
TCSS 422 A – Spring 2024
School of Engineering and Technology

3/28/2024

L2.1Slides by Wes J. Lloyd

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

Operating Systems –
Three Easy Pieces & Processes

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 3/26

 C Review Survey - available thru 4/5

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.2

OBJECTIVES – 3/28

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 9p, cutoff 11:59p

 Thursday surveys: due ~ Mon @ 9p, cutoff 11:59p

March 28, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.3

ONLINE DAILY FEEDBACK SURVEY

March 28, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L2.4

 Please classify your perspective on material covered in today’s

class (36 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 5.44 (Spring 2024, 6.18)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.22 (Spring 2024, 5.91)

March 28, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.5

MATERIAL / PACE

 I was curious if we will be learning solely about Linux, or other

operating systems l ike BSD, Unix, Solaris, Windows, and

MacOS.

 This course focuses on the concepts of operating systems, and

in particular the vir tualization of the CPU, memory, and disks

 We primarily use Linux (Ubuntu), but concepts apply to any OS

 We do not focus on comparing features of various OSes

(e.g. BSD, Unix, Solaris, etc.) per se…

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.6

FEEDBACK FROM 3/26

1 2

3 4

5 6

TCSS 422 A – Spring 2024
School of Engineering and Technology

3/28/2024

L2.2Slides by Wes J. Lloyd

 Is there a dif ference between multithreading and parallel

processing?

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.7

FEEDBACK - 2

 Visualizing memory, and separating vir tual vs physical
memory is st i ll a l i t tle abstract.

 We delve into memory later on in the course.

 Linux manages all memory in 4 KB pages

 There are four primary types:

 Code pages, heap pages (for dynamic memory), stack pages
(for data you pass in/out of functions), and data pages (for
global data)

 Code consists of your program code, and shared library code

▪ The idea with shared libraries is the OS saves spaces by only loading
them once, and sharing them with multiple programs

 You can visualize the memory of a process using the
“proc” f i lesystem (under /proc), which is a vir tual directory of
dynamic generated files to inspect the system and processes

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.8

FEEDBACK - 3

 Textbook coupon 10% off “BCORPBOOKS10” until Fr iday at

11:59pm

 Hardcover edition (version 1 .1) f rom lulu.com:

 https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-

arpaci-dusseau/operating-systems-three-easy-pieces-

hardcover-version-110/hardcover/product -

15gjeeky.html?q=three+easy+pieces+softcover&page=1&page

Size=4

 With coupon textbook is only $35.77 + tax & shipping

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.9

RESOURCES

 Questions from 3/26

 C Review Survey - available thru 4/5

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.10

OBJECTIVES – 3/28

C REVIEW SURVEY -

AVAILABLE THRU 4/5

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L2.11

 Questions from 3/26

 C Review Survey - available thru 4/5

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.12

OBJECTIVES – 3/28

7 8

9 10

11 12

https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+softcover&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+softcover&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+softcover&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+softcover&page=1&pageSize=4
https://www.lulu.com/shop/andrea-arpaci-dusseau-and-remzi-arpaci-dusseau/operating-systems-three-easy-pieces-hardcover-version-110/hardcover/product-15gjeeky.html?q=three+easy+pieces+softcover&page=1&pageSize=4

TCSS 422 A – Spring 2024
School of Engineering and Technology

3/28/2024

L2.3Slides by Wes J. Lloyd

 Please complete the Student Background Survey

 https://forms.gle/L1VWMoYrNueKe88dA

 37 of 43 Responses as of 3/27 @ ~11pm

 Current Standings:

▪Best Office Hours times so far:

▪ Rank #1: Tuesday after class (> 5:40p) – 53.3%

▪ Rank #2: Thursday after class (> 5:40p) – 50.0%

▪ Rank #3: Monday morning (before noon) – 46.7%

▪Best lecture format:

▪ Rank #1: Hybrid synchronous w/ recordings (88.6%)

▪ Rank #2: In-person w/ recordings (40%)

Will consider survey results through Mon Apr 1

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.13

STUDENT BACKGROUND SURVEY

 Questions from 3/26

 C Review Survey - available thru 4/5

 Student Background Survey

 Vir tual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.14

OBJECTIVES – 3/28

 Please complete the Virtual Machine Survey to request

a “School of Engineering and Technology” remote

hosted Ubuntu VM

https://forms.gle/vuEv5bsW57Ki4ZpDA

32 of 43 Responses as of 3/29 @ ~11pm

Will close Wednesday 4/5…

 VM requests will be sent to SET for creation

 Survey response not required if no VM desired

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.15

VIRTUAL MACHINE SURVEY

 Questions from 3/26

 C Review Survey - available thru 4/5

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.16

OBJECTIVES – 3/28

What form of abstraction does the OS provide?

▪CPU

▪ Process and/or thread

▪Memory

▪ Address space

▪→ large array of bytes

▪ All programs see the same “size” of RAM

▪Disk

▪ Files, File System(s)

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.17

ABSTRACTIONS

Allow applications to reuse common facilities

Make different devices look the same

▪Easier to write common code to use devices

▪ Linux/Unix Block Devices

Provide higher level abstractions

More useful functionality

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.18

WHY ABSTRACTION?

13 14

15 16

17 18

https://forms.gle/L1VWMoYrNueKe88dA
https://forms.gle/vuEv5bsW57Ki4ZpDA

TCSS 422 A – Spring 2024
School of Engineering and Technology

3/28/2024

L2.4Slides by Wes J. Lloyd

What level of abstraction?

▪How much of the underlying hardware should be

exposed?

▪What if too much?

▪What if too little?

What are the correct abstractions?

▪Security concerns

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.19

ABSTRACTION CHALLENGES

 Questions from 3/26

 C Review Survey - available thru 4/5

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.20

OBJECTIVES – 3/28

 Each running program gets its own “vir tual” representation of

the CPU

 Many programs seem to run at once

 Linux: “top” command shows

process list

 Windows: task manager

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.21

VIRTUALIZING THE CPU

 Simple Looping C Program

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.22

VIRTUALIZING THE CPU - 2

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <sys/time.h>

4 #include <assert.h>

5 #include "common.h"

6

7 int

8 main(int argc, char *argv[])

9 {

10 if (argc != 2) {

11 fprintf(stderr, "usage: cpu <string>\n");

12 exit(1);

13 }

14 char *str = argv[1];

15 while (1) {

16 Spin(1); // Repeatedly checks the time and

 returns once it has run for a second

17 printf("%s\n", str);

18 }

19 return 0;

20 }

 Runs forever, must Ctrl -C to halt…

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.23

VIRTUALIZING THE CPU - 3

prompt> gcc -o cpu cpu.c -Wall

prompt> ./cpu "A"

A

A

A

ˆC

prompt>

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.24

VIRTUALIZATION THE CPU - 4

prompt> ./cpu A & ; ./cpu B & ; ./cpu C & ; ./cpu D &

[1] 7353

[2] 7354

[3] 7355

[4] 7356

A

B

D

C

A

B

D

C

A

C

B

D

...

Even though we have only one processor, all four instances
of our program seem to be running at the same time!

19 20

21 22

23 24

TCSS 422 A – Spring 2024
School of Engineering and Technology

3/28/2024

L2.5Slides by Wes J. Lloyd

 & - run a job in the background

 fg – brings a job to the foreground

 bg – sends a job to the background

 CTRL-Z to suspend a job

 CTRL-C to kill a job

 “jobs” command – l ists running jobs

 “jobs –p” command – l ists running jobs by process ID

 top –d .2 top utility shows active running jobs like
 the Windows task manager

 top –H –d .2 display all processes & threads

 top –H –p <pid> display all threads of a process

 htop alternative to top, shows CPU core graphs

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.25

MANAGING PROCESSES FROM THE CLI

 Questions from 3/26

 C Review Survey - available thru 4/5

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.26

OBJECTIVES – 3/28

 Computer memory is treated as a large array of bytes

 Programs store all data in this large array

▪ Read memory (load)

▪ Specify an address to read data from

▪Write memory (store)

▪ Specify data to write to an address

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.27

VIRTUALIZING MEMORY

 Program to read/write memory: (mem.c) (from ch. 2 pgs. 5-6)

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.28

VIRTUALIZING MEMORY - 2

1 #include <unistd.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include "common.h"

5

6 int

7 main(int argc, char *argv[])

8 {

9 int *p = malloc(sizeof(int)); // a1: allocate some

 memory

10 assert(p != NULL);

11 printf("(%d) address of p: %08x\n",

12 getpid(), (unsigned) p); // a2: print out the

 address of the memmory

13 *p = 0; // a3: put zero into the first slot of the memory

14 while (1) {

15 Spin(1);

16 *p = *p + 1;

17 printf("(%d) p: %d\n", getpid(), *p); // a4

18 }

19 return 0;

20 }

 Output of mem.c (example from ch. 2 pgs. 5-6)

 int value stored at vir tual address 00200000

 program increments int value pointed to by p

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.29

VIRTUALIZING MEMORY - 3

prompt> ./mem

(2134) memory address of p: 00200000

(2134) p: 1

(2134) p: 2

(2134) p: 3

(2134) p: 4

(2134) p: 5

ˆC

 Mult iple instances of mem.c

 BOOK SHOWS:(int*)p with the same memory locat ion 00200000

 To disable ASR: ‘echo 0 | tee /proc/sys/kernel/randomize_va_space ’

 Why does modifying the value of *p in program #1 (PID 24113), not

inter fere with the value of *p in program #2 (PID 24114) ?

▪ The OS has “virtualized” memory, and provides a “virtual” address

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.30

VIRTUALIZING MEMORY - 4

prompt> ./mem &; ./mem &

[1] 24113

[2] 24114

(24113) memory address of p: 00200000

(24114) memory address of p: 00200000

(24113) p: 1

(24114) p: 1

(24114) p: 2

(24113) p: 2

(24113) p: 3

(24114) p: 3

...

By default this example no
longer works as advertised !

Ubuntu now applies address space
randomization (ASR) by default.

ASR makes the ptr location of program
instances not identical. Having
identical addresses is considered a

security issue.

25 26

27 28

29 30

TCSS 422 A – Spring 2024
School of Engineering and Technology

3/28/2024

L2.6Slides by Wes J. Lloyd

Key take-aways:

 Each process (program) has its own vir tual address space

 The OS maps virtual address spaces onto

physical memory

 A memory reference from one process can not affect the

address space of others.

➢ Isolation

 Physical memory, a shared resource, is managed by the OS

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.31

VIRTUAL MEMORY

WE WILL RETURN AT

5:00PM

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L2.32

 Questions from 3/26

 C Review Survey - available thru 4/5

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.33

OBJECTIVES – 3/28

 DRAM: Dynamic Random Access Memory: DIMMs/SIMMs

▪ Store data while power is present

▪When power is lost, data is lost (i.e. volatile memory)

 Operating System helps “persist” data more permanently

▪ I/O device(s): hard disk drive (HDD), solid state drive (SSD)

▪ File system(s): “catalog” data for storage and retrieval

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.34

WHY PERSISTENCE ?

 open(), write(), close(): OS system calls for device I/O

 Note: man page for open(), write() requires page number:
“man 2 open”, ”man 2 write”, “man close”

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.35

PERSISTENCE - 2

1 #include <stdio.h>

2 #include <unistd.h>

3 #include <assert.h>

4 #include <fcntl.h>

5 #include <sys/types.h>

6

7 int

8 main(int argc, char *argv[])

9 {

10 int fd = open("/tmp/file", O_WRONLY | O_CREAT

 | O_TRUNC, S_IRWXU);

11 assert(fd > -1);

12 int rc = write(fd, "hello world\n", 13);

13 assert(rc == 13);

14 close(fd);

15 return 0;

16 }

March 28, 2024

 To write to disk, OS must:

▪ Determine where on disk data should reside

▪ Instrument system calls to perform I/O:

▪ Read/write to file system (inode record)

▪ Read/write data to file

 OS provides fault tolerance for system crashes via
special filesystem features:

▪ Journaling: Record disk operations in a journal for replay

▪ Copy-on-write: replicate shared data across multiple disks
- see ZFS filesystem

▪ Carefully order writes on disk (especially spindle drives)

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.36

PERSISTENCE - 3

31 32

33 34

35 36

TCSS 422 A – Spring 2024
School of Engineering and Technology

3/28/2024

L2.7Slides by Wes J. Lloyd

 Questions from 3/26

 C Review Survey - available thru 4/5

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.37

OBJECTIVES – 3/28

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.38

CONCURRENCY

Linux htop (Ubuntu)
Windows 10 Task Manager

 Linux: 179 processes, 1089 threads (htop)

 Windows 10: 364 processes, 6011 threads (task mgr)

 OSes appear to run many programs at once, juggling

them

 Modern multi-threaded programs feature concurrent

threads and processes

 What is a key dif ference between a process and a thread?

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.39

CONCURRENCY

pthread.c

Listing continues …

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.40

CONCURRENCY - 2

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include "common.h"

4

5 volatile int counter = 0;

6 int loops;

7

8 void *worker(void *arg) {

9 int i;

10 for (i = 0; i < loops; i++) {

11 counter++;

12 }

13 return NULL;

14 }

15 ...

pthread.c

Listing continues …

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.41

CONCURRENCY - 2

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include "common.h"

4

5 volatile int counter = 0;

6 int loops;

7

8 void *worker(void *arg) {

9 int i;

10 for (i = 0; i < loops; i++) {

11 counter++;

12 }

13 return NULL;

14 }

15 ...

Not the same as Java volatile:
Provides a compiler hint than an object may change value
unexpectedly (in this case by a separate thread) so aggressive
optimization must be avoided.

 Program creates two threads

 Check documentation: “man pthread_create”

 worker() method counts from 0 to argv[1] (loop)

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.42

CONCURRENCY - 3

16 int

17 main(int argc, char *argv[])

18 {

19 if (argc != 2) {

20 fprintf(stderr, "usage: threads <value>\n");

21 exit(1);

22 }

23 loops = atoi(argv[1]);

24 pthread_t p1, p2;

25 printf("Initial value : %d\n", counter);

26

27 Pthread_create(&p1, NULL, worker, NULL);

28 Pthread_create(&p2, NULL, worker, NULL);

29 Pthread_join(p1, NULL);

30 Pthread_join(p2, NULL);

31 printf("Final value : %d\n", counter);

32 return 0;

33 }

pthread.c

37 38

39 40

41 42

TCSS 422 A – Spring 2024
School of Engineering and Technology

3/28/2024

L2.8Slides by Wes J. Lloyd

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L2.43

Linux
“man”
page

example

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.44

CONCURRENCY - 4

 Command line parameter argv[1] provides loop length

 Defines number of times the shared counter is incremented

 Loops: 1000

 Loops 100000

prompt> gcc -o pthread pthread.c -Wall -pthread

prompt> ./pthread 1000

Initial value : 0

Final value : 2000

prompt> ./pthread 100000

Initial value : 0

Final value : 143012 // huh??

prompt> ./pthread 100000

Initial value : 0

Final value : 137298 // what ???

 When loop value is large why do we not achieve 200,000 ?

 C code is translated to (3) assembly code operations

1. Load counter variable into register

2. Increment it

3. Store the register value back in memory

 These instructions happen concurrently and VERY FAST

 (P1 || P2) write incremented register values back to memory,

While (P1 || P2) read same memory

 Memory access here is unsynchronized (non-atomic)

 Some of the increments are lost

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.45

CONCURRENCY - 5

March 28, 2023
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L1.46

 To perform parallel work, a single process may:

 A. Launch multiple threads to execute code in parallel while

sharing global data in memory

 B. Launch multiple processes to execute code in parallel

without sharing global data in memory

 C. Both A and B

 D. None of the above

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.47

PARALLEL PROGRAMMING

 Questions from 3/26

 C Review Survey - available thru 4/5

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.48

OBJECTIVES – 3/28

43 44

45 46

47 48

TCSS 422 A – Spring 2024
School of Engineering and Technology

3/28/2024

L2.9Slides by Wes J. Lloyd

 ABSTRACTING THE HARDWARE

▪ Makes programming code easier to write

▪ Automate sharing resources – save programmer burden

 PROVIDE HIGH PERFORMANCE

▪ Minimize overhead from OS abstraction
(Virtualization of CPU, RAM, I/O)

▪ Share resources fairly

▪ Attempt to tradeoff performance vs. fairness → consider
priority

 PROVIDE ISOLATION

▪ User programs can’t interfere with each other’s virtual
machines, the underlying OS, or the sharing of resources

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.49

SUMMARY:

OPERATING SYSTEM DESIGN GOALS

 RELIABILITY

▪ OS must not crash, 24/7 Up-time

▪ Poor user programs must not bring down the system:

Blue Screen

 Other Issues:

▪ Energy-efficiency

▪ Security (of data)

▪ Cloud: Virtual Machines

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.50

SUMMARY:

OPERATING SYSTEM DESIGN GOALS - 2

 Questions from 3/26

 C Review Survey - available thru 4/5

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.51

OBJECTIVES – 3/28

CHAPTER 4:

PROCESSES

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L2.52

 How should the CPU be shared?

 Time Sharing:
Run one process, pause it, run another

 The act of swapping process A out of the CPU to run
process B is called a:

▪ CONTEXT SWITCH

 How do we SWAP processes in and out of the CPU
efficiently?

▪ Goal is to minimize overhead of the swap

 OVERHEAD is time spent performing OS management
activities that don’t help accomplish real work

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.53

VIRTUALIZING THE CPU

 Process comprises of:

▪Memory

▪ Instructions (“the code”)

▪ Data (heap)

▪ Registers

▪ PC: Program counter

▪ Stack pointer

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.54

PROCESS

A process is a running program.

49 50

51 52

53 54

TCSS 422 A – Spring 2024
School of Engineering and Technology

3/28/2024

L2.10Slides by Wes J. Lloyd

 Modern OSes provide a Process API for process support

 Create

▪ Create a new process

 Destroy

▪ Terminate a process (ctrl -c)

 Wait

▪ Wait for a process to complete/stop

 Miscellaneous Control

▪ Suspend process (ctrl-z)

▪ Resume process (fg, bg)

 Status

▪ Obtain process statistics: (top)

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.55

PROCESS API

1. Load program code (and static data) into memory

▪ Program executable code (binary): loaded from disk

▪ Static data: also loaded/created in address space

▪ Eager loading: Load entire program before running

▪ Lazy loading: Only load what is immediately needed

▪ Modern OSes: Supports paging & swapping

2. Run-time stack creation

▪ Stack: local variables, function params, return address(es)

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.56

PROCESS API: CREATE

3. Create program’s heap memory

▪ For dynamically allocated data

4. Other initialization

▪ I/O Setup

▪ Each process has three open file descriptors:

Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main()

▪ OS transfers CPU control to the new process

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.57

PROCESS API: CREATE

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L2.58

code
static data

heap

stack

Process

Memory

code
static data

heap

Program

Loading:
Reads program from
disk into the address

space of process

CPU

 Questions from 3/26

 C Review Survey - available thru 4/5

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.59

OBJECTIVES – 3/28

 RUNNING

▪ Currently executing instructions

 READY

▪ Process is ready to run, but has been preempted

▪ CPU is presently allocated for other tasks

 BLOCKED

▪ Process is not ready to run. It is waiting for another event

to complete:

▪ Process has already been initialized and run for awhile

▪ Is now waiting on I/O from disk(s) or other devices

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.60

PROCESS STATES

55 56

57 58

59 60

TCSS 422 A – Spring 2024
School of Engineering and Technology

3/28/2024

L2.11Slides by Wes J. Lloyd

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.61

PROCESS STATE TRANSITIONS

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate

 Can inspect the number of CONTEXT SWITCHES made by a
process

 Let’s run mem.c (from chapter 2)

 cat /proc/{process-id}/status

 proc “status” is a vir tual file generated by Linux

 Provides a report with process related meta -data

 What appears to happen to the number of context switches
the longer a process runs? (mem.c)

April 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.62

OBSERVING PROCESS META-DATA

 How long does a context switch take?

 10,000 to 50,000 ns (.01 to .05 ms)

 2,000 context switches is near 100ms

April 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.63

CONTEXT SWITCH

 How long does a context switch take?

 10,000 to 50,000 ns (.01 to .05 ms)

 2,000 context switches is near 100ms

 Mileage can vary depending on system conditions, etc.

 See blog:

https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-

make-context.html

April 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.64

CONTEXT SWITCH

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.65

 When a process is in this state, it is advantageous for the

Operating System to perform a CONTEXT SWITCH to

perform other work:

 (a) RUNNING

 (b) READY

 (c) BLOCKED

 (d) All of the above

 (e) None of the above

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.66

QUESTION: WHEN TO CONTEXT SWITCH

61 62

63 64

65 66

https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
https://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html

TCSS 422 A – Spring 2024
School of Engineering and Technology

3/28/2024

L2.12Slides by Wes J. Lloyd

 Questions from 3/26

 C Review Survey - available thru 4/5

 Student Background Survey

 Virtual Machine Survey

 Chapter 2: Operating Systems – Three Easy Pieces

▪ Concepts of virtualization/abstraction

▪ Three Easy Pieces: CPU, Memory, I/O

▪ Concurrency

▪ Operating system design goals

 Chapter 4: Processes

▪ Process states, context switches

▪ Kernel data structures for processes and threads

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.67

OBJECTIVES – 3/28

 OS provides data structures to track process information

▪ Process list

▪ Process Data

▪ State of process: Ready, Blocked, Running

▪ Register context

 PCB (Process Control Block)

▪ A C-structure that contains information about each

process

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.68

PROCESS DATA STRUCTURES

 xv6: pedagogical implementation of Linux

 Simplified structures shown in book

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.69

XV6 KERNEL DATA STRUCTURES

// the registers xv6 will save and restore

// to stop and subsequently restart a process

struct context {

 int eip; // Index pointer register

 int esp; // Stack pointer register

 int ebx; // Called the base register

 int ecx; // Called the counter register

 int edx; // Called the data register

 int esi; // Source index register

 int edi; // Destination index register

 int ebp; // Stack base pointer register

};

// the different states a process can be in

enum proc_state { UNUSED, EMBRYO, SLEEPING,

 RUNNABLE, RUNNING, ZOMBIE };

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.70

XV6 KERNEL DATA STRUCTURES - 2

// the information xv6 tracks about each process

// including its register context and state

struct proc {

 char *mem; // Start of process memory

 uint sz; // Size of process memory

 char *kstack; // Bottom of kernel stack

 // for this process

 enum proc_state state; // Process state

 int pid; // Process ID

 struct proc *parent; // Parent process

 void *chan; // If non-zero, sleeping on chan

 int killed; // If non-zero, have been killed

 struct file *ofile[NOFILE]; // Open files

 struct inode *cwd; // Current directory

 struct context context; // Switch here to run process

 struct trapframe *tf; // Trap frame for the

 // current interrupt

};

struct task_struct, equivalent to struct proc

▪ The Linux process data structure

▪ Kernel data type (i.e. record) that describes

individual Linux processes

▪ Structure is VERY LARGE: 10,000+ bytes

▪ Defined in:

/usr/src/linux-headers-{kernel version}/include/linux/sched.h

▪ Ubuntu 20.04 w/ kernel version 5.11, LOC: 657 – 1394

▪ Ubuntu 20.04 w/ kernel version 4.4, LOC: 1391 – 1852

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.71

LINUX: STRUCTURES

Process Control

Block (PCB)

Key data regarding a

process

STRUCT TASK_STRUCT
PROCESS CONTROL BLOCK

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.72

67 68

69 70

71 72

TCSS 422 A – Spring 2024
School of Engineering and Technology

3/28/2024

L2.13Slides by Wes J. Lloyd

 Key elements (e.g. PCB) in Linux are captured in

struct task_struct: (LOC from Linux kernel v 5.11)

 Process ID

 pid_t pid; LOC #857

 Process State

 /* -1 unrunnable, 0 runnable, >0 stopped: */

 volatile long state; LOC #666

 Process t ime s l ice

how long the process will run before context switching

 Struct sched_rt_entity used in task_struct contains timeslice:

▪ struct sched_rt_entity rt; LOC #710

▪ unsigned int time_slice; LOC #503

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.73

STRUCT TASK_STRUCT

 Address space of the process:

 “mm” is short for “memory map”

 struct mm_struct *mm; LOC #779

 Parent process, that launched this one

 struct task_struct __rcu *parent; LOC #874

 Child processes (as a list)

 struct list_head children; LOC #879

 Open f i les

 struct files_struct *files; LOC #981

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.74

STRUCT TASK_STRUCT - 2

 List of Linux data structures:

 http://www.tldp.org/LDP/tlk/ds/ds.html

 Description of process data structures:

https://learning.oreilly.com/library/view/linux-kernel-

development/9780768696974/cover.html

 3rd edition is online (dated from 2010):

 See chapter 3 on Process Management

 Safari online – accessible using UW ID SSO login

 Linux Kernel Development, 3 rd edition

 Robert Love

 Addison-Wesley

March 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L2.75

LINUX STRUCTURES - 2 QUESTIONS

73 74

75 76

http://www.tldp.org/LDP/tlk/ds/ds.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html
https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/cover.html

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 3/28
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 3/26
	Slide 7: Feedback - 2
	Slide 8: Feedback - 3
	Slide 9: Resources
	Slide 10: OBJECTIVES – 3/28
	Slide 11: C Review Survey - available thru 4/5
	Slide 12: OBJECTIVES – 3/28
	Slide 13: student Background survey
	Slide 14: OBJECTIVES – 3/28
	Slide 15: Virtual machine survey
	Slide 16: OBJECTIVES – 3/28
	Slide 17: abstractions
	Slide 18: Why abstraction?
	Slide 19: Abstraction challenges
	Slide 20: OBJECTIVES – 3/28
	Slide 21: Virtualizing the CPU
	Slide 22: Virtualizing the CPU - 2
	Slide 23: Virtualizing the cpu - 3
	Slide 24: Virtualization the CPU - 4
	Slide 25: Managing processes from the cli
	Slide 26: OBJECTIVES – 3/28
	Slide 27: Virtualizing memory
	Slide 28: Virtualizing memory - 2
	Slide 29: Virtualizing memory - 3
	Slide 30: Virtualizing memory - 4
	Slide 31: Virtual Memory
	Slide 32: We will return at 5:00pm
	Slide 33: OBJECTIVES – 3/28
	Slide 34: Why persistence ?
	Slide 35: Persistence - 2
	Slide 36: Persistence - 3
	Slide 37: OBJECTIVES – 3/28
	Slide 38: concurrency
	Slide 39: concurrency
	Slide 40: CONCURRENCY - 2
	Slide 41: CONCURRENCY - 2
	Slide 42: CONCURRENCY - 3
	Slide 43
	Slide 44: Concurrency - 4
	Slide 45: Concurrency - 5
	Slide 46
	Slide 47: Parallel programming
	Slide 48: OBJECTIVES – 3/28
	Slide 49: Summary: operating system design goals
	Slide 50: Summary: operating system design goals - 2
	Slide 51: OBJECTIVES – 3/28
	Slide 52: Chapter 4: processes
	Slide 53: Virtualizing the cpu
	Slide 54: Process
	Slide 55: Process API
	Slide 56: Process api: create
	Slide 57: Process api: create
	Slide 58
	Slide 59: OBJECTIVES – 3/28
	Slide 60: Process states
	Slide 61: Process state transitions
	Slide 62: Observing process meta-data
	Slide 63: Context switch
	Slide 64: Context switch
	Slide 65
	Slide 66: Question: WHEN TO CONTEXT SWITCH
	Slide 67: OBJECTIVES – 3/28
	Slide 68: Process data structures
	Slide 69: Xv6 kernel data structures
	Slide 70: Xv6 kernel data structures - 2
	Slide 71: Linux: structures
	Slide 72: Struct Task_struct process control block
	Slide 73: Struct Task_struct
	Slide 74: Struct task_struct - 2
	Slide 75: Linux structures - 2
	Slide 76: Questions

