
TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.1Slides by Wes J. Lloyd

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

Operating Systems –
Three Easy Pieces & Processes

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 4/1

 C Review Survey - available thru 4/7

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.2

OBJECTIVES – 4/3

1

2

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.2Slides by Wes J. Lloyd

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 9p, cutoff 11:59p

 Thursday surveys: due ~ Mon @ 9p, cutoff 11:59p

April 3, 2025
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.3

ONLINE DAILY FEEDBACK SURVEY

April 3, 2025
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L2.4

3

4

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.3Slides by Wes J. Lloyd

 Please classify your perspective on material covered in today’s

class (51 of 64 respondents – 79.69%):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 5.92 (Spring 2024, 5.44)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.26 (Spring 2024, 5.22)

April 3, 2025
TCSS422: Computer Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.5

MATERIAL / PACE

 How vir tualization is achieved in an OS is unclear.

 How does the OS seemingly create multiple CPUs for each

running program?

▪ CPUs have a fixed number of PHYSICAL & LOGICAL cores

▪ These cores are simultaneously shared among programs

▪ ‘htop’ includes CPU core graphs showing CPU utilization/core

▪ Around 2004, Intel introduced ‘hyperthreading’, where each

physical CPU has two active hyper-threads that share the

physical CPU components to mimic two actual cores.

▪ Since the advent of hyperthreading, OSes like Linux now report

‘LOGICAL’ cores when asked:

‘how many CPUs do you have?’

▪ Check available cores with ‘lscpu’ or ‘cat /proc/cpuinfo’

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.6

FEEDBACK FROM 4/1

5

6

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.4Slides by Wes J. Lloyd

 Consider some Intel desktop CPUs from 2013:

▪ Intel Core i7-4770R and

▪ Intel Core i5-4760R CPUs

 These are the exact same chip… BUT

▪ The i5 CPU is imperfect, so Intel disabled hyperthreading and sold
this as a lower-grade CPU

 Using ‘google search’, look up the specs for these CPUs

 You can type any CPU model number into Google followed by
‘wikichip ’ to obtain a wikichip.org CPU page

 Wikipedia also had detailed CPU info

 Search for: ‘Intel i7-4770R wikichip ’ and ‘Intel i5-4760R
wikichip ’

▪ How many CPU cores do they have ? How many hyperthreads ?

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.7

FEEDBACK - 2

 Modern CPUs provide multiple instruction pipelines,
supporting multiple execution threads, usually 2
to feed instructions to a single CPU core…

 Two hyper-threads
are not equivalent
to (2) CPU cores

 i7-4770 and i5-4670
same CPU, with and
without HTT

 Example: →
hyperthreads add
+32.9%

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.8

HYPER THREADING

7

8

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.5Slides by Wes J. Lloyd

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.9

CPU PIPELINING

 How does the OS allow multiple processes to use the same

address space?

 If the computer has 4GB of memory, then each program is

presented with a virtual memory address space divided into 4

kb memory pages from 0 to 4GB of ram.

 Every page in this virtual memory is either vacant (unused) or

present (occupied).

 Present pages are stored in physical memory (the real 4 GB),

and the virtual memory space is just a map to the physical

memory

 Every process has its own virtual memory map

 We cover this extensively later in the course

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.10

FEEDBACK - 2

9

10

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.6Slides by Wes J. Lloyd

 The concept of ‘abstraction’ in OSes is unclear to me

 The OS provides a layer between the

hardware (HW) and user

 Within this layer, the OS choose how to

represent HW resources to the users

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.11

FEEDBACK - 3

 The process

abstraction is

how OSes

virtualize the

CPU

 In other

words, the

resources of the

CPU are shared

with the user

via ‘processes’

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.12

FEEDBACK - 4

11

12

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.7Slides by Wes J. Lloyd

 Textbook coupon 10% of f “SHELFWORTHY10” until Friday at

11:59pm

 Hardcover edition (version 1.1) from lulu.com:

 https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-

arpaci-dusseau/operating-systems-three-easy-pieces-

hardcover-version-110/hardcover/product-

15gjeeky.html?q=three+easy+pieces+softcover&page=1&page

Size=4

 With coupon textbook is only $35.77 + tax & shipping

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.13

RESOURCES

 Questions from 4/1

 C Review Survey - available thru 4/7

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.14

OBJECTIVES – 4/3

13

14

https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+softcover&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+softcover&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+softcover&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+softcover&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+softcover&page=1&pageSize=4

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.8Slides by Wes J. Lloyd

C REVIEW SURVEY -

AVAILABLE THRU 4/7

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L2.15

 Questions from 4/1

 C Review Survey - available thru 4/7

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.16

OBJECTIVES – 4/3

15

16

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.9Slides by Wes J. Lloyd

 Please complete the Student Background Survey

https://forms.gle/L1VWMoYrNueKe88dA

41 of 64 Responses as of 4/2 @ ~12pm

Current Standings:

▪Best Office Hours times so far:

▪Rank #1: Wednesday before noon – 51.3%

▪Rank #2: Friday early afternoon (12-2pm) – 46.2%

▪Prefer online – 53.8%

Will consider survey results through Mon Apr 8

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.17

STUDENT BACKGROUND SURVEY

 Questions from 4/1

 C Review Survey - available thru 4/7

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.18

OBJECTIVES – 4/3

17

18

https://forms.gle/L1VWMoYrNueKe88dA

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.10Slides by Wes J. Lloyd

 Please complete the Virtual Machine Survey to request

a “School of Engineering and Technology” remote

hosted Ubuntu VM

https://forms.gle/vuEv5bsW57Ki4ZpDA

35 of 64 Responses as of 4/2 @ ~12pm

Will close Wednesday 4/9…

 VM requests will be sent to SET for creation

 Survey response not required if no VM desired

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.19

VIRTUAL MACHINE SURVEY

 Questions from 4/1

 C Review Survey - available thru 4/7

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.20

OBJECTIVES – 4/3

19

20

https://forms.gle/vuEv5bsW57Ki4ZpDA

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.11Slides by Wes J. Lloyd

What form of abstraction does the OS provide?

▪CPU

▪ Process and/or thread

▪Memory

▪ Address space

▪→ large array of bytes

▪ All programs see the same “size” of RAM

▪Disk

▪ Files, File System(s)

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.21

ABSTRACTIONS

Allow applications to reuse common facilities

Make different devices look the same

▪Easier to write common code to use devices

▪ Linux/Unix Block Devices

Provide higher level abstractions

More useful functionality

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.22

WHY ABSTRACTION?

21

22

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.12Slides by Wes J. Lloyd

What level of abstraction?

▪How much of the underlying hardware should be

exposed?

▪What if too much?

▪What if too little?

What are the correct abstractions?

▪Security concerns

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.23

ABSTRACTION CHALLENGES

 Questions from 4/1

 C Review Survey - available thru 4/7

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.24

OBJECTIVES – 4/3

23

24

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.13Slides by Wes J. Lloyd

 Each running program gets its own “virtual” representation of

the CPU

 Many programs seem to run at once

 Linux: “top” command shows

process list

 Windows: task manager

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.25

VIRTUALIZING THE CPU

 Simple Looping C Program

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.26

VIRTUALIZING THE CPU - 2

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <sys/time.h>

4 #include <assert.h>

5 #include "common.h"

6

7 int

8 main(int argc, char *argv[])

9 {

10 if (argc != 2) {

11 fprintf(stderr, "usage: cpu <string>\n");

12 exit(1);

13 }

14 char *str = argv[1];

15 while (1) {

16 Spin(1); // Repeatedly checks the time and

 returns once it has run for a second

17 printf("%s\n", str);

18 }

19 return 0;

20 }

25

26

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.14Slides by Wes J. Lloyd

 Runs forever, must Ctrl -C to halt…

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.27

VIRTUALIZING THE CPU - 3

prompt> gcc -o cpu cpu.c -Wall

prompt> ./cpu "A"

A

A

A

ˆC

prompt>

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.28

VIRTUALIZATION THE CPU - 4

prompt> ./cpu A & ; ./cpu B & ; ./cpu C & ; ./cpu D &

[1] 7353

[2] 7354

[3] 7355

[4] 7356

A

B

D

C

A

B

D

C

A

C

B

D

...

Even though we have only one processor, all four instances
of our program seem to be running at the same time!

27

28

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.15Slides by Wes J. Lloyd

 & - run a job in the background

 fg – brings a job to the foreground

 bg – sends a job to the background

 CTRL-Z to suspend a job

 CTRL-C to kill a job

 “jobs” command – lists running jobs

 “jobs –p” command – lists running jobs by process ID

 top –d .2 top utility shows active running jobs like
 the Windows task manager

 top –H –d .2 display all processes & threads

 top –H –p <pid> display all threads of a process

 htop alternative to top, shows CPU core graphs

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.29

MANAGING PROCESSES FROM THE CLI

 Questions from 4/1

 C Review Survey - available thru 4/7

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.30

OBJECTIVES – 4/3

29

30

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.16Slides by Wes J. Lloyd

 Computer memory is treated as a large array of bytes

 Programs store all data in this large array

▪ Read memory (load)

▪ Specify an address to read data from

▪Write memory (store)

▪ Specify data to write to an address

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.31

VIRTUALIZING MEMORY

 Program to read/write memory: (mem.c) (from ch. 2 pgs. 5-6)

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.32

VIRTUALIZING MEMORY - 2

1 #include <unistd.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include "common.h"

5

6 int

7 main(int argc, char *argv[])

8 {

9 int *p = malloc(sizeof(int)); // a1: allocate some

 memory

10 assert(p != NULL);

11 printf("(%d) address of p: %08x\n",

12 getpid(), (unsigned) p); // a2: print out the

 address of the memmory

13 *p = 0; // a3: put zero into the first slot of the memory

14 while (1) {

15 Spin(1);

16 *p = *p + 1;

17 printf("(%d) p: %d\n", getpid(), *p); // a4

18 }

19 return 0;

20 }

31

32

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.17Slides by Wes J. Lloyd

 Output of mem.c (example from ch. 2 pgs. 5-6)

 int value stored at virtual address 00200000

 program increments int value pointed to by p

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.33

VIRTUALIZING MEMORY - 3

prompt> ./mem

(2134) memory address of p: 00200000

(2134) p: 1

(2134) p: 2

(2134) p: 3

(2134) p: 4

(2134) p: 5

ˆC

 Multiple instances of mem.c

 BOOK SHOWS:(int*)p with the same memory location 00200000

 To disable ASR: ‘echo 0 | tee /proc/sys/kernel/randomize_va_space ’

 Why does modifying the value of *p in program #1 (PID 24113), not

inter fere with the value of *p in program #2 (PID 24114) ?

▪ The OS has “virtualized” memory, and provides a “virtual” address

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.34

VIRTUALIZING MEMORY - 4

prompt> ./mem &; ./mem &

[1] 24113

[2] 24114

(24113) memory address of p: 00200000

(24114) memory address of p: 00200000

(24113) p: 1

(24114) p: 1

(24114) p: 2

(24113) p: 2

(24113) p: 3

(24114) p: 3

...

By default this example no

longer works as advertised !

Ubuntu now applies address space
randomization (ASR) by default.

ASR makes the ptr location of program
instances not identical. Having

identical addresses is considered a
security issue.

33

34

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.18Slides by Wes J. Lloyd

Key take-aways:

 Each process (program) has its own virtual address space

 The OS maps virtual address spaces onto

physical memory

 A memory reference from one process can not affect the

address space of others.

➢ Isolation

 Physical memory, a shared resource, is managed by the OS

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.35

VIRTUAL MEMORY

 Questions from 4/1

 C Review Survey - available thru 4/7

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.36

OBJECTIVES – 4/3

35

36

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.19Slides by Wes J. Lloyd

 DRAM: Dynamic Random Access Memory: DIMMs/SIMMs

▪ Store data while power is present

▪When power is lost, data is lost (i.e. volatile memory)

 Operating System helps “persist” data more permanently

▪ I/O device(s): hard disk drive (HDD), solid state drive (SSD)

▪ File system(s): “catalog” data for storage and retrieval

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.37

WHY PERSISTENCE ?

 open(), write(), close(): OS system calls for device I/O

 Note: man page for open(), write() requires page number:
“man 2 open”, ”man 2 write”, “man close”

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.38

PERSISTENCE - 2

1 #include <stdio.h>

2 #include <unistd.h>

3 #include <assert.h>

4 #include <fcntl.h>

5 #include <sys/types.h>

6

7 int

8 main(int argc, char *argv[])

9 {

10 int fd = open("/tmp/file", O_WRONLY | O_CREAT

 | O_TRUNC, S_IRWXU);

11 assert(fd > -1);

12 int rc = write(fd, "hello world\n", 13);

13 assert(rc == 13);

14 close(fd);

15 return 0;

16 }

April 3, 2025

37

38

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.20Slides by Wes J. Lloyd

 To write to disk, OS must:

▪ Determine where on disk data should reside

▪ Instrument system calls to perform I/O:

▪ Read/write to file system (inode record)

▪ Read/write data to file

 OS provides fault tolerance for system crashes via
special filesystem features:

▪ Journaling: Record disk operations in a journal for replay

▪ Copy-on-write: replicate shared data across multiple disks
- see ZFS filesystem

▪ Carefully order writes on disk (especially spindle drives)

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.39

PERSISTENCE - 3

WE WILL RETURN AT

4:50PM

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L2.40

39

40

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.21Slides by Wes J. Lloyd

 Questions from 4/1

 C Review Survey - available thru 4/7

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.41

OBJECTIVES – 4/3

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.42

CONCURRENCY

Linux htop (Ubuntu)
Windows 10 Task Manager

41

42

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.22Slides by Wes J. Lloyd

 Linux: 179 processes, 1089 threads (htop)

 Windows 10: 364 processes, 6011 threads (task mgr)

 OSes appear to run many programs at once, juggling

them

 Modern multi-threaded programs feature concurrent

threads and processes

 What is a key difference between a process and a thread?

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.43

CONCURRENCY

pthread.c

Listing continues …

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.44

CONCURRENCY - 2

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include "common.h"

4

5 volatile int counter = 0;

6 int loops;

7

8 void *worker(void *arg) {

9 int i;

10 for (i = 0; i < loops; i++) {

11 counter++;

12 }

13 return NULL;

14 }

15 ...

43

44

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.23Slides by Wes J. Lloyd

pthread.c

Listing continues …

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.45

CONCURRENCY - 2

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include "common.h"

4

5 volatile int counter = 0;

6 int loops;

7

8 void *worker(void *arg) {

9 int i;

10 for (i = 0; i < loops; i++) {

11 counter++;

12 }

13 return NULL;

14 }

15 ...

Not the same as Java volatile (java guarantees visibility of changes):

Provides a compiler hint than an object may change value
unexpectedly (in this case by a separate thread) so aggressive
optimization must be avoided.

 Program creates two threads

 Check documentation: “man pthread_create”

 worker() method counts from 0 to argv[1] (loop)

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.46

CONCURRENCY - 3

16 int

17 main(int argc, char *argv[])

18 {

19 if (argc != 2) {

20 fprintf(stderr, "usage: threads <value>\n");

21 exit(1);

22 }

23 loops = atoi(argv[1]);

24 pthread_t p1, p2;

25 printf("Initial value : %d\n", counter);

26

27 Pthread_create(&p1, NULL, worker, NULL);

28 Pthread_create(&p2, NULL, worker, NULL);

29 Pthread_join(p1, NULL);

30 Pthread_join(p2, NULL);

31 printf("Final value : %d\n", counter);

32 return 0;

33 }

pthread.c

45

46

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.24Slides by Wes J. Lloyd

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L2.47

Linux
“man”
page

example

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.48

CONCURRENCY - 4

 Command line parameter argv[1] provides loop length

 Defines number of times the shared counter is incremented

 Loops: 1000

 Loops 100000

prompt> gcc -o pthread pthread.c -Wall -pthread

prompt> ./pthread 1000

Initial value : 0

Final value : 2000

prompt> ./pthread 100000

Initial value : 0

Final value : 143012 // huh??

prompt> ./pthread 100000

Initial value : 0

Final value : 137298 // what ???

47

48

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.25Slides by Wes J. Lloyd

 When loop value is large why do we not achieve 200,000 ?

 C code is translated to (3) assembly code operations

1. Load counter variable into register

2. Increment it

3. Store the register value back in memory

 These instructions happen concurrently and VERY FAST

 (P1 || P2) write incremented register values back to memory,

While (P1 || P2) read same memory

 Memory access here is unsynchronized (non-atomic)

 Some of the increments are lost

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.49

CONCURRENCY - 5

March 28, 2023
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L1.50

49

50

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.26Slides by Wes J. Lloyd

 To perform parallel work, a single process may:

 A. Launch multiple threads to execute code in parallel while

sharing global data in memory

 B. Launch multiple processes to execute code in parallel

without sharing global data in memory

 C. Both A and B

 D. None of the above

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.51

PARALLEL PROGRAMMING

 Questions from 4/1

 C Review Survey - available thru 4/7

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.52

OBJECTIVES – 4/3

51

52

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.27Slides by Wes J. Lloyd

 ABSTRACTING THE HARDWARE

▪ Makes programming code easier to write

▪ Automate sharing resources – save programmer burden

 PROVIDE HIGH PERFORMANCE

▪ Minimize overhead from OS abstraction
(Virtualization of CPU, RAM, I/O)

▪ Share resources fairly

▪ Attempt to tradeoff performance vs. fairness → consider
priority

 PROVIDE ISOLATION

▪ User programs can’t interfere with each other’s virtual
machines, the underlying OS, or the sharing of resources

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.53

SUMMARY:

OPERATING SYSTEM DESIGN GOALS

 RELIABILITY

▪ OS must not crash, 24/7 Up-time

▪ Poor user programs must not bring down the system:

Blue Screen

 Other Issues:

▪ Energy-efficiency

▪ Security (of data)

▪ Cloud: Virtual Machines

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.54

SUMMARY:

OPERATING SYSTEM DESIGN GOALS - 2

53

54

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.28Slides by Wes J. Lloyd

 Questions from 4/1

 C Review Survey - available thru 4/7

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.55

OBJECTIVES – 4/3

CHAPTER 4:

PROCESSES

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L2.56

55

56

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.29Slides by Wes J. Lloyd

 How should the CPU be shared?

 Time Sharing:
Run one process, pause it, run another

 The act of swapping process A out of the CPU to run
process B is called a:

▪ CONTEXT SWITCH

 How do we SWAP processes in and out of the CPU
efficiently?

▪ Goal is to minimize overhead of the swap

 OVERHEAD is time spent performing OS management
activities that don’t help accomplish real work

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.57

VIRTUALIZING THE CPU

 Process comprises of:

▪Memory

▪ Instructions (“the code”)

▪ Data (heap)

▪ Registers

▪ PC: Program counter

▪ Stack pointer

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.58

PROCESS

A process is a running program.

57

58

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.30Slides by Wes J. Lloyd

 Modern OSes provide a Process API for process support

 Create

▪ Create a new process

 Destroy

▪ Terminate a process (ctrl-c)

 Wait

▪ Wait for a process to complete/stop

 Miscellaneous Control

▪ Suspend process (ctrl-z)

▪ Resume process (fg, bg)

 Status

▪ Obtain process statistics: (top)

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.59

PROCESS API

1. Load program code (and static data) into memory

▪ Program executable code (binary): loaded from disk

▪ Static data: also loaded/created in address space

▪ Eager loading: Load entire program before running

▪ Lazy loading: Only load what is immediately needed

▪ Modern OSes: Supports paging & swapping

2. Run-time stack creation

▪ Stack: local variables, function params, return address(es)

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.60

PROCESS API: CREATE

59

60

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.31Slides by Wes J. Lloyd

3. Create program’s heap memory

▪ For dynamically allocated data

4. Other initialization

▪ I/O Setup

▪ Each process has three open file descriptors:

Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main()

▪ OS transfers CPU control to the new process

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.61

PROCESS API: CREATE

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma L2.62

code
static data

heap

stack

Process

Memory

code
static data

heap

Program

Loading:
Reads program from
disk into the address

space of process

CPU

61

62

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.32Slides by Wes J. Lloyd

 Questions from 4/1

 C Review Survey - available thru 4/7

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.63

OBJECTIVES – 4/3

 RUNNING

▪ Currently executing instructions

 READY

▪ Process is ready to run, but has been preempted

▪ CPU is presently allocated for other tasks

 BLOCKED

▪ Process is not ready to run. It is waiting for another event

to complete:

▪ Process has already been initialized and run for awhile

▪ Is now waiting on I/O from disk(s) or other devices

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.64

PROCESS STATES

63

64

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.33Slides by Wes J. Lloyd

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.65

PROCESS STATE TRANSITIONS

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate

 Can inspect the number of CONTEXT SWITCHES made by a
process

 Let’s run mem.c (from chapter 2)

 cat /proc/{process-id}/status

 proc “status” is a virtual file generated by Linux

 Provides a report with process related meta -data

 What appears to happen to the number of context switches
the longer a process runs? (mem.c)

April 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.66

OBSERVING PROCESS META-DATA

65

66

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.34Slides by Wes J. Lloyd

 How long does a context switch take?

 10,000 to 50,000 ns (.01 to .05 ms)

 2,000 context switches is near 100ms

April 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.67

CONTEXT SWITCH

 How long does a context switch take?

 10,000 to 50,000 ns (.01 to .05 ms)

 2,000 context switches is near 100ms

 Mileage can vary depending on system conditions, etc.

 See blog:

https://blog.tsunanet.net/2010/11/how -long-does-it-take-to-

make-context.html

April 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.68

CONTEXT SWITCH

67

68

https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.35Slides by Wes J. Lloyd

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.69

 When a process is in this state, it is advantageous for the

Operating System to perform a CONTEXT SWITCH to

perform other work:

 (a) RUNNING

 (b) READY

 (c) BLOCKED

 (d) All of the above

 (e) None of the above

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.70

QUESTION: WHEN TO CONTEXT SWITCH

69

70

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.36Slides by Wes J. Lloyd

 Questions from 4/1

 C Review Survey - available thru 4/7

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.71

OBJECTIVES – 4/3

 OS provides data structures to track process information

▪ Process list

▪ Process Data

▪ State of process: Ready, Blocked, Running

▪ Register context

 PCB (Process Control Block)

▪ A C-structure that contains information about each

process

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.72

PROCESS DATA STRUCTURES

71

72

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.37Slides by Wes J. Lloyd

 xv6: pedagogical implementation of Linux

 Simplified structures shown in book

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.73

XV6 KERNEL DATA STRUCTURES

// the registers xv6 will save and restore

// to stop and subsequently restart a process

struct context {

 int eip; // Index pointer register

 int esp; // Stack pointer register

 int ebx; // Called the base register

 int ecx; // Called the counter register

 int edx; // Called the data register

 int esi; // Source index register

 int edi; // Destination index register

 int ebp; // Stack base pointer register

};

// the different states a process can be in

enum proc_state { UNUSED, EMBRYO, SLEEPING,

 RUNNABLE, RUNNING, ZOMBIE };

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.74

XV6 KERNEL DATA STRUCTURES - 2

// the information xv6 tracks about each process

// including its register context and state

struct proc {

 char *mem; // Start of process memory

 uint sz; // Size of process memory

 char *kstack; // Bottom of kernel stack

 // for this process

 enum proc_state state; // Process state

 int pid; // Process ID

 struct proc *parent; // Parent process

 void *chan; // If non-zero, sleeping on chan

 int killed; // If non-zero, have been killed

 struct file *ofile[NOFILE]; // Open files

 struct inode *cwd; // Current directory

 struct context context; // Switch here to run process

 struct trapframe *tf; // Trap frame for the

 // current interrupt

};

73

74

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.38Slides by Wes J. Lloyd

struct task_struct, equivalent to struct proc

▪ The Linux process data structure

▪ Kernel data type (i.e. record) that describes

individual Linux processes

▪ Structure is VERY LARGE: 10,000+ bytes

▪Defined in:
/usr/src/linux-headers-{kernel version}/include/linux/sched.h

▪ Ubuntu 20.04 w/ kernel version 5.11, LOC: 657 – 1394

▪ Ubuntu 20.04 w/ kernel version 4.4, LOC: 1391 – 1852

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.75

LINUX: STRUCTURES

Process Control

Block (PCB)

Key data regarding a

process

STRUCT TASK_STRUCT
PROCESS CONTROL BLOCK

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.76

75

76

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.39Slides by Wes J. Lloyd

 Key elements (e.g. PCB) in Linux are captured in

struct task_struct: (LOC from Linux kernel v 5.11)

 Process ID

 pid_t pid; LOC #857

 Process State

 /* -1 unrunnable, 0 runnable, >0 stopped: */

 volatile long state; LOC #666

 Process time slice

how long the process will run before context switching

 Struct sched_rt_entity used in task_struct contains timeslice:

▪ struct sched_rt_entity rt; LOC #710

▪ unsigned int time_slice; LOC #503

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.77

STRUCT TASK_STRUCT

 Address space of the process:

 “mm” is short for “memory map”

 struct mm_struct *mm; LOC #779

 Parent process, that launched this one

 struct task_struct __rcu *parent; LOC #874

 Child processes (as a list)

 struct list_head children; LOC #879

 Open fi les

 struct files_struct *files; LOC #981

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.78

STRUCT TASK_STRUCT - 2

77

78

TCSS 422 A – Spring 2025
School of Engineering and Technology

4/3/2025

L2.40Slides by Wes J. Lloyd

 List of Linux data structures:

 http://www.tldp.org/LDP/tlk/ds/ds.html

 Description of process data structures:

https://learning.oreilly.com/library/view/linux -kernel-

development/9780768696974/cover.html

 3rd edition is online (dated from 2010):

 See chapter 3 on Process Management

 Safari online – accessible using UW ID SSO login

 Linux Kernel Development, 3 rd edition

 Robert Love

 Addison-Wesley

April 3, 2025
TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L2.79

LINUX STRUCTURES - 2

QUESTIONS

79

80

http://www.tldp.org/LDP/tlk/ds/ds.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 4/3
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 4/1
	Slide 7: Feedback - 2
	Slide 8: Hyper threading
	Slide 9: Cpu pipelining
	Slide 10: Feedback - 2
	Slide 11: Feedback - 3
	Slide 12: Feedback - 4
	Slide 13: Resources
	Slide 14: OBJECTIVES – 4/3
	Slide 15: C Review Survey - available thru 4/7
	Slide 16: OBJECTIVES – 4/3
	Slide 17: student Background survey
	Slide 18: OBJECTIVES – 4/3
	Slide 19: Virtual machine survey
	Slide 20: OBJECTIVES – 4/3
	Slide 21: abstractions
	Slide 22: Why abstraction?
	Slide 23: Abstraction challenges
	Slide 24: OBJECTIVES – 4/3
	Slide 25: Virtualizing the CPU
	Slide 26: Virtualizing the CPU - 2
	Slide 27: Virtualizing the cpu - 3
	Slide 28: Virtualization the CPU - 4
	Slide 29: Managing processes from the cli
	Slide 30: OBJECTIVES – 4/3
	Slide 31: Virtualizing memory
	Slide 32: Virtualizing memory - 2
	Slide 33: Virtualizing memory - 3
	Slide 34: Virtualizing memory - 4
	Slide 35: Virtual Memory
	Slide 36: OBJECTIVES – 4/3
	Slide 37: Why persistence ?
	Slide 38: Persistence - 2
	Slide 39: Persistence - 3
	Slide 40: We will return at 4:50pm
	Slide 41: OBJECTIVES – 4/3
	Slide 42: concurrency
	Slide 43: concurrency
	Slide 44: CONCURRENCY - 2
	Slide 45: CONCURRENCY - 2
	Slide 46: CONCURRENCY - 3
	Slide 47
	Slide 48: Concurrency - 4
	Slide 49: Concurrency - 5
	Slide 50
	Slide 51: Parallel programming
	Slide 52: OBJECTIVES – 4/3
	Slide 53: Summary: operating system design goals
	Slide 54: Summary: operating system design goals - 2
	Slide 55: OBJECTIVES – 4/3
	Slide 56: Chapter 4: processes
	Slide 57: Virtualizing the cpu
	Slide 58: Process
	Slide 59: Process API
	Slide 60: Process api: create
	Slide 61: Process api: create
	Slide 62
	Slide 63: OBJECTIVES – 4/3
	Slide 64: Process states
	Slide 65: Process state transitions
	Slide 66: Observing process meta-data
	Slide 67: Context switch
	Slide 68: Context switch
	Slide 69
	Slide 70: Question: WHEN TO CONTEXT SWITCH
	Slide 71: OBJECTIVES – 4/3
	Slide 72: Process data structures
	Slide 73: Xv6 kernel data structures
	Slide 74: Xv6 kernel data structures - 2
	Slide 75: Linux: structures
	Slide 76: Struct Task_struct process control block
	Slide 77: Struct Task_struct
	Slide 78: Struct task_struct - 2
	Slide 79: Linux structures - 2
	Slide 80: Questions

