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TCSS 422: OPERATING SYSTEMS

 Questions from 5/23

 Assignment 2 – May 31

 Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

 Memory Segmentation Activity + answers (available in Canvas)

 Quiz 4 – Page Tables - Due June 6 @ 11:59am

 Final exam – June 6 @ 3:40pm

 Tutorial 3 - File Systems (Optional, Extra Credit)

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

 Ch. 36 I/O Devices, Ch. 37 Hard Disk Drives
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OBJECTIVES – 5/28

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class (26 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average –  6.35  (  -  previous 5.90) 

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average –  5.31 (  -  previous 5.14)
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MATERIAL / PACE

 Which method of  memory segmentation is  best for an online 

multiplayer game?

 Starting with early Intel 32-bit processors ( i386) paging 

support was added to CPUs (~1986), and segmentation largely 

was replaced with paging throughout operating systems

 Pure segmentation based approaches were used to manage 

memory on earlier systems:

▪ Intel 16-bit i286

▪ Mainframes
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FEEDBACK FROM 5/23
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 Questions from 5/23

 Assignment 2 –  May 31

 Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

 Memory Segmentation Activity + answers (available in Canvas)

 Quiz 4 – Page Tables - Due June 6 @ 11:59am

 Final exam – June 6 @ 3:40pm

 Tutorial 3 - File Systems (Optional, Extra Credit)

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies
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OBJECTIVES – 5/28

 Questions from 5/23

 Assignment 2 –  May 31

 Assignment 3:  (Tutorial) Introduction to L inux Kernel Modules

 Memory Segmentation Activity + answers (available in Canvas)

 Quiz 4 – Page Tables - Due June 6 @ 11:59am

 Final exam – June 6 @ 3:40pm

 Tutorial 3 - File Systems (Optional, Extra Credit)

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

 Ch. 36 I/O Devices, Ch. 37 Hard Disk Drives
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OBJECTIVES – 5/28

 Assignment 3 provides an introduction to  kernel 

programming by demonstrating how to create a

Linux Kernel Module

 Kernel modules are commonly used to write device 

drivers and can access protected operating system data 

structures 

▪ For example: Linux task_struct process data structure

 Assignment 3 Survey - select:

▪ Assignment category  (40%)

▪ Quizzes / Activities / Tutorials category (15%)

▪ Lowest two grades in this category are dropped
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ASSIGNMENT 3:

INTRODUCTION TO LINUX KERNEL MODULES

 Questions from 5/23

 Assignment 2 – May 31

 Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

 Memory Segmentation Activity + answers (available in Canvas)

 Quiz 4 – Page Tables - Due June 6 @ 11:59am

 Final exam – June 6 @ 3:40pm

 Tutorial 3 - File Systems (Optional, Extra Credit)

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

 Ch. 36 I/O Devices, Ch. 37 Hard Disk Drives
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OBJECTIVES – 5/28

 Questions from 5/23

 Assignment 2 – May 31

 Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

 Memory Segmentation Activity + answers (available in Canvas)

 Quiz 4 – Page Tables - Due June 6 @ 11:59am

 Final exam – June 6 @ 3:40pm

 Tutorial 3 - File Systems (Optional,  Extra Credit)

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

 Ch. 36 I/O Devices, Ch. 37 Hard Disk Drives
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OBJECTIVES – 5/28

 Questions from 5/23

 Assignment 2 – May 31

 Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

 Memory Segmentation Activity + answers (available in Canvas)

 Quiz 4 – Page Tables - Due June 6 @ 11:59am

 Final exam – June 6 @ 3:40pm

 Tutorial 3 - File Systems (Optional,  Extra Credit)

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

 Ch. 36 I/O Devices, Ch. 37 Hard Disk Drives
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OBJECTIVES – 5/28
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 Thursday June 6 from 3:40 to 5:40 pm

▪ Final (100 points)

▪ SHORT: similar number of questions as the midterm

▪ 2-hours 

▪ Focus on new content - since the midterm (~70% new, 30% before)

 Final Exam Review - 

▪ Complete Memory Segmentation Activity

▪ Complete Quiz 4

▪ Practice Final Exam Questions – 2nd hour of May 31st class session

▪ Individual work 

▪ 2 pages of notes (any sized paper), double sided

▪ Basic calculators allowed

▪ NO smartphones, laptop, book, Internet, group work
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FINAL EXAM – THURSDAY JUNE 6 @ 

3:40PMTH 

 Questions from 5/23

 Assignment 2 – May 31

 Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

 Memory Segmentation Activity + answers (available in Canvas)

 Quiz 4 – Page Tables - Due June 6 @ 11:59am

 Final exam – June 6 @ 3:40pm

 Tutorial 3 -  Fi le Systems (Optional, Extra Credit)

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

 Ch. 36 I/O Devices, Ch. 37 Hard Disk Drives
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OBJECTIVES – 5/28

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

▪ Refer to Slides starting at L17.66
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FROM LECTURE 17

 Questions from 5/23

 Assignment 2 – May 31

 Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

 Memory Segmentation Activity + answers (available in Canvas)

 Quiz 4 – Page Tables - Due June 6 @ 11:59am

 Final exam – June 6 @ 3:40pm

 Tutorial 3 - File Systems (Optional, Extra Credit)

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

 Ch. 36 I/O Devices, Ch. 37 Hard Disk Drives
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OBJECTIVES – 5/28

CHAPTER 21/22:

BEYOND PHYSICAL 

MEMORY
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 Disks (HDD, SSD) provide another level of storage in the 

memory hierarchy
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MEMORY HIERARCHY
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 Provide the illusion of an address space larger than 

physical RAM

 For a single process

▪ Convenience

▪ Ease of use 

 For multiple processes

▪ Large virtual memory space supports running 

many concurrent processes. . .

May 28, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L18.19

MOTIVATION FOR 

EXPANDING THE ADDRESS SPACE
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LATENCY TIMES

Design considerations:
▪ SSDs 4x the time of DRAM

▪ HDDs 80x the time of DRAM

 Latency numbers every programmer should know
 From: https://g ist .g ithub.com/jboner/2841832#fi le - la tency - txt

 Questions from 5/23

 Assignment 2 – May 31

 Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

 Memory Segmentation Activity + answers (available in Canvas)

 Quiz 4 – Page Tables - Due June 6 @ 11:59am

 Final exam – June 6 @ 3:40pm

 Tutorial 3 - File Systems (Optional, Extra Credit)

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

 Ch. 36 I/O Devices, Ch. 37 Hard Disk Drives
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OBJECTIVES – 5/28

 Disk space for storing memory pages

 “Swap” them in and out of memory to disk as needed

May 28, 2024
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SWAP SPACE

 The size of the swap space can be seen using the Linux free 

command: “free –h”

 With sufficient disk space, a common allocation is to create 

Swap space greater than or equal to physical RAM
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SWAP SPACE - 2

 Swap space lives on a separate logical volume in Ubuntu Linux 

that is managed separately from the root file system

 Check logical volumes with “sudo lvdisplay” command:

 See also “ lvm lvs” command
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SWAP SPACE - 3
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 Memory pages are:

▪ Stored in memory

▪ Swapped to disk

 Present bit

▪ In the page table entry (PTE) indicates if page is present

 Page fault

▪Memory page is accessed, but has been swapped to disk

May 28, 2024
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PAGE LOCATION

 OS steps in to handle the page fault

 Loading page from disk requires a free memory page

 Page-Fault Algorithm
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PAGE FAULT

 Page daemon

▪ Background threads which monitors swapped pages

 Low watermark (LW)

▪ Threshold for when to swap pages to disk

▪ Daemon checks: free pages < LW

▪ Begin swapping to disk until reaching the highwater mark

 High watermark (HW)

▪ Target threshold of free memory pages

▪ Daemon free until: free pages >= HW
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PAGE REPLACEMENTS

 Questions from 5/23

 Assignment 2 – May 31

 Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

 Memory Segmentation Activity + answers (available in Canvas)

 Quiz 4 – Page Tables - Due June 6 @ 11:59am

 Final exam – June 6 @ 3:40pm

 Tutorial 3 - File Systems (Optional, Extra Credit)

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

 Ch. 36 I/O Devices, Ch. 37 Hard Disk Drives
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OBJECTIVES – 5/28

REPLACEMENT 

POLICIES

May 28, 2024
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L18.2
9

 Replacement policies apply to “any” cache

 Goal is to minimize the number of misses

 Average memory access t ime (AMAT) can be estimated:

 Consider TM = 100 ns, TD = 10ms

 Consider Phit = .9 (90%), Pmiss = .1

 Consider Phit = .999 (99.9%), Pmiss = .001
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CACHE MANAGEMENT

𝐴𝑀𝐴𝑇 = 𝑃𝐻𝑖𝑡 ∗ 𝑇𝑀 + (𝑃𝑀𝑖𝑠𝑠 ∗ 𝑇𝐷)

Argument Meaning

𝑇𝑀 The cost of accessing memory (time)

𝑇𝐷 The cost of accessing disk (time)

𝑃𝐻𝑖𝑡 The probability of finding the data item in the cache(a hit)

𝑃𝑀𝑖𝑠𝑠 The probability of not finding the data in the cache(a miss)

25 26
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 What if :

▪ We could predict the future (… with a magical oracle)

▪ All future page accesses are known

▪ Always replace the page in the cache used farthest in the future 

 Used for a comparison

 Provides a “best case” replacement policy

 Consider a 3-element empty cache with the following page 

accesses:

0  1  2  0  1  3  0  3  1  2  1

May 28, 2024
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OPTIMAL REPLACEMENT POLICY

What is the hit/miss ratio?What is the hit/miss ratio?

6 hits6 hits

 Queue based

 Always replace the oldest element at the back of cache

 Simple to implement

 Doesn’t consider importance… just arrival ordering

 Consider a 3-element empty cache with the following 

page accesses:

0  1  2  0  1  3  0  3  1  2  1

 What is the hit/miss ratio?

 How is FIFO different than LRU?
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FIFO REPLACEMENT

4 hits4 hits

LRU incorporates historyLRU incorporates history

 Pick a page at random to replace

 Simple and fast implementation

 Performance depends on luck of random choices

0  1  2  0  1  3  0  3  1  2  1
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RANDOM REPLACEMENT

 LRU: Least recently used

 Always replace page with oldest access time (front)

 Always move end of cache when element is read again

 LRU requires constant reorganization of the cache

 Considers temporal locality (when pg was last accessed )

0  1  2  0  1  3  0  3  1  2  1

 LFU: Least frequently used

 Always replace page with the fewest # of accesses (front)

 Incorporates frequency of use - must track pg accesses

 Consider frequency of page accesses

0  1  2  0  1  3  0  3  1  2  1
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HISTORY-BASED POLICIES

What is the hit/miss ratio?What is the hit/miss ratio?

6 hits6 hits

 LFU: Least frequently used

 Always replace page with the fewest # of accesses (front)

 Incorporates frequency of use - must track pg accesses

 Consider frequency of page accesses

0  1  2  0  1  3  0  3  1  2  1
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LFU

Hit/miss ratio is=6 hitsHit/miss ratio is=6 hits

What is the hit/miss ratio?What is the hit/miss ratio?

WE WILL RETURN AT 

4:55PM

May 28, 2024
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 No-Locality (Random Access) Workload

▪ Perform 10,000 random page accesses 

▪ Across set of 100 memory pages

May 28, 2024
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WORKLOAD EXAMPLES: NO-LOCALITY

When the cache is
 large enough to fit 
the entire workload, 
 it doesn’t matter 

which policy you use.

 80/20 Workload

▪ Perform 10,000 page accesses, against set of 100 pages

▪ 80% of accesses are to 20% of pages (hot pages)

▪ 20% of accesses are to 80% of pages (cold pages)

May 28, 2024
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WORKLOAD EXAMPLES: 80/20

LRU is more likely
to hold onto
hot pages

(recalls history)

 Looping sequential workload

▪ Refer to 50 pages in sequence: 0, 1, …, 49

▪ Repeat loop

May 28, 2024
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WORKLOAD EXAMPLES: SEQUENTIAL

Random performs 
better than FIFO and 

LRU for 
cache sizes < 50

Algorithms should provide
“scan resistance”

May 28, 2024
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 Implementing last recently used (LRU) requires tracking 

access time for all system memory pages

 Times can be tracked with a list

 For cache eviction, we must scan an entire list

 Consider: 4GB memory system (232),

  with 4KB pages (212)

 This requires 220 comparisons  !!!

 Simplification is needed

▪ Consider how to approximate the oldest page access

May 28, 2024
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IMPLEMENTING LRU

Harness the Page Table Entry (PTE) Use Bit

HW sets to 1 when page is used

OS sets to 0

Clock algorithm (approximate LRU)

▪Refer to pages in a circular list

▪Clock hand points to current page

▪Loops around

▪ IF USE_BIT=1 set to USE_BIT = 0

▪ IF USE_BIT=0 replace page

May 28, 2024
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IMPLEMENTING LRU - 2

 Not as efficient as LRU, but better than other 

replacement algorithms that do not consider history

May 28, 2024
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CLOCK ALGORITHM

Consider dirty pages in cache

 If DIRTY (modified) bit is FALSE

▪No cost to evict page from cache

 If DIRTY (modified) bit is TRUE

▪Cache eviction requires updating memory

▪Contents have changed

Clock algorithm should favor no cost eviction

May 28, 2024
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CLOCK ALGORITHM - 2

 On demand →  demand paging

 Prefetching

▪ Preload pages based on anticipated demand

▪ Prediction based on locality

▪ Access page P, suggest page P+1 may be used

 What other techniques might help anticipate required 
memory pages?   

▪ Prediction models, historical analysis 

▪ In general: accuracy vs. effort tradeoff

▪ High analysis techniques struggle to respond in real time

May 28, 2024
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WHEN TO LOAD PAGES

Page swaps / writes

▪Group/cluster pages together

▪Collect pending writes, perform as batch

▪Grouping disk writes helps amortize latency costs

 Thrashing

▪Occurs when system runs many memory intensive 

processes and is low in memory

▪Everything is constantly swapped to-and-from disk

May 28, 2024
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OTHER SWAPPING POLICIES
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Working sets

▪Groups of related processes

▪When thrashing: prevent one or more working 

set(s) from running

▪Temporarily reduces memory burden

▪Allows some processes to run, reduces thrashing

May 28, 2024
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OTHER SWAPPING POLICIES - 2

 Questions from 5/23

 Assignment 2 – May 31

 Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

 Memory Segmentation Activity + answers (available in Canvas)

 Quiz 4 – Page Tables - Due June 6 @ 11:59am

 Final exam – June 6 @ 3:40pm

 Tutorial 3 - File Systems (Optional,  Extra Credit)

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

 Ch. 36 I/O Devices, Ch. 37 Hard Disk Drives
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OBJECTIVES – 5/28

CHAPTER 36:

I/O DEVICES

May 25, 2023
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Chapter 36

▪ I/O: Polling vs Interrupts

▪Programmed I/O (PIO)

▪ Port-mapped I/O (PMIO)

▪Memory-mapped I/O (MMIO)

▪Direct memory Access (DMA)

May 25, 2023
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OBJECTIVES

 Modern computer systems interact with a variety of devices

May 25, 2023
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I/O DEVICES

May 25, 2023
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COMPUTER SYSTEM ARCHITECTURE

VERY FAST: CPU is attached to main memory via a Memory bus.

FAST: High speed devices (e.g. video) are connected via a General I/O bus. 

SLOWER:  Disks are connected via a Peripheral I/O bus.

49 50
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 Buses

▪ Buses closer to the CPU are faster

▪ Can support fewer devices

▪ Further buses are slower, but support more devices

 Physics and costs dictate “levels”

▪Memory bus

▪ General I/O bus

▪ Peripheral I/O bus

 Tradeoff space: speed vs. locality

May 25, 2023
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I/O BUSES

 Consider an arbitrary canonical “standard/generic”  device

 Two primary components

▪ Interface (registers for communication)

▪ Internals: Local CPU, memory, specific chips, firmware 

(embedded software)

May 25, 2023
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CANONICAL DEVICE

 Status register

▪Maintains current device status

 Command register

▪Where commands for interaction are sent

 Data register

▪ Used to send and receive data to the device

May 25, 2023
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CANONICAL DEVICE: 

HARDWARE INTERFACE

General concept:
The OS interacts and controls device behavior
by reading and writing the device registers.

 Common example of device interaction

May 25, 2023
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OS DEVICE INTERACTION

Poll- Is device available?

Poll – Is device done?

Command parameterization

Send command

 OS checks if device is READY by repeatedly checking the 

STATUS register

▪ Simple approach

▪ CPU cycles are wasted without doing meaningful work

▪ Ok if only a few cycles, for rapid devices that are often READY

▪ BUT polling, as with “spin locks” we understand is inefficient

May 25, 2023
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POLLING

 For longer waits, put process waiting on I/O to sleep

 Context switch (C/S) to another process

 When I/O completes, fire an interrupt to initiate C/S back

▪ Advantage: better multi-tasking and CPU utilization

▪ Avoids: unproductive CPU cycles (polling)

May 25, 2023
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INTERRUPTS VS POLLING
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 Interrupts are not always the best solution

▪ How long does the device I/O require?

▪What is the cost of context switching?

May 25, 2023
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INTERRUPTS VS POLLING - 2

If device I/O is fast → polling is better.
When I/O time < 1 CPU time slice (e.g. 10 ms)

If device I/O is slow → interrupts are better.
When I/O time > 1 CPU time slice

What is the tradeoff space ?  Alternative: two-phase hybrid approach

▪ Initially poll, then sleep and use interrupts

 Issue: livelock problem

▪ Common with network I/O

▪ Many arriving packets generate many many interrupts

▪ Overloads the CPU!

▪ No time to execute code, just interrupt handlers !

 Livelock optimization

▪ Coalesce multiple arriving packets (for different processes) into 

fewer interrupts 

▪ Must consider number of interrupts a device could generate
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INTERRUPTS VS POLLING - 3

 To interact with a device we must send/receive 

DATA

 There are two general approaches:

▪Programmed I/O (PIO):

▪Port mapped I/O (PMIO)

▪Memory mapped I/O (MMIO)

▪Direct memory access (DMA)
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DEVICE I/O
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From https://en.wikipedia.org/wiki/Parallel_ATA

 I/O performed on the CPU

 CPU time is consumed performing I/O

 CPU supports data movement (input/output)

 PIO is slow: CPU is occupied with meaningless work
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PROGRAMMED I/O (PIO)

PIO

 Legacy serial ports

 Legacy parallel ports

 PS/2 keyboard and mouse

 Legacy MIDI, joysticks

 Old network inter faces
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PIO DEVICES

61 62

63 64

65 66



TCSS 422 A – Spring 2024
School of Engineering and Technology

5/28/2024

L18.12Slides by Wes J. Lloyd

 Two primary PIO methods

▪Port mapped I/O  (PMIO)

▪Memory mapped I/O (MMIO)
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PROGRAMMED I/O DEVICE (PIO) 

INTERACTION

 Device specific CPU I/O Instructions 

 Follows a CISC model: 

specific CPU instructions used for device I/O

 x86-x86-64: in and out instructions

 outb,  outw,  outl 

 1, 2, 4 byte copy from EAX →  device’s I/O port
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PORT MAPPED I/O (PMIO)

 Device’s memory is mapped to standard memory addresses

 MMIO is common with RISC CPUs: 

Special CPU instructions for PIO eliminated

 Old days: 16-bit CPUs didn’t have a lot of spare memory space

 Today’s CPUs have LARGE address spaces:

32-bit (4GB addr space) & 64-bit (128 TB addr space)

 Device I/O uses regular CPU instructions usually used to 

read/write memory to access device

 Device is mapped to unique memory address reserved for I/O

▪ Address must not be available for normal memory operations. 

▪ Generally very high addresses (out of range of type addresses)

 Device monitors CPU address bus and respond to instructions 

on their addresses
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MEMORY MAPPED I/O (MMIO)

 Copy data in memory by of floading  to “DMA controller”

 Many devices ( including CPUs) integrate DMA controllers

 CPU gives DMA: memory address, size, and copy instruction

 DMA performs I/O independent of the CPU

 DMA controller generates CPU interrupt when I/O completes
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DIRECT MEMORY ACCESS (DMA)

 Many devices use DMA

▪ HDD/SSD controllers (ISA/PCI)

▪ Graphics cards

▪ Network cards

▪ Sound cards

▪ Intra-chip memory transfer for multi-core processors

 DMA allows computation and data transfer time to 

proceed in parallel
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DIRECTORY MEMORY ACCESS – 2

 The OS must interact with a variety of devices

 Example: Consider a file system that works across a 
variety of types of disks:

▪ SCSI, IDE, USB flash drive, DVD, etc.

 File system should be general purpose, where device 
specific I/O implementation details are abstracted

 Device drivers use abstraction to provide general 
interfaces for vendor specific hardware

 In Linux: block devices
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DEVICE INTERACTION
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 Layers of I/O abstraction in Linux

 C functions (open, read, write) issue block read and write 

requests to the generic block layer
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FILE SYSTEM ABSTRACTION

 Too much abstraction

 Many devices provide special capabilities

 Example: SCSI Error handling

 SCSI devices provide extra details which are lost to the OS

 Buggy device drivers

 70% of OS code is in device drivers

 Device drivers are required for every device plugged in

 Drivers are often 3 rd party, which is not quality controlled at 

the same level as the OS (Linux, Windows, MacOS, etc.)
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FILE SYSTEM ABSTRACTION ISSUES

 Questions from 5/23

 Assignment 2 – May 31

 Assignment 3: (Tutorial) Introduction to Linux Kernel Modules

 Memory Segmentation Activity + answers (available in Canvas)

 Quiz 4 – Page Tables - Due June 6 @ 11:59am

 Final exam – June 6 @ 3:40pm

 Tutorial 3 - File Systems (Optional, Extra Credit)

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

 Ch. 36 I/O Devices, Ch. 37 Hard Disk Drives
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OBJECTIVES – 5/28

CH. 37:

HARD DISK DRIVES
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6

 Chapter 37

▪ HDD Internals

▪ Seek time

▪ Rotational latency

▪ Transfer speed

▪ Capacity

▪ Scheduling algorithms
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OBJECTIVES

 Primary means of data storage (persistence) for decades

▪ Remains inexpensive for high capacity storage

▪ 2020: 16 TB HDD - $400, ~15.3 TB SSD - $4,380

 Consists of a large number of data sectors

 Sector size is 512-bytes

 An n sector HDD 

can be is addressed as an array of 0..n -1 sectors
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HARD DISK DRIVE (HDD)
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 Writing disk sectors is atomic (512 bytes) 

 Sector writes are completely successful, or fail 

 Many file systems will read/write 4KB at a time

▪ Linux ext3/4 default filesystem blocksize – 4096

 Same as typical memory page size
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HDD INTERFACE

 mkefs.ext4  -i <bytes-per-inode>

 Formats disk w/ ext4 filesys with specified byte-to-inode ratio

 Today’s  disks are so large, some use cases with many small 

f iles can run out of inodes before running out of disk space 

 Each inode record tracks a file on the disk

 Larger bytes-per-inode ratio results in fewer inodes 

▪ Default is around ~4096

 Value shouldn't be smaller than blocksize of filesystem

 Note: It is not possible to expand the number of inodes after 

the filesystem is created, -  be careful deciding the value

 Check inode stats: tune2fs –l /dev/sda1 (  d isk dev name)
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BLOCK SIZE IN LINUX EXT4

 Host ~2,000,000 small XML files totaling 9.5 GB on a 

~20GB filesystem on a cloud-based Virtual Machine

 With default inode ratio (4096 block size), 

only ~488,000 files will fit

 Drive less than half full, but files will not fit !

 HDDs support a minimum block size of 512 bytes

 OS filesystems such as ext3/ext4 can support “finer 

grained” management at the expense of a larger catalog 

size

▪ Small inode ratio- inodes will considerable % of disk space
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EXAMPLE: USDA SOIL EROSION MODEL

WEB SERVICE (RUSLE2)

 Free space in bytes  (df)

Device          total size    bytes -used  bytes -free usage

/dev/vda2             13315844   9556412   3049188  76% / mnt

 Free inodes  (df –i) @ 512 bytes / node

Device      total inodes    used       free      usage

/dev/vda2            3552528 1999823 1552705   57%    / mnt
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EXAMPLE: USDA SOIL EROSION MODEL

WEB SERVICE (RUSLE2) - 2

 Torn write

▪When OS uses larger block size than HDD

▪ Block writes not atomic - they SPAN multiple HDD sectors

▪ Upon power failure only a portion of the OS block is 

written – can lead to data corruption…

 HDD access

▪ Sequential reads of sectors is fastest

▪ Random sector reads are slow

▪ Disk head continuously must jump to

different tracks
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HDD INTERFACE - 2
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HDD PLATTER

 Made from aluminum coated with thin magnetic layer

 HDD records on both sides of each platter

 Data is stored by inducing magnetic changes
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HDD SPINDLE

 Connected to motor which spins the disk

 Speed measures in RPM (rotations per minute)

 Typical: 7200-15000 rpm

 10000 rpm – 1 rotation in 6ms; 15k rpm 1 rotation in 4ms

 Concentric circle of sectors

 Single side of platter contains 290 K tracks (2008)

 Zones: groups of tracks with same # of sectors
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HDD TRACK

Outer tracks have
More sectors

 Single track disk

 Head: one per surface of drive

 Arm: moves heads across surface of platters

May 25, 2023
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L18.87

EXAMPLE: SIMPLE DISK DRIVE
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HARD DISK STRUCTURE

 Rotational latency  (Trotation) : time to rotate to desired sector

 Average Trotation is ~ about half the time of a full rotation

 How to calculate Trotation from rpm 

1. Calculate time for 1 rotation based on rpm

> Convert rpm to rps

2. Divide by two (average rotational latency )

 7200rpm = 8.33ms per rotation /2= ~4.166ms

 10000rpm = 6ms per rotation /2= ~3ms

 15000rpm = 4ms per rotation /2= ~2ms
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SINGLE-TRACK LATENCY:

THE ROTATIONAL DELAY

 Seek time  (Tseek) :  time to move disk arm to proper track

 Most time consuming HDD operation
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SEEK TIME
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 Acceleration →  coasting →  deceleration →settling

 Acceleration: the arm gets moving

 Coasting: arm moving at full speed

 Deceleration: arm slow down

 Settling: Head is carefully positioned over track

▪ Settling time is often high, from .5 to 2ms
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FOUR PHASES OF SEEK

Data transfer 

▪Final phase of I/O: time to read or write to disk 

surface

Complete I/O cycle:

1. Seek (accelerate, coast, decelerate, settle)

2. Wait on rotational latency (until track aligns)

3. Data transfer
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HDD I/O

 Sectors are offset across tracks to allow time for head to 

reposition for sequential reads

 Without track skew, when head is repositioned sector 

would have already been passed
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TRACK SKEW
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TRACK SKEW - 2

 Buffer to support caching reads and writes

 Improves drive response time

 Up to 256 MB, slowly have been growing

 Two styles

▪Writeback cache

▪ Report write complete immediately when data is 

transferred to HDD cache

▪ Dangerous if power is lost

▪Writethrough cache

▪ Reports write complete only when write is physically 

completed on disk
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HDD CACHE

 Can calculate I/O transfer speed with:

 I/O Time:

 T transfer = DATAsize x Rate I/O

 Rate of I/O:
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TRANSFER SPEED
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 Compare two disks:

1. Random workload: 4KB (random read on HDD)

2. Sequential workload: 100MB (contiguous sectors)

> Calculate Trotation from rpm  (rpm→rps, time for 1 rotation / 2)
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EXAMPLE: I/O SPEED

1. Random workload: 4KB (random read on HDD)

2. Sequential workload: 100MB (contiguous sectors)
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EXAMPLE: I/O SPEED

There is a huge gap in drive throughput
between random and sequential workloads

Ttransfer = Datasize x RateI/O

4 KB

100 MB

 See sample HDD configurations here:

▪ Up to 20 TB

 https://www.westerndigital.com/products/data -center-

drives#hard-disk-hdd
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MODERN HDD SPECS

 Disk scheduler: determine how to order I/O requests

 Multiple levels - OS and HW

 OS: provides ordering

 HW: further optimizes using intricate details of physical 

HDD implementation and state
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DISK SCHEDULING

 Disk scheduling –  which I/O request to schedule next

 Shortest Seek Time First (SSTF)

 Order queue of I/O requests by nearest track
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SSTF – SHORTEST SEEK TIME FIRST

 Problem 1: HDD abstraction

 Drive geometry not available to OS.  Nearest -block-first is 

a comparable alternate algorithm.

 Problem 2: Starvation

 Steady stream of requests for local tracks may prevent 

arm from traversing to other side of platter
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SSTF ISSUES
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 SCAN (SWEEP)

 Perform single repeated passes back and forth across disk

 Issue: if  request arrives for a recently visited track it will not 
be revisited until a full cycle completes

 F-SCAN

 Freeze incoming requests by adding to queue during scan

 Cache arriving requests until later

 Delays help avoid starvation by postponing servicing nearby 
newly arriving requests vs. requests at edge of sweep 

 Provides better fairness

 Elevator (C-SCAN) – circular scan

 Sweep only one direction (e.g. outer to inner) and repeat

 SCAN favors middle tracks vs. outer tracks with 2 -way sweep
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DISK SCHEDULING ALGORITHMS

Determine next

sector to read?

▪ Where:

On which track?

On which sector?
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SHORTEST TIME POSITIONING FIRST

On modern drives, both seek and rotation are roughly equivalent:
Thus, SPTF (Shortest Positioning Time First) is useful.

Group temporary adjacent requests 

Reduce overhead

Read (memory blocks): 33 8 34

How long we should wait for I/O ?

When do we know we have waited too long?
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OPTIMIZATION: I/O MERGING QUESTIONS
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