School of Engineering and Technology, University of Washington -

OBJECTIVES - 4/8

= Questions from 4/3
= C Review Survey - Late After Apr 9, Closes Apr 11
= Student Background Survey

= Assignment O

= Chapter 4: Processes
| = Process states, context switches|
= Kernel data structures for processes and threads
= Chapter 5: Process API
= fork(), wait(), exec()

= Virtual Machine Survey: VM to be sent to S. Miasishchev

TCS5422: Operating Systems [Spring 2025

‘ e School of Engineering and Technology, University of Washington - Tacoma

335

34

PROCESS STATES

= RUNNING
= Currently executing instructions

= READY
= Process is ready to run, but has been preempted
= CPU is presently allocated for other tasks

= BLOCKED
= Process is not ready to run. It is waiting for another event
to complete:
Process has already been initialized and run for awhile
Is now waiting on 1/0 from disk(s) or other devices

TCS5422: Operating Systems [Spring 2025]

April 8, 2025 School of Engineering and Technology, University of Washington - Tacoma

1336

35

Slides by Wes J. Lloyd

36

L3.6

TCSS 422 A — Spring 2025
School of Engineering and Technology

PROCESS STATE TRANSITIONS

/ N 7N\
‘/ \ Descheduled
| Ruming | ———>| Ready |
) scheduled \
\\ 2 \\‘) /
1/0: \'m'tiate\ - //O' done
7N
/ \
1: Blocked \
NS

TCSS422: Operating Systems [Spring 2025]

‘ [Spale 202> School of Engineering and Technology, University of Washington - Tacoma

13.37

OBSERVING PROCESS META-DATA

= Can inspect the number of CONTEXT SWITCHES made by a
process
= Let’s run mem.c (from chapter 2)

= cat /proc/{process-id}/status

® proc “status” is a virtual file generated by Linux
= Provides a report with process related meta-data

= What appears to happen to the number of context switches
the longer a process runs? (mem.c)

37

CONTEXT SWITCH

= How long does a context switch take?
= 10,000 to 50,000 ns (.01 to .05 ms)

= 2,000 context switches is near 100ms

Without CPU affinity

TCSS422: Operating Systems [Spring 2025]

‘ April 8, 2025 School of Engineering and Technology, University of Washington - Tacoma.

13.39

39

= When a process is about to go into this state, it is

CONTEXT SWITCH to perform other work:

= (a) RUNNING

= (b) READY

= (c) BLOCKED

= (d) All of the above

= (e) None of the above

advantageous for the Operating System to perform a

QUESTION: WHEN TO CONTEXT SWITCH

TCS5422: Operating Systems [Spring 2025

e School of Engineering and Technology, University of Washington - Tacoma

13.41

41

Slides by Wes J. Lloyd

‘TCSS422: Operating Systems [Spring 2025]
‘ SprlS202 School of Engineering and Technology, University of Washington - Tacoma 1338
[L11] < Aetivities €) Visual settings & edit < >
ol
e Wit PR teipd S mipie 23
Whena inthis state, it i to @0
perform a CONTEXT SWITCH to perform other work
RUNNING
READY
BLOCKED
Bl tha shove e ~

OBJECTIVES - 4/8

= Questions from 4/3

= C Review Survey - Late After Apr 9, Closes Apr 11

= Student Background Survey

= Virtual Machine Survey: VM to be sent to S. Miasishchev
= Assignment O

= Chapter 4: Processes
= Process states, context switches
|- Kernel data structures for processes and threadsl
= Chapter 5: Process API
= fork(), wait(), exec()

TCS5422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

13.42

April 8, 2025

42

TCSS 422 A — Spring 2025
School of Engineering and Technology

PROCESS DATA STRUCTURES

= 0S provides data structures to track process information
= Process list
Process Data
State of process: Ready, Blocked, Running
= Register context

= PCB (Process Control Block)

= A C-structure that contains information about each
process

TCSS422: Operating Systems [Spring 2025]

[Spale 202> School of Engineering and Technology, University of Washington - Tacoma

13.43

43

XV6 KERNEL DATA STRUCTURES

= xv6: pedagogical implementation of Linux
= Simplified structures shown in book

struct context {
int eip;
int esp;
int ebx;
1t ecx;
1t edx;
1t esi;
1t edi
1t ebp;
Ti
enum proc_state { UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE };
‘ Aprils, 2025 S ofEvganig and eetogh oty of Washingion Tcoma B

45

LINUX: STRUCTURES

"struct task struct, equivalent to struct proc
= The Linux process data structure
= Kernel data type (i.e. record) that describes
individual Linux processes
= Structure is VERY LARGE: 10,000+ bytes
= Defined in:
/ust/src/linux-headers-{kernel version}/include/linux/sched.h
Ubuntu kernel version 6.11, LOC 758 - 1588
Ubuntu kernel version 5.15, LOC: 721 - 1507
Ubuntu kernel version 5.11, LOC: 657 - 1394
Ubuntu kernel version 4.4, LOC: 1391 - 1852

TCS5422: Operating Systems [Spring 2025]
e School of Engineering and Technology, University of Washington - Tacoma 1347

4/8/2025

STRUCT TASK_STRUCT

PROCESS CONTROL BLOCK

=Process Control
Block (PCB)

process state
process number

program counter

mKey data regarding a

process registers
memory limits
list of open files
o
. TCSS422: Oy ting Syste Spring 2025]
Aprile 2025 Sohool of Enginestin grs\demsl s Univ]ersity of Washington - Tacoma (L

44

XV6 KERNEL DATA STRUCTURES - 2

struct proc {
char *mem;
1int szj
“har *kstack;

m proc_state state;
pid;
ruct proc *parent;
0id *chan; -
int killed; -
ruct file *ofile[NOFILE];
ruct inode *cwd;
ruct context context;
ruct trapframe *tf;

‘ April 8, 2025

TCS5422: Operating Systems [Spring 2025] 1346
School of Engineering and Technology, University of Washington - Tacoma

46

STRUCT TASK_STRUCT

= Key elements (e.g. PCB) in Linux are captured in
struct task_struct: (LOC from Linux kernelv 6.11)
= Process ID
=pid_t pid;
= Process State
= /* -1 unrunnable, O runnable, >0 stopped: */
= unsigned int __state; LOC #766
= Process time slice
how long the process will run before context switching
= Struct sched_rt_entity used in task_struct contains timeslice:

LOC #995

47

Slides by

Wes J. Lloyd

=struct sched_rt_entity rt; LOC #812
=unsigned int time_slice; LOC #583
. TCSS422: Oy ting Syste & 2025]
[winas [T oot 20 st - meams

48

L3.8

TCSS 422 A — Spring 2025
School of Engineering and Technology

STRUCT TASK_STRUCT - 2

= Address space of the process:
= “mm” is short for “memory map”
= struct mm_struct *mm;

= Parent process, that launched this one

= Child processes (as a list)

LOC #898

= struct task_struct __rcu *parent; LOC #1009

= struct Tist_head children; LOC #1017
= Open flles
= struct files_struct *files; LOC #1121

TCSS422: Operating Systems [Spring 2025]

‘ [Spale 202> School of Engineering and Technology, University of Washington - Tacoma

13.49

49

OBJECTIVES - 4/8

= Questions from 4/3
= C Review Survey - Late After Apr 9, Closes Apr 11
= Student Background Survey

= Assignment O

= Chapter 4: Processes
= Process states, context switches
= Kernel data structures for processes and threads
| = Chapter 5: Process APl |
= fork(), wait(), exec()

= Virtual Machine Survey: VM to be sent to S. Miasishchev

TCSS422: Operating Systems [Spring 2025]
(Apnl 3,202 School of Engineering and Technology, University of Washington - Tacoma.

1351

51

OBJECTIVES - 4/8

= Questions from 4/3
= C Review Survey - Late After Apr 9, Closes Apr 11
= Student Background Survey

= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

wait(), exec()

= Virtual Machine Survey: VM to be sent to S. Miasishchev

TCS5422: Operating Systems [Spring 2025

‘ e School of Engineering and Technology, University of Washington - Tacoma

353

LINUX STRUCTURES - 2

= List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

= Description of process data structures:
https://learning.oreilly.com/library/view/linux-kernel-
development/9780768696974/cover.html
3rd edition is online (dated from 2010):
See chapter 3 on Process Management

Safari online - accessible using UW ID SSO login
Linux Kernel Development, 3™ edition

Robert Love

Addison-Wesley

‘TCSS422: Operating Systems [Spring 2025]

‘ [pdle;2025) School of Engineering and Technology, University of Washington - Tacoma

50

CHAPTER 5:
C PROCESS API

TCSS422: Operating Systems [Spring 2025]

Rl 202 School of Engineering and Technology, University of Washington -

52

fork()

= Creates a new process - think of “a fork in the road”

= “Parent” process is the original

= Creates “child” process of the program from the current
execution point

= Book says “pretty odd”

= Creates a duplicate program instance (these are processes!)
= Copy of

= Address space (memory)

= Register

= Program Counter (PC)
= Fork returns

= child PID to parent

= 0 to child

TC55422: Operating Systems [Spring 2025]
‘ e School of Engineering and Technology, University of Washington -Tacoma e

53

Slides by Wes J. Lloyd

54

http://www.tldp.org/LDP/tlk/ds/ds.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html

TCSS 422 A — Spring 2025

4/8/2025
School of Engineering and Technology

FORK EXAMPLE FORK EXAMPLE - 2

= pl.c

= Non deterministic ordering of execution

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

prompt> ./pl
hello world (pid:29146)
hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)
main(int arge, char *argv[]){ prompt>
lo world (pid:%d)\n", (int) getpid());
.- rc k()7
(re < 0) { ; or
fprintf (stderr, "fork failed\n");
exit(1);
1 (rc == 0)
printf("hello, I am child (pid:d)\n", (int) getpid());
()

prompt> ./pl

hello world (pid:29146)
hello, I am child (pid:29147)
printf("hello, I am parent of %d (pid:%d)\n", hello, I am parent of 29147 (pid:29146)
re, (int) getpid()); prompt>

}

= CPU scheduler determines which to run first

TCS5422: Operating Systems [Spring 2025] TC55422: Operating Systems (Spring 2025]
‘ [Spale 202> School of Engineering and Technology, University of Washington - Tacoma 1355 SprlS202 School of Engineering and Technology, University of Washington - Tacoma

55 56

OBJECTIVES - 4/8

= Questions from 4/3

= C Review Survey - Late After Apr 9, Closes Apr 11

= Student Background Survey

= Virtual Machine Survey: VM to be sent to S. Miasishchev
= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

L] fork() exec()

‘ April 8, 2025

5422: Operating Systems [Spring 2025 1357 Aola 2025 TCS5422; Operating Systems [Spring 2025 1358
School of Engineering and Technology, University of Washington - Tacoma SllE School of Engineering and Technology, University of Washington - Tacoma

57 58

wait() FORK WITH WAIT

= wait(), waitpid()

#include <stdio.h>
= Called by parent process #include <
#include
= Waits for a child process to finish executing #include <sys/wait.h>
= Not a sleep() function main(int arge, char *argv(]){
. . R) printf("hello world (pid:%d)\n", (int) getpid());
= Provides some ordering to multi-process execution rc = fork();
(re < 0) { i
fprintf (stderr, "fork failed\n");
exit(1);
} (rc == 0) { (
printf("hello, I am child (pid:%d)\n", (int) getpid()):
} { (
q we = wait (NULL);
printf("hello, I am parent of %d (wc:sd) (pid:sd)\n",
rc, we, (int) getpid());
}
07
}
TCS5422: Operating Systems [Spring 2025] . TCSS422: Operating Systems [Spring 2025]
‘ COIE D School of Engineering and Technology, University of Washington - Tacoma 1359 ‘ REIGZTS School of Engineering and Technology, University of Washington - Tacoma B

59 60

Slides by Wes J. Lloyd L3.10

TCSS 422 A — Spring 2025
School of Engineering and Technology

4/8/2025

FORK WITH WAIT - 2

= Deterministic ordering of execution

prompt> ./p2

hello world (pid:29266)

hello, I am child (pid:29267)

hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>

TCSS422: Operating Systems [Spring 2025]

‘ [Spale 202> School of Engineering and Technology, University of Washington - Tacoma

1361

FORK EXAMPLE

= Linux example

‘TCSS422: Operating Systems [Spring 2025] 362

‘ SprlS202 School of Engineering and Technology, University of Washington - Tacoma

61

62

OBJECTIVES - 4/8

= Questions from 4/3
= C Review Survey - Late After Apr 9, Closes Apr 11
= Student Background Survey

= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait().fexec()]

= Virtual Machine Survey: VM to be sent to S. Miasishchev

TCSS422: Operating Systems [Spring 2025]

April 8, 2025 School of Engineering and Technology, University of Washington - Tacoma.

13.63

exec()

= Supports running an external program by “transferring control”
= 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

= execl(), execlp(), execle(): const char *arg (example: execl.c)

Provide cmd and args as individual params to the function
Each arg is a pointer to a null-terminated string
ODD: pass a variable number of args: (arg0, argl, .. argn)

= Execv(), execvp(), execvpe() (example: exec.c)

Provide cmd and args as an Array of pointers to strings

Strings are null-terminated
First argument is name of command being executed
Fixed number of args passed in

TCS5422: Operating Systems [Spring 2025] 364
School of Engineering and Technology, University of Washington - Tacoma

April 8, 2025

63

EXEC() - 2

= Common use case:

= Write a new program which wraps a legacy one

= Provide a new interface to an old system: Web services
= Legacy program thought of as a “black box”

= We don’t want to know what is inside... ©

Output
gt ———]

Interecibehovior o the code i unkrown

TCS5422: Operating Systems [Spring 2025

e School of Engineering and Technology, University of Washington - Tacoma

13.65

65

Slides by Wes J. Lloyd

64

EXEC EXAMPLE

#include <stdio.h>
<stdlib.h>
<unistd.h>
<string.h>
#include <sys/wait.h>

int main(int arge, r *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
(rc < 0) (
fprintf (stderr, "fork failed\n");
exit (1);
) (rc == 0) { (
printf("hello, I am child (pid:%d)\n", (int) getpid());

- char *myargs(3];

. 7CS3422: Operating Systems [Spring 2025]
REIGZTS School of Engineering and Technology, University of Washington - Tacoma 1360

66

L3.11

TCSS 422 A — Spring 2025 4/8/2025
School of Engineering and Technology

EXEC EXAMPLE - 2 EXEC WITH FILE REDIRECTION (OUTPUT)

‘ execvp (myargs (0], myargs);
, PrinE"ehis showian’ e print oucn); cotaio.ns
T St
printf("hello, I arent of %d (wc:sd) (pid::d)\n", Z:t‘rim'm
. e, we, (int) getpid()); e Sonnen
#include <sys/wait.h>
}
main(int arge, char *argv[])(
re = fork();
(re < 0) { ;
fprintf (stderr, "fork failed\n");
exit(1);
prompt> ./p3) (rc —
hello world (pid:29383) close (STDO 0) ;
hello, T am child (pid:29384) - open ("./pd.output”, O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);
25 107 1030 p3.c
hello, I am parent of 29384 (uc:29384) (pid:2
prompt>
TCS5422: Operating Systems [Spring 2025] TC55422: Operating Systems (Spring 2025]
‘ [Spale 202> School of Engineering and Technology, University of Washington - Tacoma 1367 SprlS202 School of Engineering and Technology, University of Washington - Tacoma 13.68

67 68

FILE MODE BITS EXEC W/ FILE REDIRECTION (OUTPUT) - 2

q S_IRWXU

read, write, execute/search by owner
S_IRUSR

read permission, owner

S_IWUSR

write permission, owner r *myargs([3];
S_IXUSR nyargs (0]
execute/search permission, owner myargs[1] = s

S IRWXG myargs([2] = NULL,

read, write, execute/search by group execvp (myargs (0], myargs);
S_IRGRP {

read permission, group)
S_IWGRP

write permission, group)
S_IXGRP

execute/search permission, group
S_IRWXO

read, write, execute/search by others
S_IROTH prompt> ./pd
read permission, others prompt> cat p4.output
S IWOTH 32 109 846 pd.c
write permission, others prompt>

TCS5422: Operating Systems [(Spring 20251 TC55422: Operating Systems (Spring 2025]
‘ April 8, 2025 School of Engineering and Technology, University of Washington - Tacoma 13.69 April 8,2025 School of Engineering and Technology, University of Washington - Tacoma 1370

we = wait (NULL) ;

69 70

[L11] < Aetivities €) Visual settings & edit < >

QUESTION: PROCESS API

[T — At Send wasoyd 022585

= Which Process API call is used to launch a different
Which Process API call is used to launch a different program from the @0 program from the current program?
current program’
= (a) Fork()
= (b) Exec()
= (c) Wait()
Exec) = (d) None of the above
= (e) All of the above

Fork()

Wait()

rezuone
Nana of tha ahava 3 e

. 7CS3422: Operating Systems [Spring 2025]
‘ REIGZTS School of Engineering and Technology, University of Washington -Tacoma 1372

71 72

Slides by Wes J. Lloyd L3.12

TCSS 422 A — Spring 2025 4/8/2025
School of Engineering and Technology

QUESTIONS

73

Slides by Wes J. Lloyd L3.13

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 4/8
	Slide 3: Virtual Machine support on APPLE m1
	Slide 4: Text book coupon
	Slide 5: Online daily feedback survey
	Slide 6
	Slide 7: Material / pace
	Slide 8: Feedback from 4/3
	Slide 9: Feedback - 2
	Slide 10: Feedback - 3
	Slide 11: Feedback - 4
	Slide 12: Feedback - 5
	Slide 13: Motivation for linux
	Slide 14: Motivation for linux - 2
	Slide 15: Motivation for linux - 2
	Slide 16: OBJECTIVES – 4/8
	Slide 17: C Review Survey - available thru 4/5
	Slide 18: OBJECTIVES – 4/8
	Slide 19: student Background survey
	Slide 20: Tcss 422 – office hrs – Spring 2025
	Slide 21: OBJECTIVES – 4/8
	Slide 22: Virtual machine survey
	Slide 23: OBJECTIVES – 4/8
	Slide 24: Chapter 2 summary : operating system design goals
	Slide 25: Chapter 2 summary : operating system design goals - 2
	Slide 26: OBJECTIVES – 4/8
	Slide 27: Chapter 4: processes
	Slide 28: Virtualizing the cpu
	Slide 29: Process
	Slide 30: Process API
	Slide 31: Process api: create
	Slide 32: Process api: create
	Slide 33
	Slide 34: We will return at 5:00pm
	Slide 35: OBJECTIVES – 4/8
	Slide 36: Process states
	Slide 37: Process state transitions
	Slide 38: Observing process meta-data
	Slide 39: Context switch
	Slide 40
	Slide 41: Question: WHEN TO CONTEXT SWITCH
	Slide 42: OBJECTIVES – 4/8
	Slide 43: Process data structures
	Slide 44: Struct Task_struct process control block
	Slide 45: Xv6 kernel data structures
	Slide 46: Xv6 kernel data structures - 2
	Slide 47: Linux: structures
	Slide 48: Struct Task_struct
	Slide 49: Struct task_struct - 2
	Slide 50: Linux structures - 2
	Slide 51: OBJECTIVES – 4/8
	Slide 52: Chapter 5: C process api
	Slide 53: OBJECTIVES – 4/8
	Slide 54: fork()
	Slide 55: Fork example
	Slide 56: Fork example - 2
	Slide 57: :(){ :|: & };:
	Slide 58: OBJECTIVES – 4/8
	Slide 59: wait()
	Slide 60: Fork With wait
	Slide 61: Fork with wait - 2
	Slide 62: Fork example
	Slide 63: OBJECTIVES – 4/8
	Slide 64: exec()
	Slide 65: Exec() - 2
	Slide 66: Exec example
	Slide 67: Exec example - 2
	Slide 68: Exec with file redirection (output)
	Slide 69: File mode bits
	Slide 70: exec w/ File redirection (output) - 2
	Slide 71
	Slide 72: Question: PROCESS API
	Slide 73: Questions

