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TCSS 422: OPERATING SYSTEMS

 Questions from 3/26

 C Review Survey - available thru 4/5

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems –  Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads
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OBJECTIVES – 3/28

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 9p, cutoff 11:59p

 Thursday surveys: due ~ Mon @ 9p, cutoff 11:59p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class (36 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average –  5.44  (Spring 2024, 6.18)  

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average –  5.22  (Spring 2024, 5.91)
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MATERIAL / PACE

 I  was curious if  we will be learning solely about Linux, or other 

operating systems l ike BSD, Unix, Solaris, Windows, and 

MacOS.

 This course focuses on the concepts of operating systems, and 

in particular the vir tualization of the CPU, memory, and disks

 We primarily use Linux (Ubuntu), but concepts apply to any OS

 We do not focus on comparing features of various OSes 

(e.g. BSD, Unix, Solaris, etc.)  per se…
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FEEDBACK FROM 3/26

1 2

3 4

5 6
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 Is  there a dif ference between multithreading and parallel 

processing?
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FEEDBACK - 2

 Visualizing memory, and separating vir tual vs  physical 
memory is  st i ll a  l i t tle abstract.

 We delve into memory later on in the course.

 Linux manages all memory in 4 KB pages

 There are four primary types:

 Code pages, heap pages (for dynamic memory), stack pages 
(for data you pass in/out of functions), and data pages (for 
global data)

 Code consists of your program code, and shared library code

▪ The idea with shared libraries is the OS saves spaces by only loading 
them once, and sharing them with multiple programs

 You can visualize the memory of a process using the
“proc” f i lesystem  (under /proc), which is a vir tual directory of  
dynamic generated files to inspect the system and processes
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FEEDBACK - 3

 Textbook coupon 10% off “BCORPBOOKS10” until Fr iday at  

11:59pm

 Hardcover edition (version 1 .1) f rom lulu.com:

 

 https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-

arpaci-dusseau/operating-systems-three-easy-pieces-

hardcover-version-110/hardcover/product -

15gjeeky.html?q=three+easy+pieces+softcover&page=1&page

Size=4 

 With coupon textbook is only $35.77 + tax & shipping
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RESOURCES

 Questions from 3/26

 C Review Survey -  available thru 4/5

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems –  Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads
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OBJECTIVES – 3/28

C REVIEW SURVEY - 

AVAILABLE THRU 4/5
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 Questions from 3/26

 C Review Survey - available thru 4/5

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems –  Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads
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OBJECTIVES – 3/28
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 Please complete the Student Background Survey

 https://forms.gle/L1VWMoYrNueKe88dA  

 37 of 43 Responses as of 3/27 @ ~11pm

 Current Standings:

▪Best Office Hours times so far:

▪ Rank #1: Tuesday after class (> 5:40p) – 53.3%

▪ Rank #2: Thursday after class (> 5:40p) – 50.0%

▪ Rank #3: Monday morning (before noon) – 46.7%

▪Best lecture format:

▪ Rank #1: Hybrid synchronous w/ recordings (88.6%)

▪ Rank #2: In-person w/ recordings (40%)

Will consider survey results through Mon Apr 1
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STUDENT BACKGROUND SURVEY

 Questions from 3/26

 C Review Survey - available thru 4/5

 Student Background Survey

 Vir tual Machine Survey

 Chapter 2: Operating Systems –  Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington  -  Tacoma

L2.14

OBJECTIVES – 3/28

 Please complete the Virtual Machine Survey to request 

a “School of Engineering and Technology” remote 

hosted Ubuntu VM

https://forms.gle/vuEv5bsW57Ki4ZpDA 

32 of 43 Responses as of 3/29 @ ~11pm

Will close Wednesday 4/5… 

 VM requests will be sent to SET for creation

 Survey response not required if  no VM desired
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VIRTUAL MACHINE SURVEY

 Questions from 3/26

 C Review Survey - available thru 4/5

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems –  Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads
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OBJECTIVES – 3/28

What form of abstraction does the OS provide?

▪CPU

▪ Process and/or thread

▪Memory

▪ Address space

▪→ large array of bytes

▪ All programs see the same “size” of RAM

▪Disk

▪ Files, File System(s)
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ABSTRACTIONS

Allow applications to reuse common facilities

Make different devices look the same

▪Easier to write common code to use devices

▪ Linux/Unix Block Devices

Provide higher level abstractions

More useful functionality
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WHY ABSTRACTION?

13 14

15 16

17 18
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What level of abstraction?

▪How much of the underlying hardware should be 

exposed?

▪What if too much?

▪What if too little?

What are the correct abstractions?

▪Security concerns
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ABSTRACTION CHALLENGES

 Questions from 3/26

 C Review Survey - available thru 4/5

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems –  Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads
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OBJECTIVES – 3/28

 Each running program gets its own “vir tual” representation of 

the CPU

 Many programs seem to run at once

 Linux: “top” command shows

process list

 Windows: task manager
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VIRTUALIZING THE CPU

 Simple Looping C Program
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VIRTUALIZING THE CPU - 2

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <sys/time.h>

4 #include <assert.h>

5 #include "common.h"

6

7 int

8 main(int argc, char *argv[])

9 {

10  if (argc != 2) {

11   fprintf(stderr, "usage: cpu <string>\n");

12   exit(1);

13  }

14  char *str = argv[1];

15  while (1) {

16   Spin(1); // Repeatedly checks the time and  

   returns once it has run for a second

17   printf("%s\n", str);

18  }

19  return 0;

20 }

 Runs forever, must Ctrl -C to halt…
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VIRTUALIZING THE CPU - 3

prompt> gcc -o cpu cpu.c -Wall

prompt> ./cpu "A"

A

A

A

ˆC

prompt>
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VIRTUALIZATION THE CPU - 4

prompt> ./cpu A & ; ./cpu B & ; ./cpu C & ; ./cpu D &

[1] 7353

[2] 7354

[3] 7355

[4] 7356

A

B

D

C

A

B

D

C

A

C

B

D

...

Even though we have only one processor, all four instances 
of our program seem to be running at the same time!

19 20

21 22

23 24
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 & - run a job in the background

 fg – brings a job to the foreground

 bg – sends a job to the background

 CTRL-Z to suspend a job

 CTRL-C to kill a job

 “jobs” command – l ists running jobs

 “jobs –p” command – l ists running jobs by process ID

 top –d .2  top utility shows active running jobs like 
  the Windows task manager

 top –H –d .2  display all processes & threads

 top –H –p <pid> display all  threads of a process

 htop   alternative to top, shows CPU core graphs
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MANAGING PROCESSES FROM THE CLI

 Questions from 3/26

 C Review Survey - available thru 4/5

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems –  Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads
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OBJECTIVES – 3/28

 Computer memory is treated as a large array of bytes

 Programs store all data in this large array

▪ Read memory (load)

▪ Specify an address to read data from

▪Write memory (store)

▪ Specify data to write to an address
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VIRTUALIZING MEMORY

 Program to read/write memory: (mem.c) (from ch. 2 pgs. 5-6) 
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VIRTUALIZING MEMORY - 2

1 #include <unistd.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include "common.h"

5

6 int

7 main(int argc, char *argv[])

8 {

9  int *p = malloc(sizeof(int));  // a1: allocate some  

     memory

10  assert(p != NULL);

11  printf("(%d) address of p: %08x\n",

12   getpid(), (unsigned) p); // a2: print out the  

     address of the memmory

13  *p = 0; // a3: put zero into the first slot of the memory

14  while (1) {

15   Spin(1);

16   *p = *p + 1;

17   printf("(%d) p: %d\n", getpid(), *p); // a4

18  }

19  return 0;

20 }

 Output of mem.c (example from ch. 2 pgs. 5-6)

 int value stored at vir tual address 00200000

 program increments int value pointed to by p
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VIRTUALIZING MEMORY - 3

prompt> ./mem

(2134) memory address of p: 00200000

(2134) p: 1

(2134) p: 2

(2134) p: 3

(2134) p: 4

(2134) p: 5

ˆC

 Mult iple instances of mem.c

 BOOK SHOWS:(int*)p with the same memory locat ion 00200000

 To disable ASR: ‘echo 0 | tee /proc/sys/kernel/randomize_va_space ’

 Why does modifying the value of *p in program #1 (PID 24113),  not  

inter fere with the value of *p in program #2 (PID 24114) ?

▪ The OS has “virtualized” memory, and provides a “virtual” address
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VIRTUALIZING MEMORY - 4

prompt> ./mem &; ./mem &

[1] 24113

[2] 24114

(24113) memory address of p: 00200000

(24114) memory address of p: 00200000

(24113) p: 1

(24114) p: 1

(24114) p: 2

(24113) p: 2

(24113) p: 3

(24114) p: 3

...

By default this example no 
longer works as advertised !

Ubuntu now applies address space 
randomization (ASR) by default.

ASR makes the ptr location of program
instances not identical. Having 
identical addresses is considered a 

security issue.

25 26

27 28

29 30
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Key take-aways:

 Each process (program) has its own vir tual address space

 The OS maps virtual address spaces  onto 

physical memory

 A memory reference from one process can not affect the 

address space of others.  

➢ Isolation

 Physical memory, a shared resource, is managed by the OS
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VIRTUAL MEMORY

WE WILL RETURN AT 

5:00PM
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 Questions from 3/26

 C Review Survey - available thru 4/5

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems –  Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads
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OBJECTIVES – 3/28

 DRAM: Dynamic Random Access Memory: DIMMs/SIMMs

▪ Store data while power is present 

▪When power is lost, data is lost ( i.e. volatile memory)

 Operating System helps “persist” data more permanently

▪ I/O device(s): hard disk drive (HDD), solid state drive (SSD)

▪ File system(s): “catalog” data for storage and retrieval
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WHY PERSISTENCE ?

 open(), write(), close(): OS system calls  for device I/O

 Note: man page for open(), write() requires page number:
“man 2 open”, ”man 2 write”, “man close”
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PERSISTENCE - 2

1 #include <stdio.h>

2 #include <unistd.h>

3 #include <assert.h>

4 #include <fcntl.h>

5 #include <sys/types.h>

6

7 int

8 main(int argc, char *argv[])

9 {

10  int fd = open("/tmp/file", O_WRONLY | O_CREAT               

       | O_TRUNC, S_IRWXU);

11  assert(fd > -1);

12  int rc = write(fd, "hello world\n", 13);

13  assert(rc == 13);

14 close(fd);

15  return 0;

16 }

March 28, 2024

 To write to disk, OS must:

▪ Determine where on disk data should reside 

▪ Instrument system calls to perform I/O:

▪ Read/write to file system (inode record)

▪ Read/write data to file

 OS provides fault tolerance for system crashes via 
special filesystem features:

▪ Journaling: Record disk operations in a journal for replay

▪ Copy-on-write: replicate shared data across multiple disks
- see ZFS filesystem

▪ Carefully order writes on disk (especially spindle drives)
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PERSISTENCE - 3

31 32

33 34

35 36



TCSS 422 A – Spring 2024
School of Engineering and Technology

3/28/2024

L2.7Slides by Wes J. Lloyd

 Questions from 3/26

 C Review Survey - available thru 4/5

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems –  Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads
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OBJECTIVES – 3/28
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CONCURRENCY

Linux htop (Ubuntu)
Windows 10 Task Manager

 Linux: 179 processes, 1089 threads (htop)

 Windows 10: 364 processes, 6011 threads (task mgr)

 OSes appear to run many programs at once, juggling 

them

 Modern multi-threaded programs feature concurrent 

threads and processes

 What is  a key dif ference between a process and a thread?
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CONCURRENCY

pthread.c

Listing continues …
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CONCURRENCY - 2

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include "common.h"

4

5 volatile int counter = 0;

6 int loops;

7

8 void *worker(void *arg) {

9  int i;

10  for (i = 0; i < loops; i++) {

11   counter++;

12  }

13  return NULL;

14 }

15 ...

pthread.c

Listing continues …
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CONCURRENCY - 2

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include "common.h"

4

5 volatile int counter = 0;

6 int loops;

7

8 void *worker(void *arg) {

9  int i;

10  for (i = 0; i < loops; i++) {

11   counter++;

12  }

13  return NULL;

14 }

15 ...

Not the same as Java volatile:
Provides a compiler hint than an object may change value 
unexpectedly (in this case by a separate thread) so aggressive
optimization must be avoided.

 Program creates two threads

 Check documentation: “man pthread_create”

 worker() method counts from 0 to argv[1] ( loop)
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CONCURRENCY - 3

16 int

17 main(int argc, char *argv[])

18 {

19  if (argc != 2) {

20   fprintf(stderr, "usage: threads <value>\n");

21   exit(1);

22  }

23  loops = atoi(argv[1]);

24  pthread_t p1, p2;

25  printf("Initial value : %d\n", counter);

26

27  Pthread_create(&p1, NULL, worker, NULL);

28  Pthread_create(&p2, NULL, worker, NULL);

29  Pthread_join(p1, NULL);

30  Pthread_join(p2, NULL);

31  printf("Final value : %d\n", counter);

32  return 0;

33 }

pthread.c

37 38

39 40

41 42
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Linux
“man”
page

example
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CONCURRENCY - 4

 Command line parameter argv[1] provides loop length

 Defines number of times the shared counter is incremented

 Loops: 1000

 Loops 100000

prompt> gcc -o pthread pthread.c -Wall -pthread

prompt> ./pthread 1000

Initial value : 0

Final value : 2000

prompt> ./pthread 100000

Initial value : 0

Final value : 143012 // huh??

prompt> ./pthread 100000

Initial value : 0

Final value : 137298 // what ???

 When loop value is large why do we not achieve 200,000 ?

 C code is translated to (3) assembly code operations

1. Load counter variable into register

2. Increment it

3. Store the register value back in memory

 These instructions happen concurrently and VERY FAST

 (P1 || P2) write incremented register values back to memory,

While (P1 || P2) read same memory

 Memory access here is unsynchronized (non-atomic)

 Some of the increments are lost
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CONCURRENCY - 5
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 To perform parallel work, a single process may:

 A. Launch multiple threads to execute code in parallel while 

sharing global data in memory

 B. Launch multiple processes to execute code in parallel 

without sharing global data in memory

 C. Both A and B

 D. None of the above
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PARALLEL PROGRAMMING

 Questions from 3/26

 C Review Survey - available thru 4/5

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems –  Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads
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OBJECTIVES – 3/28
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 ABSTRACTING THE HARDWARE

▪ Makes programming code easier to write

▪ Automate sharing resources – save programmer burden 

 PROVIDE HIGH PERFORMANCE

▪ Minimize overhead from OS abstraction 
(Virtualization of CPU, RAM, I/O)

▪ Share resources fairly

▪ Attempt to tradeoff performance vs. fairness → consider 
priority

 PROVIDE ISOLATION

▪ User programs can’t interfere with each other’s virtual 
machines, the underlying OS, or the sharing of resources
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SUMMARY: 

OPERATING SYSTEM DESIGN GOALS

 RELIABILITY

▪ OS must not crash, 24/7 Up-time

▪ Poor user programs must not bring down the system: 

Blue Screen

 Other Issues:

▪ Energy-efficiency

▪ Security (of data)

▪ Cloud: Virtual Machines
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SUMMARY:

OPERATING SYSTEM DESIGN GOALS - 2

 Questions from 3/26

 C Review Survey - available thru 4/5

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems –  Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4:  Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington  -  Tacoma

L2.51

OBJECTIVES – 3/28

CHAPTER 4:

PROCESSES
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 How should the CPU be shared?

 Time Sharing: 
Run one process, pause it, run another

 The act of swapping process A out of the CPU to run 
process B is called a:

▪ CONTEXT SWITCH

 How do we SWAP processes in and out of the CPU 
efficiently?

▪ Goal is to minimize overhead of the swap

 OVERHEAD is time spent performing OS management 
activities that don’t help accomplish real work
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VIRTUALIZING THE CPU

 Process comprises of:

▪Memory 

▪ Instructions (“the code”)

▪ Data (heap)

▪ Registers

▪ PC: Program counter

▪ Stack pointer
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PROCESS

A process is a running program.
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 Modern OSes provide a Process API for process support

 Create

▪ Create a new process

 Destroy

▪ Terminate a process (ctrl -c)

 Wait

▪ Wait for a process to complete/stop

 Miscellaneous Control

▪ Suspend process (ctrl-z)

▪ Resume process (fg, bg)

 Status

▪ Obtain process statistics: (top)
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PROCESS API

1. Load program code (and static data) into memory

▪ Program executable code (binary): loaded from disk

▪ Static data: also loaded/created in address space

▪ Eager loading: Load entire program before running

▪ Lazy loading: Only load what is immediately needed

▪ Modern OSes: Supports paging & swapping

2. Run-time stack creation

▪ Stack: local variables, function params, return address(es)
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PROCESS API: CREATE

3. Create program’s heap memory

▪ For dynamically allocated data

4. Other initialization

▪ I/O Setup

▪ Each process has three open file descriptors:

Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main()

▪ OS transfers CPU control to the new process
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PROCESS API: CREATE
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code
static data

heap

stack

Process

Memory

code
static data

heap

Program

Loading:
Reads program from 
disk into the address 

space of process

CPU

 Questions from 3/26

 C Review Survey - available thru 4/5

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems –  Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington  -  Tacoma

L2.59

OBJECTIVES – 3/28

 RUNNING

▪ Currently executing instructions

 READY

▪ Process is ready to run, but has been preempted

▪ CPU is presently allocated for other tasks

 BLOCKED

▪ Process is not ready to run.  It is waiting for another event 

to complete:

▪ Process has already been initialized and run for awhile

▪ Is now waiting on I/O from disk(s) or other devices
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PROCESS STATES
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PROCESS STATE TRANSITIONS

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate

 Can inspect the number of CONTEXT SWITCHES made by a 
process

 Let’s run mem.c (from chapter 2)

 cat /proc/{process-id}/status

 proc “status” is a vir tual file generated by Linux

 Provides a report with process related meta -data

 What appears to happen to the number of  context switches 
the longer a process runs? ( mem.c)
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OBSERVING PROCESS META-DATA

 How long does a context switch take?

 10,000 to 50,000 ns (.01 to .05 ms)

 2,000 context switches is near 100ms
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CONTEXT SWITCH

 How long does a context switch take?

 10,000 to 50,000 ns (.01 to .05 ms)

 2,000 context switches is near 100ms

 Mileage can vary depending on system conditions, etc.

 See blog: 

https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-

make-context.html 
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CONTEXT SWITCH
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 When a process is in this state, it is advantageous for the 

Operating System to perform a CONTEXT SWITCH to 

perform other work:

 (a) RUNNING

 (b) READY

 (c) BLOCKED

 (d) All of the above

 (e) None of the above
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QUESTION: WHEN TO CONTEXT SWITCH

61 62

63 64

65 66

https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html


TCSS 422 A – Spring 2024
School of Engineering and Technology

3/28/2024

L2.12Slides by Wes J. Lloyd

 Questions from 3/26

 C Review Survey - available thru 4/5

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems –  Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads
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OBJECTIVES – 3/28

 OS provides data structures to track process information

▪ Process list

▪ Process Data

▪ State of process: Ready, Blocked, Running

▪ Register context

 PCB (Process Control Block)

▪ A C-structure that contains information about each 

process
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PROCESS DATA STRUCTURES

 xv6: pedagogical implementation of Linux

 Simplified structures shown in book
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XV6 KERNEL DATA STRUCTURES

// the registers xv6 will save and restore

// to stop and subsequently restart a process

struct context {

    int eip; // Index pointer register

   int esp; // Stack pointer register

    int ebx; // Called the base register

    int ecx; // Called the counter register

    int edx; // Called the data register

    int esi; // Source index register

   int edi; // Destination index register

    int ebp; // Stack base pointer register

};

// the different states a process can be in

enum proc_state { UNUSED, EMBRYO, SLEEPING,

                  RUNNABLE, RUNNING, ZOMBIE };
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XV6 KERNEL DATA STRUCTURES - 2

// the information xv6 tracks about each process

// including its register context and state

struct proc {

   char *mem;  // Start of process memory

    uint sz;   // Size of process memory

   char *kstack;  // Bottom of kernel stack

    // for this process

    enum proc_state state; // Process state

    int pid;   // Process ID

    struct proc *parent; // Parent process

    void *chan;  // If non-zero, sleeping on chan

    int killed;  // If non-zero, have been killed

    struct file *ofile[NOFILE]; // Open files

    struct inode *cwd; // Current directory

   struct context context; // Switch here to run process

   struct trapframe *tf; // Trap frame for the

       // current interrupt

};

struct task_struct, equivalent to struct proc

▪ The Linux process data structure

▪ Kernel data type (i.e. record) that describes 

individual Linux processes

▪ Structure is VERY LARGE: 10,000+ bytes

▪ Defined in:

/usr/src/linux-headers-{kernel version}/include/linux/sched.h

▪ Ubuntu 20.04 w/ kernel version 5.11, LOC: 657 – 1394

▪ Ubuntu 20.04 w/ kernel version 4.4, LOC: 1391 – 1852 
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LINUX: STRUCTURES

Process Control 

Block (PCB) 

Key data regarding a 

process

STRUCT TASK_STRUCT 
PROCESS CONTROL BLOCK
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 Key elements (e.g. PCB) in Linux are captured in 

struct task_struct:  (LOC from Linux kernel v 5.11)

 Process ID  

 pid_t  pid;     LOC #857

 Process State

 /* -1 unrunnable, 0 runnable, >0 stopped: */

 volatile long  state;    LOC #666

 Process t ime s l ice

how long the process will run before context switching

 Struct sched_rt_entity used in task_struct contains timeslice:

▪ struct sched_rt_entity  rt;  LOC #710

▪ unsigned int  time_slice;   LOC #503
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STRUCT TASK_STRUCT

 Address space of  the process:

 “mm” is short for “memory map”

 struct mm_struct  *mm;   LOC #779

 Parent process, that launched this one

 struct task_struct __rcu  *parent; LOC #874

 Child processes (as a list)

 struct list_head  children;  LOC #879

 Open f i les

 struct files_struct  *files;  LOC #981
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STRUCT TASK_STRUCT - 2

 List of Linux data structures:

 http://www.tldp.org/LDP/tlk/ds/ds.html

 Description of process data structures:

https://learning.oreilly.com/library/view/linux-kernel-

development/9780768696974/cover.html  

 3rd edition is online (dated from 2010): 

 See chapter 3 on Process Management

 Safari online – accessible using UW ID SSO login

 Linux Kernel Development, 3 rd edition

 Robert Love 

 Addison-Wesley 
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LINUX STRUCTURES - 2 QUESTIONS
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