
TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.1Slides by Wes J. Lloyd

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

Processes &
The Process API

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 3/28

 C Review Survey – Available thru Friday Apr 5

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S.
Miasishchev

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.2

OBJECTIVES – 4/2

1

2

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.2Slides by Wes J. Lloyd

 Installing a Ubuntu Virtual Machine on Apple M1 MacBooks:

 FREE

 https://mac.getutm.app/

 MACs have switched to using ARM-based CPUs

▪ Motivation: faster, less expensive than Intel -based CPUs

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.3

VIRTUAL MACHINE SUPPORT

ON APPLE M1

 15% off textbook code: POETRY15 (through Friday Apr 5)

 https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-

arpaci-dusseau/operating-systems-three-easy-pieces-

hardcover-version-110/hardcover/product-

15gjeeky.html?q=three+easy+pieces+operating+systems&pag

e=1&pageSize=4

 With coupon textbook is only $33.79 + tax & shipping

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.4

TEXT BOOK COUPON

3

4

https://mac.getutm.app/
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.3Slides by Wes J. Lloyd

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 9p, closes 11:59p

 Thursday surveys: due ~ Mon @ 9p, closes 11:59p

April 2, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.5

ONLINE DAILY FEEDBACK SURVEY

April 2, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L3.6

5

6

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.4Slides by Wes J. Lloyd

 Please classify your perspective on material covered in today’s

class (35 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.49 ( - previous 5.44)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.31 ( - previous 5.22)

April 2, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.7

MATERIAL / PACE

 What are threads and processes from the perspective of a

programmer?

 - - - > when should a programmer use threads ?

- - - > when should a programmer use processes ?

 How are concurrency and parallel programming related?

▪ Concurrency - two or more things (processes or threads)

executing at the same time.

▪ Parallel programming – writing code which splits a

problem into smaller tasks that can be executed at the

same time. Tasks will then be executed in parallel using

multiple threads or processes

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.8

FEEDBACK FROM 3/28

7

8

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.5Slides by Wes J. Lloyd

 What will the quizzes and exams look like in this course?

Will they be in -person or though Canvas?

 Quizzes are primarily held as in -class group activities

▪ Remote participants can interact via Zoom breakout

rooms

 Exams are in-person, w/ a few pages of notes allowed and

basic calculator

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.9

FEEDBACK - 2

 It is worth noting the importance of Linux for today’s
developers and computer scientists.

 The CLOUD runs many virtual machines, recently in 2019 a key
milestone was reached.

 Even on Microsoft Azure (the Microsoft Cloud), there were
more Linux Virtual Machines (> 50%) than Windows.

 https://www.zdnet.com/article/microsoft -developer-reveals-
linux-is-now-more-used-on-azure-than-windows-server/

 https://www.zdnet.com/article/it -runs-on-the-cloud-and-the-
cloud-runs-on-linux-any-questions/

 The majority of application back-ends (server-side), cloud or
not, run on Linux.

 This is due to licensing costs, example:

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.10

MOTIVATION FOR LINUX

9

10

https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.6Slides by Wes J. Lloyd

 Consider an example where you’re asked to develop a web
services backend that requires 10 x 8 -CPU-core virtual servers

 Your organization investigates hosting costs on Amazon cloud

 8-core VM is “c5d.2xlarge”

 Windows hourly price 75.2

 Linux hourly price 38.4

 See: https://instances.vantage.sh/

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.11

MOTIVATION FOR LINUX - 2

 Consider an example where you’re asked to develop a web
services backend that requires 10 x 8 -CPU-core virtual servers

 Your organization investigates hosting costs on Amazon cloud

 8-core VM is “c5d.2xlarge”

 Windows hourly price 75.2

 Linux hourly price 38.4

 See: https://www.ec2instances.info/

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.12

MOTIVATION FOR LINUX - 2

One year cloud hosting cost:

WINDOWS
10 VMs x 8,760 hours x $.752 = $65,875.20

Linux
10 VMs x 8,760 hours x $.384 = $33,638.40

Windows comes at a 95.8% price premium

11

12

https://instances.vantage.sh/
https://www.ec2instances.info/

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.7Slides by Wes J. Lloyd

 Questions from 3/28

 C Review Survey – Available thru Friday Apr 5

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S.
Miasishchev

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.13

OBJECTIVES – 4/2

C REVIEW SURVEY -

AVAILABLE THRU 4/5

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L3.14

13

14

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.8Slides by Wes J. Lloyd

 Questions from 3/28

 C Review Survey – Available thru Friday Apr 5

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S.
Miasishchev

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.15

OBJECTIVES – 4/2

39 of 43 Responses as of 4/1 @ ~11pm

Current Standings:

▪Best Office Hours times so far:

▪Rank #1: Tuesday after class (>5:40pm)  (53.1%)

▪Rank #2: Thursday after class (>5:40p) (50%)

▪Best lecture format:

▪Rank #1: Hybrid synchronous w/ recordings 
(89.2%)

▪Rank #2: In-person w/ recordings (40.5%)

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.16

STUDENT BACKGROUND SURVEY

15

16

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.9Slides by Wes J. Lloyd

 **Tuesdays after class until 7:00pm**

Hybrid (In-person/Zoom)

▪ This session will be in person in CP 229.

▪ Zoom will be monitored when no student is in CP 229.

 Thursdays after class until 7:00pm – Hybrid (In-person/Zoom)

▪ Additional office time will be held on Thursdays after class

when there is high demand indicated by a busy Tuesday

office hour

▪When Thursday Office Hours are planned, Zoom links will

be shared via Canvas

▪ Questions after class on Thursdays are always entertained

even when the formal office hour is not scheduled

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.17

TCSS 422 – OFFICE HRS – SPRING 2024

 Questions from 3/28

 C Review Survey – Available thru Friday Apr 5

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S.
Miasishchev

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.18

OBJECTIVES – 4/2

17

18

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.10Slides by Wes J. Lloyd

 Please complete the Virtual Machine Survey to request

a “School of Engineering and Technology” remote

hosted Ubuntu VM

https://forms.gle/V2sg4iW1awvhFx4W8

 VM requests have been sent to SET sys admin Slava

Miasishchev for set up

 If you missed the survey, please reach out

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.19

VIRTUAL MACHINE SURVEY

 Questions from 3/28

 C Review Survey – Available thru Friday Apr 5

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S.
Miasishchev

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.20

OBJECTIVES – 4/2

19

20

https://forms.gle/V2sg4iW1awvhFx4W8

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.11Slides by Wes J. Lloyd

 ABSTRACTING THE HARDWARE

▪ Makes programming code easier to write

▪ Automate sharing resources – save programmer burden

 PROVIDE HIGH PERFORMANCE

▪ Minimize overhead from OS abstraction
(Virtualization of CPU, RAM, I/O)

▪ Share resources fairly

▪ Attempt to tradeoff performance vs. fairness → consider
priority

 PROVIDE ISOLATION

▪ User programs can’t interfere with each other’s virtual
machines, the underlying OS, or the sharing of resources

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.21

CHAPTER 2 SUMMARY :

OPERATING SYSTEM DESIGN GOALS

 RELIABILITY

▪ OS must not crash, 24/7 Up-time

▪ Poor user programs must not bring down the system:

Blue Screen

 Other Issues:

▪ Energy-efficiency

▪ Security (of data)

▪ Cloud: Virtual Machines

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.22

CHAPTER 2 SUMMARY :

OPERATING SYSTEM DESIGN GOALS - 2

21

22

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.12Slides by Wes J. Lloyd

 Questions from 3/28

 C Review Survey – Available thru Friday Apr 5

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S.
Miasishchev

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.23

OBJECTIVES – 4/2

CHAPTER 4:

PROCESSES

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L3.24

23

24

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.13Slides by Wes J. Lloyd

 How should the CPU be shared?

 Time Sharing:
Run one process, pause it, run another

 The act of swapping process A out of the CPU to run
process B is called a:

▪ CONTEXT SWITCH

 How do we SWAP processes in and out of the CPU
efficiently?

▪ Goal is to minimize overhead of the swap

 OVERHEAD is time spent performing OS management
activities that don’t help accomplish real work

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.25

VIRTUALIZING THE CPU

 Process comprises of:

▪Memory

▪ Instructions (“the code”)

▪ Data (heap)

▪ Registers

▪ PC: Program counter

▪ Stack pointer

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.26

PROCESS

A process is a running program.

25

26

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.14Slides by Wes J. Lloyd

 Modern OSes provide a Process API for process support

 Create

▪ Create a new process

 Destroy

▪ Terminate a process (ctrl-c)

 Wait

▪ Wait for a process to complete/stop

 Miscellaneous Control

▪ Suspend process (ctrl-z)

▪ Resume process (fg, bg)

 Status

▪ Obtain process statistics: (top)

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.27

PROCESS API

1. Load program code (and static data) into memory

▪ Program executable code (binary): loaded from disk

▪ Static data: also loaded/created in address space

▪ Eager loading: Load entire program before running

▪ Lazy loading: Only load what is immediately needed

▪ Modern OSes: Supports paging & swapping

2. Run-time stack creation

▪ Stack: local variables, function params, return address(es)

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.28

PROCESS API: CREATE

27

28

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.15Slides by Wes J. Lloyd

3. Create program’s heap memory

▪ For dynamically allocated data

4. Other initialization

▪ I/O Setup

▪ Each process has three open file descriptors:

Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main()

▪ OS transfers CPU control to the new process

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.29

PROCESS API: CREATE

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.30

code
static data

heap

stack

Process

Memory

code
static data

heap

Program

Loading:
Reads program from
disk into the address

space of process

CPU

29

30

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.16Slides by Wes J. Lloyd

WE WILL RETURN AT

4:50PM

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L3.31

 Questions from 3/28

 C Review Survey – Available thru Friday Apr 5

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S.
Miasishchev

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.32

OBJECTIVES – 4/2

31

32

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.17Slides by Wes J. Lloyd

 RUNNING

▪ Currently executing instructions

 READY

▪ Process is ready to run, but has been preempted

▪ CPU is presently allocated for other tasks

 BLOCKED

▪ Process is not ready to run. It is waiting for another event

to complete:

▪ Process has already been initialized and run for awhile

▪ Is now waiting on I/O from disk(s) or other devices

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.33

PROCESS STATES

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.34

PROCESS STATE TRANSITIONS

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate

33

34

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.18Slides by Wes J. Lloyd

 Can inspect the number of CONTEXT SWITCHES made by a
process

 Let’s run mem.c (from chapter 2)

 cat /proc/{process-id}/status

 proc “status” is a virtual file generated by Linux

 Provides a report with process related meta -data

 What appears to happen to the number of context switches
the longer a process runs? (mem.c)

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.35

OBSERVING PROCESS META-DATA

 How long does a context switch take?

 10,000 to 50,000 ns (.01 to .05 ms)

 2,000 context switches is near 100ms

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.36

CONTEXT SWITCH

35

36

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.19Slides by Wes J. Lloyd

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L3.37

 When a process is in this state, it is advantageous for the

Operating System to perform a CONTEXT SWITCH to

perform other work:

 (a) RUNNING

 (b) READY

 (c) BLOCKED

 (d) All of the above

 (e) None of the above

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.38

QUESTION: WHEN TO CONTEXT SWITCH

37

38

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.20Slides by Wes J. Lloyd

 Questions from 3/28

 C Review Survey – Available thru Friday Apr 5

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S.
Miasishchev

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.39

OBJECTIVES – 4/2

 OS provides data structures to track process information

▪ Process list

▪ Process Data

▪ State of process: Ready, Blocked, Running

▪ Register context

 PCB (Process Control Block)

▪ A C-structure that contains information about each

process

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.40

PROCESS DATA STRUCTURES

39

40

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.21Slides by Wes J. Lloyd

Process Control

Block (PCB)

Key data regarding a

process

STRUCT TASK_STRUCT
PROCESS CONTROL BLOCK

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.41

 xv6: pedagogical implementation of Linux

 Simplified structures shown in book

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.42

XV6 KERNEL DATA STRUCTURES

// the registers xv6 will save and restore

// to stop and subsequently restart a process

struct context {

 int eip; // Index pointer register

 int esp; // Stack pointer register

 int ebx; // Called the base register

 int ecx; // Called the counter register

 int edx; // Called the data register

 int esi; // Source index register

 int edi; // Destination index register

 int ebp; // Stack base pointer register

};

// the different states a process can be in

enum proc_state { UNUSED, EMBRYO, SLEEPING,

 RUNNABLE, RUNNING, ZOMBIE };

41

42

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.22Slides by Wes J. Lloyd

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.43

XV6 KERNEL DATA STRUCTURES - 2

// the information xv6 tracks about each process

// including its register context and state

struct proc {

 char *mem; // Start of process memory

 uint sz; // Size of process memory

 char *kstack; // Bottom of kernel stack

 // for this process

 enum proc_state state; // Process state

 int pid; // Process ID

 struct proc *parent; // Parent process

 void *chan; // If non-zero, sleeping on chan

 int killed; // If non-zero, have been killed

 struct file *ofile[NOFILE]; // Open files

 struct inode *cwd; // Current directory

 struct context context; // Switch here to run process

 struct trapframe *tf; // Trap frame for the

 // current interrupt

};

struct task_struct, equivalent to struct proc

▪ The Linux process data structure

▪ Kernel data type (i.e. record) that describes

individual Linux processes

▪ Structure is VERY LARGE: 10,000+ bytes

▪ Defined in:
/usr/src/linux-headers-{kernel version}/include/linux/sched.h

▪ Ubuntu kernel version 5.15, LOC: 721 - 1507

▪ Ubuntu kernel version 5.11, LOC: 657 – 1394

▪ Ubuntu kernel version 4.4, LOC: 1391 – 1852

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.44

LINUX: STRUCTURES

43

44

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.23Slides by Wes J. Lloyd

 Key elements (e.g. PCB) in Linux are captured in

struct task_struct: (LOC from Linux kernel v 5.11)

 Process ID

 pid_t pid; LOC #943

 Process State

 /* -1 unrunnable, 0 runnable, >0 stopped: */

 unsintgned long __state; LOC #729

 Process time slice

how long the process will run before context switching

 Struct sched_rt_entity used in task_struct contains timeslice:

▪ struct sched_rt_entity rt; LOC #778

▪ unsigned int time_slice; LOC #567

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.45

STRUCT TASK_STRUCT

 Address space of the process:

 “mm” is short for “memory map”

 struct mm_struct *mm; LOC #857

 Parent process, that launched this one

 struct task_struct __rcu *parent; LOC #960

 Child processes (as a list)

 struct list_head children; LOC #965

 Open fi les

 struct files_struct *files; LOC #1070

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.46

STRUCT TASK_STRUCT - 2

45

46

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.24Slides by Wes J. Lloyd

 List of Linux data structures:

 http://www.tldp.org/LDP/tlk/ds/ds.html

 Description of process data structures:

https://learning.oreilly.com/library/view/linux -kernel-

development/9780768696974/cover.html

 3rd edition is online (dated from 2010):

 See chapter 3 on Process Management

 Safari online – accessible using UW ID SSO login

 Linux Kernel Development, 3 rd edition

 Robert Love

 Addison-Wesley

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.47

LINUX STRUCTURES - 2

 Questions from 3/28

 C Review Survey – Available thru Friday Apr 5

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S.
Miasishchev

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.48

OBJECTIVES – 4/2

47

48

http://www.tldp.org/LDP/tlk/ds/ds.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.25Slides by Wes J. Lloyd

CHAPTER 5:

C PROCESS API

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L3.49

 Questions from 3/28

 C Review Survey – Available thru Friday Apr 5

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S.
Miasishchev

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.50

OBJECTIVES – 4/2

49

50

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.26Slides by Wes J. Lloyd

 Creates a new process - think of “a fork in the road”

 “Parent” process is the original

 Creates “child” process of the program from the current
execution point

 Book says “pretty odd”

 Creates a duplicate program instance (these are processes!)

 Copy of

▪ Address space (memory)

▪ Register

▪ Program Counter (PC)

 Fork returns

▪ child PID to parent

▪ 0 to child

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.51

fork()

 p1.c

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.52

FORK EXAMPLE

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char *argv[]){

 printf("hello world (pid:%d)\n", (int) getpid());

 int rc = fork();

 if (rc < 0) { // fork failed; exit

 fprintf(stderr, "fork failed\n");

 exit(1);

 } else if (rc == 0) { // child (new process)

 printf("hello, I am child (pid:%d)\n", (int) getpid());

 } else { // parent goes down this path (main)

 printf("hello, I am parent of %d (pid:%d)\n",

 rc, (int) getpid());

 }

 return 0;

}

51

52

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.27Slides by Wes J. Lloyd

 Non deterministic ordering of execution

or

 CPU scheduler determines which to run first

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.53

FORK EXAMPLE - 2

prompt> ./p1

hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)

hello, I am child (pid:29147)

prompt>

prompt> ./p1

hello world (pid:29146)

hello, I am child (pid:29147)

hello, I am parent of 29147 (pid:29146)

prompt>

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.54

:(){ :|: & };:

53

54

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.28Slides by Wes J. Lloyd

 Questions from 3/28

 C Review Survey – Available thru Friday Apr 5

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S.
Miasishchev

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.55

OBJECTIVES – 4/2

 wait(), waitpid()

 Called by parent process

 Waits for a child process to finish executing

 Not a sleep() function

 Provides some ordering to multi -process execution

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.56

wait()

55

56

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.29Slides by Wes J. Lloyd

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.57

FORK WITH WAIT

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/wait.h>

int main(int argc, char *argv[]){

 printf("hello world (pid:%d)\n", (int) getpid());

 int rc = fork();

 if (rc < 0) { // fork failed; exit

 fprintf(stderr, "fork failed\n");

 exit(1);

 } else if (rc == 0) { // child (new process)

 printf("hello, I am child (pid:%d)\n", (int) getpid());

 } else { // parent goes down this path (main)

 int wc = wait(NULL);

 printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

 rc, wc, (int) getpid());

 }

 return 0;

}

 Deterministic ordering of execution

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.58

FORK WITH WAIT - 2

prompt> ./p2

hello world (pid:29266)

hello, I am child (pid:29267)

hello, I am parent of 29267 (wc:29267) (pid:29266)

prompt>

57

58

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.30Slides by Wes J. Lloyd

 Linux example

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.59

FORK EXAMPLE

 Questions from 3/28

 C Review Survey – Available thru Friday Apr 5

 Student Background Survey

 Virtual Machine Survey: VM requests sent to S.
Miasishchev

 Assignment 0

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

 Chapter 5: Process API

▪ fork(), wait(), exec()

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.60

OBJECTIVES – 4/2

59

60

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.31Slides by Wes J. Lloyd

 Supports running an external program by “transferring control”

 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

 execl(), execlp(), execle(): const char *arg (example: execl.c)

Provide cmd and args as individual params to the function

Each arg is a pointer to a null -terminated string

ODD: pass a variable number of args: (arg0, arg1, .. argn)

 Execv(), execvp(), execvpe() (example: exec.c)

Provide cmd and args as an Array of pointers to strings

Strings are null -terminated

First argument is name of command being executed

Fixed number of args passed in

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.61

exec()

 Common use case:

 Write a new program which wraps a legacy one

 Provide a new interface to an old system: Web services

 Legacy program thought of as a “black box”

 We don’t want to know what is inside…

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.62

EXEC() - 2

61

62

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.32Slides by Wes J. Lloyd

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.63

EXEC EXAMPLE

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <sys/wait.h>

int main(int argc, char *argv[]){

 printf("hello world (pid:%d)\n", (int) getpid());

 int rc = fork();

 if (rc < 0) { // fork failed; exit

 fprintf(stderr, "fork failed\n");

 exit(1);

 } else if (rc == 0) { // child (new process)

 printf("hello, I am child (pid:%d)\n", (int) getpid());

 char *myargs[3];

 myargs[0] = strdup("wc"); // program: "wc" (word count)

 myargs[1] = strdup("p3.c"); // argument: file to count

 myargs[2] = NULL; // marks end of array

 …

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.64

EXEC EXAMPLE - 2

…

 execvp(myargs[0], myargs); // runs word count

 printf("this shouldn’t print out");

 } else { // parent goes down this path (main)

 int wc = wait(NULL);

 printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

 rc, wc, (int) getpid());

 }

 return 0;

}

prompt> ./p3

hello world (pid:29383)

hello, I am child (pid:29384)

29 107 1030 p3.c

hello, I am parent of 29384 (wc:29384) (pid:29383)

prompt>

63

64

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.33Slides by Wes J. Lloyd

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.65

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <fcntl.h>

#include <sys/wait.h>

int

main(int argc, char *argv[]){

 int rc = fork();

 if (rc < 0) { // fork failed; exit

 fprintf(stderr, "fork failed\n");

 exit(1);

 } else if (rc == 0) { // child: redirect standard output to a file

 close(STDOUT_FILENO);

 open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

 …

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.66

FILE MODE BITS

S_IRWXU

read, write, execute/search by owner

S_IRUSR

read permission, owner

S_IWUSR

write permission, owner

S_IXUSR

execute/search permission, owner

S_IRWXG

read, write, execute/search by group

S_IRGRP

read permission, group

S_IWGRP

write permission, group

S_IXGRP

execute/search permission, group

S_IRWXO

read, write, execute/search by others

S_IROTH

read permission, others

S_IWOTH

write permission, others

65

66

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.34Slides by Wes J. Lloyd

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.67

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

…

 // now exec "wc"...

 char *myargs[3];

 myargs[0] = strdup("wc"); // program: "wc" (word count)

 myargs[1] = strdup("p4.c"); // argument: file to count

 myargs[2] = NULL; // marks end of array

 execvp(myargs[0], myargs); // runs word count

 } else { // parent goes down this path (main)

 int wc = wait(NULL);

 }

 return 0;

}

prompt> ./p4

prompt> cat p4.output

32 109 846 p4.c

prompt>

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L3.68

67

68

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/2/2024

L3.35Slides by Wes J. Lloyd

 Which Process API call is used to launch a different

program from the current program?

 (a) Fork()

 (b) Exec()

 (c) Wait()

 (d) None of the above

 (e) All of the above

April 2, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L3.69

QUESTION: PROCESS API

QUESTIONS

69

70

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 4/2
	Slide 3: Virtual Machine support on APPLE m1
	Slide 4: Text book coupon
	Slide 5: Online daily feedback survey
	Slide 6
	Slide 7: Material / pace
	Slide 8: Feedback from 3/28
	Slide 9: Feedback - 2
	Slide 10: Motivation for linux
	Slide 11: Motivation for linux - 2
	Slide 12: Motivation for linux - 2
	Slide 13: OBJECTIVES – 4/2
	Slide 14: C Review Survey - available thru 4/5
	Slide 15: OBJECTIVES – 4/2
	Slide 16: student Background survey
	Slide 17: Tcss 422 – office hrs – spring 2024
	Slide 18: OBJECTIVES – 4/2
	Slide 19: Virtual machine survey
	Slide 20: OBJECTIVES – 4/2
	Slide 21: Chapter 2 summary : operating system design goals
	Slide 22: Chapter 2 summary : operating system design goals - 2
	Slide 23: OBJECTIVES – 4/2
	Slide 24: Chapter 4: processes
	Slide 25: Virtualizing the cpu
	Slide 26: Process
	Slide 27: Process API
	Slide 28: Process api: create
	Slide 29: Process api: create
	Slide 30
	Slide 31: We will return at 4:50pm
	Slide 32: OBJECTIVES – 4/2
	Slide 33: Process states
	Slide 34: Process state transitions
	Slide 35: Observing process meta-data
	Slide 36: Context switch
	Slide 37
	Slide 38: Question: WHEN TO CONTEXT SWITCH
	Slide 39: OBJECTIVES – 4/2
	Slide 40: Process data structures
	Slide 41: Struct Task_struct process control block
	Slide 42: Xv6 kernel data structures
	Slide 43: Xv6 kernel data structures - 2
	Slide 44: Linux: structures
	Slide 45: Struct Task_struct
	Slide 46: Struct task_struct - 2
	Slide 47: Linux structures - 2
	Slide 48: OBJECTIVES – 4/2
	Slide 49: Chapter 5: C process api
	Slide 50: OBJECTIVES – 4/2
	Slide 51: fork()
	Slide 52: Fork example
	Slide 53: Fork example - 2
	Slide 54: :(){ :|: & };:
	Slide 55: OBJECTIVES – 4/2
	Slide 56: wait()
	Slide 57: Fork With wait
	Slide 58: Fork with wait - 2
	Slide 59: Fork example
	Slide 60: OBJECTIVES – 4/2
	Slide 61: exec()
	Slide 62: Exec() - 2
	Slide 63: Exec example
	Slide 64: Exec example - 2
	Slide 65: Exec with file redirection (output)
	Slide 66: File mode bits
	Slide 67: exec w/ File redirection (output) - 2
	Slide 68
	Slide 69: Question: PROCESS API
	Slide 70: Questions

