TCSS 422 A — Spring 2024 4/2/2024
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS OBJECTIVES - 4/2

| = Questlons from 3/28
= C Review Survey - Available thru Friday Apr 5

Processes & A y = Student Background Survey

The Process API 3 = Virtual Machine Survey: VM requests sent to S.
- Miasishchev

= Assignment O

Wes J. Lloyd = Chapter 4: Processes
School of Engineering and Technology " Process states, context switches

University of Washington - Tacoma = Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(), exec()

TCS5422: Operating Systems [Spring 2024]

; TCS5422: Operating Systems [Spring 2024]
April 2, 2024 School of Engineering and Technology, University of Washington - Tacoma

School of Engineeringand Technology, University of Washington Aprl2,2024

VIRTUAL MACHINE SUPPORT

ON APPLE M1 TEXT BOOK COUPON

= Installing a Ubuntu Virtual Machine on Apple M1 MacBooks: = 15% off textbook code: POETRYA5 (through Friday Apr 5)
= FREE

" https://mac.getutm.app,

= MACs have switched to using ARM-based CPUs = https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-
arpaci-dusseau/operating-systems-three-easy-pieces-
hardcover-version-110/hardcover/product-
15gjeeky.html?q=three+easy+pieces+operating+systems&pa
e=1&pageSize=4

t;ome t() = With coupon textbook is only $33.79 + tax & shipping
ure of M

TCS8422: Operating Systems [Spring 2024] 33 A2 2028 TCS5422; Operating Systems [Spring 2024] 54
School of Engineering and Technology, University of Washington - Tacoma. salles School of Engineering and Technology, University of Washington - Tacoma

= Motivation: faster, less expensive than Intel-based CPUs

‘ April2, 2024

TCSS 422 - Online Daily Feedback Survey - 4/1

ONLINE DAILY FEEDBACK SURVEY Quiz Instructions

Question 1 0spes
Ona scae of 1 tn 10, lease classity your perspective on materlal covered i today's
= Daily Feedback Quiz in Canvas - Available After Each Class class:
= Extra credit available for completing surveys ON TIME 1 2 3 &4 5 & 7 8 9 10
= Tuesday surveys: due by ~ Wed @ 9p, closes 11:59p = e e

= Thursday surveys: due ~ Mon @ 9p, closes 11:59p
= TC55422A > Assignments

Sprng 2021
Question 2 05pes
Home

Piease rat | |
Announcements tease rate the pace of today’s class:

Zoom ~ Upcoming Assignments 12z 3 a4 s s 7 8 9
Syllzbus s TCSS422 - Online Daily Feedback Survey - 4/1
= i I ™ Avallable until Apr 5 at 11:5%pm | DueApr3 at 10pm | -/1pts
Diseuceinne Aun.r o
TCS5422; Computer Operating Systems [Spring 2024] 7G88422: Gompuiter Operating Systems [Spring 2024
il 2, 2024, 35 omputer Operating Systems [Spring 2024]
‘ £z School of Engineering and Technology, University of Washington - Tacoma LTl School of Engineering and Technology, University of Washington - Tacoma 136

Slides by Wes J. Lloyd L3.1

https://mac.getutm.app/
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+operating+systems&page=1&pageSize=4

TCSS 422 A — Spring 2024 4/2/2024
School of Engineering and Technology

MATERIAL / PACE FEEDBACK FROM 3/28
= Please classify your perspective on material covered in today’s = What are threads and processes from the perspective of a
class (35 respondents): programmer?
= 1-mostly review, 5-equal new/review, 10-mostly new =...> when should a programmer use threads ?
= Average - 6.49 (T - previous 5.44) --->when should a programmer use processes ?

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.31 ({ - previous 5.22)

= How are concurrency an rallel programming related?
= Concurrency - two or more things (processes or threads)
executing at the same time.
= Parallel programming - writing code which splits a
problem into smaller tasks that can be executed at the
same time. Tasks will then be executed in parallel using
multiple threads or processes

[omzam B e e e e e [euzam St o egneme s oty ey of Washingion - Tacoma
7 8
FEEDBACK - 2 MOTIVATION FOR LINUX
= What wlll the quizzes and exams look like In this course? = It is worth noting the importance of Linux for today’s
Will they be in-person or though Canvas? developers and computer scientists.
= The CLOUD runs many virtual machines, recently in 2019 a key
- . . . L milestone was reached.
Quizzes are primarily held as in-class group activities = Even on Microsoft Azure (the Microsoft Cloud), there were
= Remote participants can interact via Zoom breakout more Linux Virtual Machines (> 50%) than Windows.
rooms = https://www.zdnet.com/article/microsoft-developer-reveals-

linux-is-now-more-used-on-azure-than-windows-server,
= https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any-questions

= Exams are in-person, w/ a few pages of notes allowed and
basic calculator

= The majority of application back-ends (server-side), cloud or
not, run on Linux.
= This is due to licensing costs, example:

TCSS422: Operating Systems [Spring 2024] TCS5422: Operating Systems [Spring 2024]
‘ April2,2020 School of Engineering and Technology, University of Washington - Tacoma. B April2,202¢ School of Engineering and Technology, University of Washington - Tacoma 1310

MOTIVATION FOR LINUX - 2 MOTIVATION FOR LINUX - 2

= Consider an example where you're asked to develop a web

services backend that requires 10 x 8-CPU-core virtual servers
= Your organization investigates hosting costs on Amazon cloud
= 8-core VM is “c5d.2xlarge”

Instance Memory | vCPUs_| Linux On Demand cost | Windows Gn Demand cost
coaxiaige | BUGE | 3vCPUs 50152000 hourly '50.376000 houry

€50 16wiarge | 144.0 GiE | 72 vCPUS 456000 hourry $6.768000 hourly.
GSdlarge | 40GIB | 2wCPUs 05000 hourly 'S0, 188000 hourly

50 24xiaigs | 192.0 GIB | 96 vCPUS | S4.608000 houry 53.024000 houry.
50 &xlarge | 320 GIB | 16 vCPUs | $0 765000 hourly SL504000 hourly
] T
<5 2x0er

50 oxlarge | 720 GIB | 3

= Windows hourly price 75.2F
= Linux hourly price 38.4¢

= See: https://Instances.vantage.sh/ = See: https://www.ec2lInstances.Info/

TCSS422: Operating Systems [Spring 2024] 1311 April 2, 2024 TCSS422: Operating Systems [Spring 2024] 512
School of Engineering and Technology, University of Washington - Tacoma salleh School of Engineering and Technology, University of Washington - Tacoma

16.0GE

‘ April 2, 2024

11 12

Slides by Wes J. Lloyd L3.2

https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/microsoft-developer-reveals-linux-is-now-more-used-on-azure-than-windows-server/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-cloud-runs-on-linux-any-questions/
https://instances.vantage.sh/
https://www.ec2instances.info/

TCSS 422 A — Spring 2024
School of Engineering and Technology

OBJECTIVES - 4/2

® Questions from 3/28
| = C Review Survey - Available thru Friday Apr 5 |
= Student Background Survey

= Virtual Machine Survey: VM requests sent to S.
Miasishchev

= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(), exec()

‘ April 2, 2024

TCSS422: Operating Systems [Spring 2024] 313
School of Engineering and Technology, University of Washington - Tacoma

13

OBJECTIVES - 4/2

= Questions from 3/28
= C Review Survey - Available thru Friday Apr 5
| = Student Background Survey |

= Virtual Machine Survey: VM requests sent to S.
Miasishchev

= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(), exec()

TCSS422: Operating Systems [Spring 2024]
‘ April2,2020 School of Engineering and Technology, University of Washington - Tacoma. 315

15

TCSS 422 - OFFICE HRS - SPRING 2024

= **Tuesdays after class until 7:00pm**
Hybrid (in-person/Zoom)

= This session will be in person in CP 229.
=Zoom will be monitored when no student is in CP 229.

= Thursdays after class until 7:00pm - Hybrid (in-person/Zoom)

= Additional office time will be held on Thursdays after class
when there is high demand indicated by a busy Tuesday
office hour

= When Thursday Office Hours are planned, Zoom links will
be shared via Canvas

= Questions after class on Thursdays are always entertained
even when the formal office hour is not scheduled

TCS5422: Operating Systems [Spring 2024]
‘ CEEDESEIE) School of Engineering and Technology, University of Washington - Tacoma By

C REVIEW SURVEY -
AVAILABLE THRU 4/5

April2, 2024 TCSS422: Operating Systems [Spring 2024]
. School of Engineering and Technology, University of Washington -

14

STUDENT BACKGROUND SURVEY

=39 of 43 Responses as of 4/1 @ ~11pm
ECurrent Standings:
=Best Office Hours times so far:
Rank #1: Tuesday after class (>5:40pm) ‘I (53.1%)
Rank #2: Thursday after class (>5:40p) (50%)
=Best lecture format:

Rank #1: Hybrid synchronous w/ recordings \
(89.2%)

Rank #2: In-person w/ recordings (40.5%)

TCS5422: Operating Systems [Spring 2024]
April2,202¢ School of Engineering and Technology, University of Washington - Tacoma

16

OBJECTIVES - 4/2

= Questions from 3/28
= C Review Survey - Available thru Friday Apr 5
= Student Background Survey

ual Machine Survey: VM requests sent to S.
M shchev

= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(), exec()

7CS5422: Operating Systems [Spring 2024]
5l School of Engineering and Technology, University of Washington - Tacoma 1318

17

Slides by Wes J. Lloyd

18

4/2/2024

L3.3

TCSS 422 A — Spring 2024 4/2/2024
School of Engineering and Technology

VIRTUAL MACHINE SURVEY OBJECTIVES - 4/2
= Please complete the Virtual Machine Survey to request " Questions from 3/28
a “School of Engineering and Technology” remote = C Review Survey - Available thru Friday Apr 5
hosted Ubuntu VM = Student Background Survey

= Virtual Machine Survey: VM requests sent to S.
Miasishchev

=https://forms.gle/V2sg4iWilawvhFx4W8
= Chapter 4: Processes
= VM requests have been sent to SET sys admin Slava * Process states, context switches
Mlasishchev for set up = Kernel data structures for processes and threads
= If you missed the survey, please reach out = Chapter 5: Process API

= fork(), wait(), exec()

TCS5422: Operating Systems [Spring 2024] TCS5422: Operating Systems (Spring 2024]
‘ Gl ikt School of Engineering and Technology, University of Washington - Tacoma 119 Gl i School of Engineering and Technology, University of Washington - Tacoma 13.20

19 20

CHAPTER 2 SUMMARY :

CHAPTER 2 SUMMARY :
OPERATING SYSTEM DESIGN GOALS

OPERATING SYSTEM DESIGN GOALS - 2

= ABSTRACTING THE HARDWARE = RELIABILITY
= Makes programming code easier to write

= 0S must not crash, 24/7 Up-time
= Automate sharing resources - save programmer burden

= Poor user programs must not bring down the system:
= PROVIDE HIGH PERFORMANCE

= Minimize overhead from OS abstraction Blue Screen
(Virtualization of CPU, RAM, 1/0)

= Share resources fairly

: n = Other Issues:
= Attempt to tradeoff performance vs. fairness - consider .
priority = Energy-efficiency

= Security (of data)
= Cloud: Virtual Machines

= PROVIDE ISOLATION

= User programs can’t interfere with each other’s virtual
machines, the underlying 0S, or the sharing of resources

TCS5422: Operating Systems [(Spring 2024] TCS5422: Operating Systems (Spring 2024]
‘ April2,2020 School of Engineering and Technology, University of Washington - Tacoma. 21 April2,202¢ School of Engineering and Technology, University of Washington - Tacoma .22

21 22

——
Process State

OBJECTIVES - 4/2

= Questions from 3/28
= C Review Survey - Available thru Friday Apr 5
= Student Background Survey

= Virtual Machine Survey: VM requests sent to S.
Miasishchev

= Assignment O CHAPTER 4:
Il Chapter 4: Processesl PROCESS ES

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait(), exec()

TCSS422: Operating Systems [Spring 2024] i TCSS422: Operating Systems [Spring 2024]
‘ o2y School of Engineering and Technology, University of Washington - Tacoma B enlzeiz School of Engineering and Technology, University of Washington -

23 24

Slides by Wes J. Lloyd L3.4

https://forms.gle/V2sg4iW1awvhFx4W8

TCSS 422 A — Spring 2024 4/2/2024
School of Engineering and Technology

VIRTUALIZING THE CPU PROCESS

= How should the CPU be shared?
running program
= Time Sharing:

Run one process, pause it, run another

= Process comprises of:
= Memory
Instructions (“the code”)
Data (heap)

= The act of swapping process A out of the CPU to run
process B is called a:
= CONTEXT SWITCH

=" How do we SWAP processes in and out of the CPU
efficiently? = Registers
= Goal is to minimize overhead of the swap PC: Program counter
Stack pointer

= OVERHEAD is time spent performing OS management
activities that don’t help accomplish real work

TCS5422: Operating Systems [Spring 2024] TCS5422: Operating Systems (Spring 2024]
‘ Gl ikt School of Engineering and Technology, University of Washington - Tacoma 1325 Gl i School of Engineering and Technology, University of Washington - Tacoma 1326

25 26

PROCESS API PROCESS API: CREATE
= Modern OSes provide a Process API for process support 1. Load program code (and static data) into memory
= Create = Program executable code (binary): loaded from disk
- N & (e (Ioess = Static data: also loaded/created in address space
= Destroy
= Terminate a process (ctrl-c) = Eager loading: Load entire program before running
= Wait = Lazy loadIng: Only load what is immediately needed
= Wait for a process to complete/stop Modern OSes: Supports paging & swapping

= Miscellaneous Control
= Suspend process (ctrl-z)

= Resume process (fg, bg) 2. Run-time stack creation

= Status = Stack: local variables, function params, return address(es)

= Obtain process statistics: (top)

IEEE e |] el I3
27 28
PROCESS API: CREATE cPU Memory
[code
| static data
3. Create program’s heap memory i heap
= For dynamically allocated data
stack
4. Other initialization : _ proces
= |/0 Setup .
Each process has three open file descriptors: C)) \/ .
Standard Input, Standard Output, Standard Error "7;‘0(,;”' Reads";;cgpa?; from
static data disk into the address
5. Start program running at the entry point: main () L pagem) space of process
= OS transfers CPU control to the new process o
[romzame [1m oot o maoms | oo | [romzame [10n o smam b i sigion - meams I3
29 30

Slides by Wes J. Lloyd L3.5

TCSS 422 A — Spring 2024
School of Engineering and Technology

WE WILL RETURN AT

4:50PM

TCSS422: Operating Systems [Spring 2024]

LAlB 2 School of Engineering and Technology, University of Washington -

31

PROCESS STATES

= RUNNING
= Currently executing instructions

= READY
= Process is ready to run, but has been preempted
= CPU is presently allocated for other tasks

= BLOCKED

to complete:
Process has already been initialized and run for awhile
Is now waiting on 1/0 from disk(s) or other devices

= Process is not ready to run. It is waiting for another event

TCSS422: Operating Systems [Spring 2024]

‘ Anrl2;2028 School of Engineering and Technology, University of Washington - Tacoma.

1333

33

OBSERVING PROCESS META-DATA

process
= Let’s run mem.c (from chapter 2)

= cat /proc/{process-id}/status

= proc “status” is a virtual file generated by Linux
= Provides a report with process related meta-data

the longer a process runs? (mem.c)

= Can inspect the number of CONTEXT SWITCHES made by a

= What appears to happen to the number of context switches

TCS5422: Operating Systems [Spring 2024]

‘ CEEDESEIE) School of Engineering and Technology, University of Washington - Tacoma

13.35

4/2/2024

OBJECTIVES - 4/2

® Questions from 3/28
= C Review Survey - Available thru Friday Apr 5
= Student Background Survey

= Virtual Machine Survey: VM requests sent to S.
Miasishchev

= Assignment O

= Chapter 4: Processes
= Process states, context switches
= Kernel data structures for processes and threads

= Chapter 5: Process API
= fork(), wait(), exec()

TCS5422: Operating Systems [Spring 2024]

‘ Gl i School of Engineering and Technology, University of Washington - Tacoma

32

PROCESS STATE TRANSITIONS

/ x\\\ Descheduled / 7”\\“

| Runmning | ———> (Ready |

\ /' Scheduled \\ B /’

1/0: initiatx

7N

| Blocked \

\\\\17 ///

1/0: done

\

TCS5422: Operating Systems [Spring 2024]

‘ April2,202¢ School of Engineering and Technology, University of Washington - Tacoma

34

CONTEXT SWITCH

= How Ilon ntext switch take?
= 10,000 to 50,000 ns (.01 to .05 ms)
= 2,000 context switches is near 100ms

Without CPU affinity

£

i

TC55422: Operating Systems [Spring 2024]

‘ Sl 2 School of Engineering and Technology, University of Washington - Tacoma

1336

35

Slides by Wes J. Lloyd

36

L3.6

TCSS 422 A — Spring 2024
School of Engineering and Technology

4/2/2024

.11) < Activities € Visual settings &) Edit

ol

10O

PolEvcomwsslioyd S weslloyd 522353

System to perform a CONTEXT SWITCH to perform other work

RUNNING
READY

sezwoe N2
RI OCKFN L ~

Current responses

Response options Count

When a process is in this state, it is advantageous for the Operating 20

QUESTION: WHEN TO CONTEXT SWITCH

= When a process is in this state, it is advantageous for the
Operating System to perform a CONTEXT SWITCH to
perform other work:

= (a) RUNNING

= (b) READY

= (c) BLOCKED

= (d) All of the above

= (e) None of the above

TCS5422: Operating Systems [Spring 2024] 1338

‘ Gl i School of Engineering and Technology, University of Washington - Tacoma

37

38

OBJECTIVES - 4/2

= Questions from 3/28
= C Review Survey - Available thru Friday Apr 5
= Student Background Survey

= Virtual Machine Survey: VM requests sent to S.
Miasishchev

= Assignment O

= Chapter 4: Processes

= Process states, context switches
= Chapter 5: Process API

= fork(), wait(), exec()

TCSS422: Operating Systems [Spring 2024]

April2, 2024 School of Engineering and Technology, University of Washington - Tacoma.

13.39

PROCESS DATA STRUCTURES

= O0S provides data structures to track process information
= Process list
Process Data
State of process: Ready, Blocked, Running
= Register context

= PCB (Process Control Block)
= A C-structure that contains information about each
process

TCS5422: Operating Systems [Spring 2024]
[Aneil272028 School of Engineering and Technology, University of Washington - Tacoma B0

39

STRUCT TASK_STRUCT

PROCESS CONTROL BLOCK

=Process Control process state

Block (PCB) process number

program counter

=Key data regarding a

process registers
memory limits
list of open files
“ e
- TCSS422: O ting Syst S 2024]
periz anz e e s ;’:dems{ B Univ]ersily of - Tacoma

L3.41

41

Slides by Wes J. Lloyd

40

XV6 KERNEL DATA STRUCTURES

= xv6: pedagogical implementation of Linux
= Simplified structures shown in book

struct context {
eip;
esp;
int ebx;

ecx;
edx;
esi;
edi;
ebp;

num proc_state { UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE };

7CS5422: Operating Systems [Spring 2024]
‘ 5l School of Engineering and Technology, University of Washington - Tacoma 1342

42

L3.7

TCSS 422 A — Spring 2024
School of Engineering and Technology

XV6 KERNEL DATA STRUCTURES - 2

r *kstack;

enum proc_state state;
int pid;
struct proc *parent;
void *chan; non-
int killed; non-
ruct file *ofile[NOFILE];
ruct inode *cwd;
ruct context context;
ruct trapframe *tf;

TCSS422: Operating Systems [Spring 2024]
‘ Gl ikt School of Engineering and Technology, University of Washington - Tacoma L343

43

STRUCT TASK_STRUCT

= Key elements (e.g. PCB) in Linux are captured in
struct task_struct: (LOC from Linux kernelv 5.11)

= Process ID
=pid_t pid; LOC #943
= Process State
= /* -1 unrunnable, 0 runnable, >0 stopped: */
=unsintgned long __state; LOC #729
= Process time slice
how long the process will run before context switching
= Struct sched_rt_entity used in task_struct contains timeslice:

= struct sched_rt_entity rt; LOC #778
=unsigned int time_slice; LOC #567
TCSS422: Oy ing Sy [Spring 2024]
I e ve

45

LINUX STRUCTURES - 2

= List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

= Description of process data structures:
https://learning.oreilly.com/library/view/linux-kernel-
development/9780768696974/cover.html
3rd edition is online (dated from 2010):
See chapter 3 on Process Management

Safari online - accessible using UW ID SSO login
Linux Kernel Development, 3™ edition

Robert Love

Addison-Wesley

TCS5422: Operating Systems [Spring 2024] N
‘ CEEDESEIE) School of Engineering and Technology, University of Washington - Tacoma 1247

47

Slides by Wes J. Lloyd

4/2/2024

LINUX: STRUCTURES

Estruct task struct, equivalent to struct proc
= The Linux process data structure

= Kernel data type (i.e. record) that describes
individual Linux processes

= Structure is VERY LARGE: 10,000+ bytes
= Defined in:
/usr/src/linux-headers-{kernel version}/include/linux/sched.h
Ubuntu kernel version 5.15, LOC: 721 - 1507
Ubuntu kernel version 5.11, LOC: 657 - 1394
Ubuntu kernel version 4.4, LOC: 1391 - 1852

TCS5422: Operating Systems [Spring 2024]
‘ Gl i School of Engineering and Technology, University of Washington - Tacoma L3.44

44

STRUCT TASK_STRUCT - 2

= Address space of the process:
= “mm” is short for “memory map”
=struct mm_struct *mm; LOC #857

= Parent process, that launched this one
= struct task_struct __rcu *parent; LOC #960

= Chlld processes (as a list)

= struct list_head children; LOC #965
= Open flles
s struct files_struct *files; LOC #1070
\ April2, 2024 e e s
46

OBJECTIVES - 4/2

= Questions from 3/28
= C Review Survey - Available thru Friday Apr 5
= Student Background Survey

= Virtual Machine Survey: VM requests sent to S.
Miasishchev

= Assignment O

= Chapter 4: Processes
= Process states, context switches
= Kernel data structures for processes and threads
| = Chapter 5: Process APl |
= fork(), wait(), exec()

7CS5422: Operating Systems [Spring 2024]
‘ 5l School of Engineering and Technology, University of Washington - Tacoma 1348

48

L3.8

http://www.tldp.org/LDP/tlk/ds/ds.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html

TCSS 422 A — Spring 2024 4/2/2024
School of Engineering and Technology

OBJECTIVES - 4/2

® Questions from 3/28
= C Review Survey - Available thru Friday Apr 5
= Student Background Survey

= Virtual Machine Survey: VM requests sent to S.
Miasishchev

= Assignment O

CHAPTER 5:

C PROCESS API

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

wait(), exec()

TCSS422: Operating Systems [Spring 2024]

TCS3422: Operating Systems [Spring 2024] 1350
School of Engineering and Technology, University of Washington - -

April 2, 2024 School of Engineering and Technology, University of Washington - Tacoma

‘ April 2, 2024

49 50

fork() FORK EXAMPLE

= Creates a new process - think of “a fork in the road” = pl.c
= “Parent” process is the original
“ : ” #include <stdio.h>
= Creates “child” process of the program from the current imelude cotdiinme
executlon point #include <unistd.h>
= Book says “pretty odd” At main(int arge, char *argv(]){
. printf("hello world (pid:%d)\n", (int) getpid());
= Creates a dupllcate program instance (these are processes!) .» int rc = fork();
(xre < 0) { ;
= Copy of fprintf (stderr, "fork failed\n");
= Address space (memory) [P T e
= Register printf("hello, I am child (pid:%d)\n", (int) getpid()):
} ((main)
= Program Counter (PC) printf("hello, I am parent of %d (pid:3d)\n",
o) tpid())
= Fork returns Lo int) getpi
= child PID to parent , o
= 0 to child
TCSS422: Operating Systems [Spring 2024] TCSS422: Operating Systems [Spring 2024]
‘ April2,2020 School of Engineering and Technology, Universiy of Washington - Tacoma 51 ‘ April2,202¢ School of Engineening and Techaology, Universiy of Washington - Tacoma 1352

51 52

FORK EXAMPLE - 2

= Non deterministic ordering of execution

prompt> ./pl
hello world (pid:29146)
hello, I am parent of 29147 (pid:29146)

hello, I am child (pid:29147)
prompt>

L fork,
prompt> ./pl =
hello world (pid:29146) c

hello, I am child (pid:29147)
hello, I am parent of 29147 (pid:29146)

DY L WRDY Lo Wl

= CPU scheduler determines which to run first

TCS5422: Operating Systems [Spring 2024] TCS5422: Operating Systems [Spring 2024]
‘ CEEDESEIE) School of Engineering and Technology, University of Washington - Tacoma B3 5l School of Engineering and Technology, University of Washington - Tacoma e

53 54

Slides by Wes J. Lloyd L3.9

TCSS 422 A — Spring 2024
School of Engineering and Technology

OBJECTIVES - 4/2

® Questions from 3/28

= C Review Survey - Available thru Friday Apr 5

= Student Background Survey

= Virtual Machine Survey: VM requests sent to S.
Miasishchev

= Assignment O

= Chapter 4: Processes
= Process states, context switches
= Kernel data structures for processes and threads

= Chapter 5: Process API

= fork(exec()
TCSS422: Operating Systems [Spring 2024]
Gl ikt School of Engineering and Technology, University of Washington - Tacoma 1355

55

FORK WITH WAIT

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

main(argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
rc = fork();
(re < 0) { ;
fprintf (stderr, "fork failed\n");
exit (1);

) (rc == 0) {
printf("hello, I am child (pid:%d)\n", (int) getpid());

= wait (NULL);

=) we
printf("hello, I am parent of $d (wc:¥d) (pid:sd)\n",
re, we, (int) getpid());

TCSS422: Operating Systems [Spring 2024]
April2,2020 School of Engineering and Technology, University of Washington - Tacoma

13.57

4/2/2024

wait()

= wait(), waitpid()
= Called by parent process

= Waits for a child process to finish executing

= Not a sleep() function

= Provides some ordering to multi-process execution

TCS5422: Operating Systems [Spring 2024]
Gl i School of Engineering and Technology, University of Washington - Tacoma

57

FORK EXAMPLE

= Linux example

TCS5422: Operating Systems [Spring 2024]
CEEDESEIE) School of Engineering and Technology, University of Washington - Tacoma

13.59

59

Slides by Wes J. Lloyd

56

FORK WITH WAIT - 2

= Deterministic ordering of execution

prompt> ./p2
hello world (pid:29266)
hello, I am child (pid:29267
hello, I am parent of 29267 (4
prompt>

9267) (pid:29266)

TCS5422: Operating Systems [Spring 2024]
[Aneil272028 School of Engineering and Technology, University of Washington - Tacoma

13.58

58

OBJECTIVES - 4/2

= Questions from 3/28

= C Review Survey - Available thru Friday Apr 5

= Student Background Survey

= Virtual Machine Survey: VM requests sent to S.
Miasishchev

= Assignment O

= Chapter 4: Processes

= Process states, context switches

= Kernel data structures for processes and threads
= Chapter 5: Process API

= fork(), wait()

7CS5422: Operating Systems [Spring 2024]
5l School of Engineering and Technology, University of Washington - Tacoma

13.60

60

L3.10

TCSS 422 A — Spring 2024
School of Engineering and Technology

exec()

= Supports running an external program by “transferring control”
= 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

= execl(), execlp(), execle(): const char *arg

(example: execl.c)

Provide cmd and args as individual params to the function
Each arg is a pointer to a null-terminated string
ODD: pass a variable number of args: (arg0, argl, .. argn)

= Execv(), execvp(), execvpe()

example: exec.c,

Provide cmd and args as an Array of pointers to strings

Strings are null-terminated

First argument is name of command being executed

Fixed number of args passed in

April 2, 2024 TCS5422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma

1361

= Common
= Writea n

= Provide a new interface to an old system: Web services

EXEC() - 2

use case:
ew program which wraps a legacy one

= Legacy program thought of as a “black box”

School of Engineering and Technology, University of Washington - Tacoma

= We don’t want to know what is inside.. @
H -
ot ———
[re—
‘ ol 2,2020 TC55422: Operating Systems [Spring 2024] 62

61

EXEC EXAMPLE

<stdio.h>
<stdlib.h>
<unistd.h>
<string.h>
<sys/wait.h>

main (rgc, *argv(]) {
printf("hello world (pid:sd)\n", (
re = fork();
(re < 0) {
fprintf (stderr, "fork failed\n");
exit(1);
} (rc == 0)

=)

char *my:
myargs [0 trdup ("we") ;
myargs[1] = strdup("p3.c")
myargs[2] = NULL;

) getpid());

0) {
printf("hello, I am child (pid:$d)\n", (int) getpid());
s[31;

April2, 2024 TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma

13.63

63

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fentl.h>
#include <sys/wait.h>

main (int arge, char *argv(]){
int rc = fork();
(rc < 0) { ;
fprintf (stderr, "fork failed\n");
exit(1);
) (xc

close (STDOUT

0 (
TLENO) ;

open ("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

April 2, 2024 TCS$422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma

13.65

65

Slides by Wes J. Lloyd

62

EXEC EXAMPLE - 2

execvp (myargs (0], myargs);
printf("this shouldn’t print ou

"

we = wait (NULL);
printf("hello, I am parent of %d (wc:sd) (pid:%d)\n",
T, we, (int) getpid());

prompt>

hello,
29 107
hello,
prompt>

./p3

hello world (pid:29383)

T am child (pid:29384)
1030 p3.c
T am parent of 29384 (wc:29384) (pid:29383)

April2,2024

TCS5422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

13.64

64

FILE MODE BITS

S_IRWXU
read, write, execute/search by owner
S_IRUSR

read permission, owner

S_IWUSR

write permission, owner

S_IXUSR

execute/search permission, owner
S_IRWXG

read, write, execute/search by group
S_IRGRP

read permission, group

S_IWGRP

write permission, group

S_IXGRP

execute/search permission, group
S_IRWXO

read, write, execute/search by others
S_IROTH

read permission, others

S_IWOTH

write permission, others

April 2, 2024

TC55422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

13.66

66

TCSS 422 A — Spring 2024
School of Engineering and Technology

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

char *myargs[3];

myargs (0] = strdup("wc");
myargs[1] = strdup("pd.c");
myargs[2] = NULL;

execup (myargs [0], myargs);

{
int we = wait (NULL);

m 0;

prompt> ./pd

prompt> cat pd.output
32 109 846 pd.c
prompt>

TCSS422: Operating Systems [Spring 2024]

l Gl ikt School of Engineering and Technology, University of Washington - Tacoma.

13.67

67

QUESTION: PROCESS API

program from the current program?

= (a) Fork()

= (b) Exec()

= (c) Wait()

= (d) None of the above
= (e) All of the above

= Which Process API call is used to launch a different

TCSS422: Operating Systems [Spring 2024]

l Anrl2;2028 School of Engineering and Technology, University of Washington - Tacoma

13.69

4/2/2024

.11) < Activities

ol

© Visualsetings) Edit

Which Process API call is used to launch a different program from the
current program?

R

Currentresponses

Response options

Count. %

5

68

QUESTIONS

69

Slides by Wes J. Lloyd

L3.12

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 4/2
	Slide 3: Virtual Machine support on APPLE m1
	Slide 4: Text book coupon
	Slide 5: Online daily feedback survey
	Slide 6
	Slide 7: Material / pace
	Slide 8: Feedback from 3/28
	Slide 9: Feedback - 2
	Slide 10: Motivation for linux
	Slide 11: Motivation for linux - 2
	Slide 12: Motivation for linux - 2
	Slide 13: OBJECTIVES – 4/2
	Slide 14: C Review Survey - available thru 4/5
	Slide 15: OBJECTIVES – 4/2
	Slide 16: student Background survey
	Slide 17: Tcss 422 – office hrs – spring 2024
	Slide 18: OBJECTIVES – 4/2
	Slide 19: Virtual machine survey
	Slide 20: OBJECTIVES – 4/2
	Slide 21: Chapter 2 summary : operating system design goals
	Slide 22: Chapter 2 summary : operating system design goals - 2
	Slide 23: OBJECTIVES – 4/2
	Slide 24: Chapter 4: processes
	Slide 25: Virtualizing the cpu
	Slide 26: Process
	Slide 27: Process API
	Slide 28: Process api: create
	Slide 29: Process api: create
	Slide 30
	Slide 31: We will return at 4:50pm
	Slide 32: OBJECTIVES – 4/2
	Slide 33: Process states
	Slide 34: Process state transitions
	Slide 35: Observing process meta-data
	Slide 36: Context switch
	Slide 37
	Slide 38: Question: WHEN TO CONTEXT SWITCH
	Slide 39: OBJECTIVES – 4/2
	Slide 40: Process data structures
	Slide 41: Struct Task_struct process control block
	Slide 42: Xv6 kernel data structures
	Slide 43: Xv6 kernel data structures - 2
	Slide 44: Linux: structures
	Slide 45: Struct Task_struct
	Slide 46: Struct task_struct - 2
	Slide 47: Linux structures - 2
	Slide 48: OBJECTIVES – 4/2
	Slide 49: Chapter 5: C process api
	Slide 50: OBJECTIVES – 4/2
	Slide 51: fork()
	Slide 52: Fork example
	Slide 53: Fork example - 2
	Slide 54: :(){ :|: & };:
	Slide 55: OBJECTIVES – 4/2
	Slide 56: wait()
	Slide 57: Fork With wait
	Slide 58: Fork with wait - 2
	Slide 59: Fork example
	Slide 60: OBJECTIVES – 4/2
	Slide 61: exec()
	Slide 62: Exec() - 2
	Slide 63: Exec example
	Slide 64: Exec example - 2
	Slide 65: Exec with file redirection (output)
	Slide 66: File mode bits
	Slide 67: exec w/ File redirection (output) - 2
	Slide 68
	Slide 69: Question: PROCESS API
	Slide 70: Questions

