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OBJECTIVES - 5/23

|' Questions from 5/21 |
= Memory Segmentation Activity + answers (available in Canvas)
® Assignment 2 - May 31
= Assignment 3 - (Tutorial) Introduction to Linux Kernel Modules
® Final exam - Thursday June 6 @ 3:40pm
® Quiz 4 - Page Tables - Due June 6 @ 11:59 am
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory

= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024 L17.2
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ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME

= Tuesday surveys: due by ~ Wed @ 11:59p

= Thursday surveys: due ~ Mon @ 11:59p

=— TCSS 422 A > Assignments

Spring 2021
Home

Announcements

* Upcoming Assignments

Zoom
Syllabus . .
¢ TCSS 422 - Online Daily Feedback Survey - 4/1
™ Awailable until Apr 5 at 11:59pm | Due Apr 5 at 10pm | -/1 pts
Nicrnssinng i N el vl cnimenne
TCSS422: Computer Operating Systems [Spring 2024]
iavies 2028 School of Engineering and Technology, University of Washington - Tacoma t73
3
TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions
[©| Question1 0.5 pts
On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:
1 2 3 4 5 6 7 8 9 10
Mostly Equal Mostly
Review To Me New and Review New to Me
[ | Question 2 0.5 pts
Please rate the pace of today's class:
1 2 3 4 5 6 7 8 9 1e
slow aust Right Fast
TCSS422: Computer Operating Systems [Spring 2024]
ilavj2si2028 School of Engineering and Technology, University of Washington - Tacoma L17.4
4
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MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (21 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 5.90 (Y - previous 6.00)

= Please rate the pace of today’s class:
m 1-slow, 5-just right, 10-fast
= Average - 5.14 (J - previous 5.19)

TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.5

May 23, 2024

FEEDBACK FROM 5/21

= For Quiz 3, do we only have to worry for the array size 50000
or for all array sizes?

= In syncarray.c there is a compiler directive which sets the
array size to 50000

/] mmmmm e

// Synchronized Array Data Structure

#define ARRAY_SIZE 50000

= The array size can be changed by modifying this

= For quiz 3, we can assume that this constant will be changed
as heeded when the syncarray is used

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.6

May 23, 2024
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FEEDBACK - 2

= Some tips for problems with exponential math and bits:
= >>> |t can be helpful to review charts and patterns:
= 8 bits = 1 byte

® 16 bits = 2 bytes

m 32 bhits = 4 bytes

® 64 bits = 8 bytes

= 1,024 bytes = 1 kilobyte (2710)

= 1,024 kilobytes = 1 megabyte (27420)

= 1,024 megabytes = 1 gigabyte (2230)

= 1,024 gigabytes = 1 terabyte (2%40)

= 1,024 terrabytes = 1 petabyte (2750)

TCSS422: Operating Systems [Spring 2024]

L17.7
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024

FEEDBACK - 3

® For simplicity rounding is often acceptable:

= 1 Kkilobyte (27210) = 1,024 bytes »> 1,000 bytes

= 1,024 Kkilobytes (2720) = 1 megabyte > 1,000,000 bytes
= 1,024 megabytes = 1 gigabyte (2230)—>1,000,000,000 bytes
m 1,024 gigabytes = 1 terabyte (27240)-1,000,000,000,000 bytes
= 1,024 terrabytes = 1 petabyte (250)~1,000,000,000,000,000 bytes

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.8

May 23, 2024
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FEEDBACK - 4

(2710) > 10 bits

(2740) > 40 bits

(2750) > 50 bits

2. 1,024 kilobytes = 1 megabyte
(2720) > 20 bits
3. 1,024 megabytes = 1 gigabyte
(2730) > 30 bits
4. 1,024 gigabytes = 1 terabyte

5. 1,024 terrabytes = 1 petabyte

= How many bits are required to index the following amounts of
memory?
1. 1,024 bytes = 1 kilobyte

May 23, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.10
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FEEDBACK -5

= With paging, we divide an address space in fixed sized pieces
(known as the page size)

= Assuming a computer indexes memory using
1 kilobyte memory pages (2”210)
= How many unique pages are required to manage/index memory?
1 kilobyte (2710) of memory
= 1 page
" 1 megabyte (2720) of memory
= 1024 pages (2"710)
= 1 gigabyte (2730) of memory
= 1,048,576 pages (2"20)
= 1 terabyte (2240) of memory
= 1,073,741,824 pages (2°30)
= 1 petabyte (2*50) of memory
= 1,099,511,627,776 pages (2°40)

TCSS422: Operating Systems [Spring 2024]

Mavj23j2028 School of Engineering and Technology, University of Washington - Tacoma

L17.11
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OBJECTIVES - 5/23

® Questions from 5/21
|- Memory Segmentation Activity + answers (available in Canvas]
® Assignment 2 - May 31
®m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
® Final exam - Thursday June 6 @ 3:40pm
® Quiz 4 - Page Tables - Due June 6 @ 11:59 am
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2024]

ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma

L17.12
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OBJECTIVES - 5/23

® Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
|l Assignment 2 - May 31 |
m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
® Final exam - Thursday June 6 @ 3:40pm
B Quiz 4 - Page Tables - Due June 6 @ 11:59 am
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2024]

117.13
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024
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OBJECTIVES - 5/23

® Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
® Assignment 2 - May 31
|- Assighment 3: (Tutorial) Intro to Linux Kernel Modules - June 9|
® Final exam - Thursday June 6 @ 3:40pm
® Quiz 4 - Page Tables - Due June 6 @ 11:59 am
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma L1714

May 23, 2024
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ASSIGNMENT 3:

INTRODUCTION TO LINUX KERNEL MODULES

m Assignment 3 provides an introduction to kernel
programming by demonstrating how to create a
Linux Kernel Module

= Kernel modules are commonly used to write device
drivers and can access protected operating system data
structures
* For example: Linux task_struct process data structure

TCSS422: Operating Systems [Spring 2024]

L17.15
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024

15

OBJECTIVES - 5/23

® Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
® Assignment 2 - May 31
®m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
| = Final exam - Thursday June 6 @ 3:40pm |
® Quiz 4 - Page Tables - Due June 6 @ 11:59 am
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma L17.16

May 23, 2024
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FINAL EXAM - THURSDAY JUNE 6 @

3:40PM™H

® Thursday June 6 from 3:40 to 5:40 pm
= Final (100 points)
= SHORT: similar number of questions as the midterm
= 2-hours
= Focus on new content - since the midterm (~70% new, 30% before)

= Final Exam Review -
= Complete Memory Segmentation Activity
= Complete Quiz 4
= Practice Final Exam Questions - 2" hour of May 30th class session
= Individual work
= 2 pages of notes (any sized paper), double sided
= Basic calculators allowed
= NO smartphones, laptop, book, Internet, group work

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.17

May 23, 2024
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OBJECTIVES - 5/23

® Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
® Assignment 2 - May 31
®m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
® Final exam - Thursday June 6 @ 3:40pm
| " Quiz 4 - Page Tables - Due June 6 @ 11:59 am |
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.18

May 23, 2024
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OBJECTIVES - 5/23

® Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - May 31
m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
® Final exam - Thursday June 6 @ 3:40pm
B Quiz 4 - Page Tables - Due June 6 @ 11:59 am
| = Chapter 19: Translation Lookaside Buffer (TLB) |
= TLB Algorithm, Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024 117.19

19

L'
CHAPTER 19:

TRANSLATION
LOOKASIDE BUFFER
(TLB)

TCSS422: Operating Systems [Spring 2024]

iavjas janzy School of Engineering and Technology, University of Washington -

20
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TRANSLATION LOOKASIDE BUFFER

= Legacy name...

m Better name, “Address Translation Cache”

ETLB is an on CPU cache of address translations
=virtual - physical memory

TCSS422: Operating Systems [Spring 2024]

117.21
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024

21

COUNTING MEMORY ACCESSES

= Example: Use this Array initialization Code

int array[1000];

for (1 = 07 1 < 1000; i++)
array[i] = 0;

= Assembly equivalent:

0x1024 movl $0x0, (%edi, %eax,4)
0x1028 incl %eax

0x102c cmpl $0x03e8, %eax
01030 jne 0xl024

TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma L17.22

May 23, 2024

22
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® | ocations:

VISUALIZING MEMORY ACCESSES:

FOR THE FIRST 5 LOOP ITERATIONS

Page Table[39]

School of Engineering and Technology, University of Washington - Tacoma

1224
= Page table o o o o 1 2
K
= Array Page Table[1] 1124 3
= Code I 1074 §f
0 0000 goo0d goog oood gool i
= 50 accesses 2 40100 - IR
Z 2 &
for 5 loop ® 40050 - © - o2s 3
. q < ] 3
iterations 40000 ——m o n 3
1124 419
< g
I 1074 4146 T
o )
© ]
1024 4096
Memory Access
May 23, 2024 TCSS422: Operating Systems [Spring 2024] 117.23

23

Page Table[39]

TRANSLATION LOOKASIDE BUFFER - 2

= Goal: \ a2
Reduce access o o o o Lz g
to the page Page Table[1] - 1124 é:
tables - 1074 “ij
0O 0oo0 onoo o0o0o0o oood - ooob g
= Example:
50 RAM accesses g 40100 4 r712
. < c =
for first 5 for-loop % 40050 7w F
iterations < a0000 —m | n u 7232 <
= Move lookups o 12 41%
from RAM to TLB 3 1m e 3
. S <1
by caching page “ o 4096
table entries
Memory Access
TCSS422: Operating Systems [Spring 2024]
ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma L1724
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TRANSLATION LOOKASIDE BUFFER (TLB)

= Part of the CPU’s Memory Management Unit (MMU)

®m Address translation cache

L6 TLB Hit

. i .
Logical Physical
Address TLB Address

popular v to p ’ ‘lr
Page 0

Page Table J
. Page 1
all v to p entries

Address Translation with MMU .
Physical Memory

TCSS422: Operating Systems [Spring 2024]
Mavj23j2028 School of Engineering and Technology, University of Washington - Tacoma

L17.25

25

TRANSLATION LOOKASIDE BUFFER (TLB)

= Part of the CPU’s Memory Management Unit (MMU)

® Address translation cache

| s T 1
The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

A

:

Physical Memory

Address Translation with MMU

TCSS422: Operating Systems [Spring 2024]

ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma

L17.26
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OBJECTIVES - 5/23

® Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
® Assignment 2 - May 31
m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
® Final exam - Thursday June 6 @ 3:40pm
B Quiz 4 - Page Tables - Due June 6 @ 11:59 am
® Chapter 19: Translation Lookaside Buffer (TLB)
| =TLB Algorithml Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024

L17.27 |
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TLB BASIC ALGORITHM

® For: array based page table
® Hardware managed TLB

»
»

: VPN = (VirtualaAddress & VPN _MASK ) >> SHIFT

: (Success , TlbEntry) = TLB Lookup (VPN)

if(Success == True){ // TLE Hit

1f (CanAccess (T1bEntry.ProtectBits) == True ){
Offset = VirtualAddress & OFFSET_MASK

»PhysAddr»(leEntry.PFN << SHIFT) | offset

AccessMemory ( PhysAddr )

[ T B N E R T I

}else RaiseException (PROTECTION ERROR)

| Generate the physical address to access memory |

TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma L17.28

| May 23, 2024

28
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TLB BASIC ALGORITHM - 2

11: else{ //TLB Miss

12: PTEAddr = PTBR + (VPN * sizeof (PTE))

13: » PTE = AccessMemory (PTEAddr)

14: (..) // Check for, and raise exceptions..

15:

16: TLB_ Insert( VEN , PTE.PFN , PTE.ProtectBits)

17: RetryInstruction ()

18: }

19:}

| Retry the instruction... (requery the TLB) |
iavies 2028 Zgizgfgf g::i?;:er:'ignsgy;zn]rset[:i?'ngrllggi%i]iversity of Washington - Tacoma t17.29

29

TLB - ADDRESS TRANSLATION CACHE

= Key detail:

® For a TLB miss, we first access the page table in RAM to
populate the TLB... we then requery the TLB

= All address translations go through the TLB

TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma L17.30

May 23, 2024
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OBJECTIVES - 5/23

® Questions from 5/21
® Assignment 2 - May 31

® Final exam - Thursday June 6 @ 3:40pm

B Quiz 4 - Page Tables - Due June 6 @ 11:59 am

® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, [Hit-to-Miss Ratios|

® Chapter 20: Paging: Smaller Tables

= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

= Smaller Tables, Multi-level Page Tables, N-level Page Tables

= Memory Segmentation Activity + answers (available in Canvas)

m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

TCSS422: Operating Systems [Spring 2024]

Mavj23j2028 School of Engineering and Technology, University of Washington - Tacoma

L17.31

31

TLB EXAMPLE

0 int sum =0 ; OFFSET
00 08 12 16
1: for( i=0; i<10; i++){ _—
z: sum+=alil; VPN = 01
3: } VPN =03
VPN = 04
= Example: -

VPN - 06 o | am | a2
= Program address space: 256-byte wn - [ :w :m :[51
= Addressable using 8 total bits (28) veni - o2 ['am [ e | et

= 4 bits for the VPN (16 total pages) VPN - 09

m Page size: 16 bytes

School of Engineering and Technology, University of Washington - Tacoma

= Offset is addressable using 4-bits VPN < 13

VPN = 14

= Store an array: of (10) 4-byte integers VPN - 15
May 23, 2024 TCSS422: Operating Systems [Spring 2024] 117.32

32
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TLB EXAMPLE - 2

School of Engineering and Technology, University of Washington - Tacoma

0: int sum = 0 ; OFFSET
00 04 12 16
1: for( i=0; i<10; i++){ VPN - 00
2: sum+=a[i]; VPN = 01
3: 1 VPN = 03
. VPN = 04
= Consider the code above: VPN - 05
L i VPN = 06 al0] | a[l | a[2
® |nitially the TLB does not know where a[] is ven = 07 [ag1 | ot | a1 | a6l
= Consider the accesses: VPN =08 | | atEl | a9l
VPN = 09
= a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], ven - 10
a[8]7 a[9] VPN = 11
= How many pages are accessed? v
VPN =13
= What happens when accessing a page not VPN - 1
in the TLB? VPN - 15
May 23, 2024 TCSS422: Operating Systems [Spring 2024] 117.33

33

TLB EXAMPLE - 3

0: int sum = 0 ; OFFSET
00 04 08 12 16
1: for( i=0; i<10; i++){ VPN - 00
2: sum+=ali]; VPN = 01
3: } VPN - 03
VPN = 04
= For the accesses: a[0], a[1], a[2], a[3], a[4], . *
VPN = 06 a[o] | am | a2
= a[5], a[6], a[7], a[8], a[9] VPN =07 | 2 | a4 | ap) | ate)
VPN = 08 | a7y | af] | a0
VPN = 09
= How many are hits? eN = 10
® How many are misses? VPN - 11
VPN - 12
= What is the hit rate? (%) I
= 70% (3 misses one for each VP, 7 hits) VPN = 14
VPN = 15
TCSS422: Operating Systems [Spring 2024]
ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma L1734

34

Slides by Wes J. Lloyd

5/28/2024

L17.17



TCSS 422 A — Spring 2024 5/28/2024
School of Engineering and Technology

TLB EXAMPLE - 4

0: int sum = 0 ; OFFSET
00 04 03 12 16
1: for( i=0; i<10; i++){ VPN < 00
2: sum+=a[i]; VPN = 01
3: 1 VPN = 03
VPN =04
. . VPN = 05
= What factors affect the hit/miss rate? - T T
U Page size VPN =07 | ap3] | ag4] | afs] | a6l
. VPN =08 | 71 | afg] | afe
= Data/Access locality (how is data accessed?) VPN = 09

Sequential array access vs. random array access V-1
* Temporal locality N

= Size of the TLB cache VRN - 13
(how much history can you store?) VPN - 14

VPN =11

VPN =15

TCSS422: Operating Systems [Spring 2024] |

L17.35
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024

35

OBJECTIVES - 5/23

® Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
® Assignment 2 - May 31
®m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
® Final exam - Thursday June 6 @ 3:40pm
® Quiz 4 - Page Tables - Due June 6 @ 11:59 am
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
| * Chapter 20: Paging: Smaller Tables |
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.36

| May 23, 2024
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CHAPTER 20:
PAGING:
SMALLER TABLES

TCSS422: Operating Systems [Spring 2024]

avjasa0zs School of Engineering and Technology, University of Washington -

LINEAR PAGE TABLES

mConsider array-based page tables:
= Each process has its own page table
= 32-bit process address space (up to 4GB)
= With 4 KB pages
= 20 bits for VPN
= 12 bits for the page offset

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.38

May 23, 2024
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LINEAR PAGE TABLES - 2

= Page tables stored in RAM

= Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page
= Page table size 4MB / process

32
Page table size = % + 4Byte = 4AMByte

® Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

TCSS422: Operating Systems [Spring 2024]

Mavj23j2028 School of Engineering and Technology, University of Washington - Tacoma

L17.39

39

LINEAR PAGE TABLES - 2

= Page tables stored in RAM

= Support potential storage of 229 translations
= 1,048,576 pages per process @ 4 bytes/page
m Page table size 4MB / process

Page tables are too big and
consume too much memory.

Need Solutions ...

® Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

TCSS422: Operating Systems [Spring 2024]

ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma

L17.40
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OBJECTIVES - 5/23

® Questions from 5/21
® Assignment 2 - May 31

® Final exam - Thursday June 6 @ 3:40pm
B Quiz 4 - Page Tables - Due June 6 @ 11:59 am
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables
|- Smaller Tables| Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

= Memory Segmentation Activity + answers (available in Canvas)

m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

TCSS422: Operating Systems [Spring 2024]

| Mavj23j2028 School of Engineering and Technology, University of Washington - Tacoma

L17.41
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PAGING: USE LARGER PAGES

= Larger pages = 16KB = 214
m 32-bit address space: 232
m 218 = 262,144 pages

232
s

x4 =1MB per page table

= Memory requirement cut to ¥
= However pages are huge
® |[nternal fragmentation results

= 16 KB page(s) allocated for small programs with only a
few variables

TCSS422: Operating Systems [Spring 2024]

ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma
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= Process: 16KB Address Space w/ 1KB pages

PAGE TABLES: WASTED SPACE

Page Table Physical Memory
Virtual Address
Space

code 0. |
1 Allocate | . :
2 ) PFN valid prot present dirty
3 N 10 1 - - .

"

heap 4 / 5

AN /
0

6 \ . : :
7
8 \ - - = . -
. :
w |/
n/ 0
12 / 3 1 -~ : -

stack 13/ > : - : :
“u—

A 16KB Address Space with 1KB Pages

A Page Table For 16KB Address Space

TCSS422: Operating Systems [Spring 2024]
Mavj23j2028 School of Engineering and Technology, University of Washington - Tacoma
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Page Table Physical Memory
Virtual Address
Space

code

0. 4
1 \Allucate /

PFN

® Process: 16KB Address Space w/ 1KB pages

valid prot

PAGE TABLES: WASTED SPACE

present

heap Most of the page table is unused

dirty

9

w o/
n /

12/

stack 13

3 1 rw- 1 1
23 1 rw- 1 1

w—

A 16KB Address Space with 1KB Pages

A Page Table For 16KB Address Space

May 23, 2024 TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma
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OBJECTIVES - 5/23

® Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
® Assignment 2 - May 31
m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
® Final exam - Thursday June 6 @ 3:40pm
B Quiz 4 - Page Tables - Due June 6 @ 11:59 am
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables,lN-IeveI Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2024]

Mavj23j2028 School of Engineering and Technology, University of Washington - Tacoma
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MULTI-LEVEL PAGE TABLES

® Consider a page table:

® 32-bit addressing, 4KB pages

m 220 page table entries

= Even if memory is sparsely populated the per process page
table requires:

232

Page table size =

* 4Byte = 4MByte

212

= Often most of the 4MB per process page table is empty
= Page table must be placed in 4MB contiguous block of RAM

= MUST SAVE MEMORY!

TCSS422: Operating Systems [Spring 2024]

ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma
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MULTI-LEVEL PAGE TABLES - 2

= Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table

PBTR 201 PBTR 200
PFN W ; PFN ; PFN

T
$ i 3 33
T 2 g > o
™ o 1| 200 [—>1] 12
L ™ b S g [o 1 13 s
o - - Z z =
£ z
o ic |0 - 0 - - E
1] w 100 a &
5 1| 203 1] w 100
- "
0 < The Page Directory [Page 1 of PT:Not Allocated]
B z
£ -
&
0
0 o
] & 9 -
& 0 8
1w 86 T s
T w 5 1] rw 86 £
Y 15

Linear (Left) And Multi-Level (Right) Page Tables

TCSS422: Operating Systems [Spring 2024]

L17.47
School of Engineering and Technology, University of Washington - Tacoma
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MULTI-LEVEL PAGE TABLES - 2

= Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table
PBTR 201

23

Two level page table:
220 pages addressed with

two level-indexing
(page directory index, page table index)

Y on
- 2 0
9 S 5 2
1 rw 86 o =
1w 5 1| rw 86 &
1| rw 15
Linear (Left) And Multi-Level (Right) Page Tables
TCSS422: Operating Systems [Spring 2024]
ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma L1748
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4 GB computer (2432) and 4KB pages (2212)

1. How much space is required for a 2-level page table with one page directory (PD) and
one page table (PT)?

2. How much

can a single PD pointing to a single PT address?

49

4 GB computer (2432) and 4KB pages (2412)

1. How much space is required for a 2-level page table with one page directory (PD) and
one page table (PT)?

2. How much memory can a single PD pointing to a single PT address?

wrs

(39

bis PT
10
PD 1D

oz~ Y096
. ST
VO 102 % 4 bR

[>] \Z
2
2. ZLL-—-V "//V\B a%m&

wriH A
st cond P
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102

AR

S| 016
O%chG{Z BY Tes ‘J/
! 1090 HR

LT —
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MULTI-LEVEL PAGE TABLES - 3

= Advantages

= Only allocates page table space in proportion to the
address space actually used

= Can easily grab next free page to expand page table

= Disadvantages

= Multi-level page tables are an example of a time-space
tradeoff

= Sacrifice address translation time (now 2-level) for space
= Complexity: multi-level schemes are more complex

TCSS422: Operating Systems [Spring 2024]

L17.53
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024
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EXAMPLE

= 16KB address space, 64byte pages
= How large would a one-level page table need to be?
m 214 (address space) / 2° (page size) = 28 = 256 (pages)

0000 0oog___€9%€
0000 0001 code Flag Detail
(free) Address space 16 KB
(free) Page size 64 byte
heap Virtual address 14 bit
iz VPN 8 bit
(free) 5
Offset 6 bit
(free)
Page table entry 28(256)
stack
1111 111 stack A 16-KB Address Space With 64-byte Pages

13[12[ufw|o]8][7]6|s]a]3]2]1]0]
Offset ‘

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.54
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EXAMPLE - 2

m 256 total page table entries (64 bytes each)

= 1,024 bytes page table size, stored using 64-byte pages
= (1024/64) = 16 page directory entries (PDEs)

® Each page directory entry (PDE) can hold 16 page table
entries (PTEs) e.g. lookups

= 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

= Key idea: the page table Is stored using pages too!

TCSS422: Operating Systems [Spring 2024]

L17.55
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024
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PAGE DIRECTORY INDEX

= Now, let’s split the page table into two:
= 8 bit VPN to map 256 pages
= 4 bits for page directory index (PDI - 15t level page table)
= 6 bits offset into 64-byte page

Page Directory Index |
S

13[12]11fw0] 98| 7][6][s5]4a]3]2]1]0]
< < >
VPN Offset '
14-bits Virtual address
TCSS422: Operating Systems [Spring 2024]
ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma L1756
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PAGE TABLE INDEX

= 4 bits page directory index (PDI - 15t level)
= 4 bits page table index (PTI - 24 |evel)

Page Directory Index | Page Table Index

10’\" 9

12

11

It sl7]6[s]a]3]2]1]0]

VPN ‘ Offset
14-bits Virtual address

® To dereference one 64-byte memory page,
= We need one page directory entry (PDE)
= One page table Index (PTI) - can address 16 pages

TCSS422: Operating Systems [Spring 2024]

L17.57
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024
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EXAMPLE - 3

= For this example, how much space is required to store as a
single-level page table with any number of PTEs?

= 16KB address space, 64 byte pages
m 256 page frames, 4 byte page size
= 1,024 bytes required (single level)

= How much space is required for a two-level page table with
only 4 page table entries (PTEs) ?

m Page directory = 16 entries x 4 bytes (1 x 64 byte page)
= Page table = 16 entries (4 used) x 4 bytes (1 x 64 byte page)
m 128 bytes required (2 x 64 byte pages)

= Savings = using just 12.5% the space !!!

TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma L17.58
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For this example, how much space is required to store as a single-level page table
with any number of PTEs?
16KB address space, 64 byte pages, 256 page frames, 4 byte page size

Storage requirement: bytes required (single level)

59

For this example, how much space is required to store as a single-level page table
with any number of PTEs?
16KB address space, 64 byte pages, 256 page frames, 4 byte page size

P T

ZH.._) 16WB 2.4 m
Zc’ﬁ 6 (:yk.s P St2@

™

2 2_63 =" faves—»ZSG

ZSC) &oc\'\e/\—l-f;/ cests Y by,}_(s
256 catres * L{ b)//f—es = LOZ‘{ fo>/+c <
[ B
Storage requirement: bytes required (single level)
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How much space is required for a two-level page table with only 4 page table entries
(PTEs) ? (one page each for code segment, stack segment, heap segment, data segment)
16KB address space, 64 byte pages, 256 page frames, 4 byte page size

Page directory = 16 entries x 4 bytes (1 x 64 byte page)
Page table = 16 entries (4 used) x 4 bytes (1 x 64 byte page)
Store requirement = 128 bytes required (2 x 64 byte pages)

Savings =

61

How much space is required for a two-level page table with only 4 page'table entries
(PTEs) ? (one page each for code segment, stack segment, heap segment, data segment)
16KB address space, 64 byte pages, 256 page frames, 4 byte page size

3 b1 VPN re ¢ Pt
PD s G\ s €
oo —> et 0
P 16 % ¢
3 AN
Z\t>
/ 15
5 (CNULL | o2 e
(S Q
16 % S oyres lo X by fes
eg\ \DYH) 4 (DL| \Q)l‘)’c S
/
|24 by tes 0\107_(/
= 12¢
B 6 saneS 14 ey TS
Page directory = 16 entries x 4 bytes (1 x 64 byte page) \zs/ lort=12. 5471:

Page table = 16 entries (4 used) x 4 bytes (1 x 64 byte page)
Store requirement = 128 bytes required (2 x 64 byte pages)
Savings =

62
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32-BIT EXAMPLE

= Consider: 32-bit address space, 4KB pages, 22° pages
= Only 4 mapped pages

\’)_‘%q.o
= Single level: 4 MB (we’ve done this before)

= Two level: (old VPN was 20 bits, split in half)

= Page directory = 210 entries x 4 bytes = 1 x 4 KB page

= Page table = 4 entries x 4 bytes (mapped to 1 4KB page)
= 8KB (8,192 bytes) required

® Savings = using just.,7_8_ % the space !!!

= 100 sparse processes now require < 1MB for page tables
= 8KB x 100 = 800KB

—_—

TCSS422: Operating Systems [Spring 2024]

Mavj23j2028 School of Engineering and Technology, University of Washington - Tacoma
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OBJECTIVES - 5/23

® Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
® Assignment 2 - May 31
®m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
® Final exam - Thursday June 6 @ 3:40pm
® Quiz 4 - Page Tables - Due June 6 @ 11:59 am
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables

= Smaller Tables, Multi-level Page Tablesl N-level Page Tables

= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2024]

ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma

L17.64
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WE WILL RETURN AT
5:00 PM

TCSS422: Operating Systems [Spring 2024]
avjasa0zs School of Engineering and Technology, University of Washington -

MORE THAN TWO LEVELS - 2

= Page table entries per page = 512 / 4 = 128
= 7 bytes - for page table index (PTI)

3029282726252423222120191817161514131211109 8 76 54 3 21 0

[T P e e

Page Directory Index | Page Table Index |
VPN offset
ET] Detail
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs ——1—> log,128 =7

TCSS422: Operating Systems [Spring 2024]
ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma
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MORE THAN TWO LEVELS - 3

= Consider 1 GB computer: 23°=1GB RAM, 512-byte (2° pages)
m 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...

® Page size = 512 bytes * 4 bytes per addr

302928 27262524232221201918171615141312111098 76 54 3 21 0

LT e

Page Directory Index

VPN offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs ——> log,128 =7

TCSS422: Operating Systems [Spring 2024]

L17.67
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MORE THAN TWO LEVELS - 3

= Consider 1 GB computer: 239=1GB RAM, 512-byte (2° pages)

m 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...

= Pagosaine 2o LA buton nor od.

Can't Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

Virtual address bit

Page size 512 byte

VPN 21 bit

Offset 9 bit

Page entry per page 128 PTEs —— 1> log,128 =7

May 23, 2024

TCSS422: Operating Systems [Spring 2024]
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MORE THAN TWO LEVELS - 3

Need three level page table:

Page directory 0 (PD Index 0)

Page directory 1 (PD Index 1)
Page Table Index

Virtual address bit

Page size 512 byte

VPN 21 bit

Offset 9 bit

Page entry per page 128 PTEs ——> log,128 =7

= Consider 1 GB computer: 23°=1GB RAM, 512-byte (22 pages)
m 214 = 16,384 page directory entries (PDEs) are required
= When usmg 27 (128 entry) page tables...

TCSS422: Operating Systems [Spring 2024]

L17.
School of Engineering and Technology, University of Washington - Tacoma 69
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MORE THAN TWO LEVELS - 4

= We can now address 1GB with“fine grained” 512 byte pages
= Using multiple levels of indirection

3029282726252423222120191817161514131211109 8 76 54 3 2

||||||H||H| |||||||||

’E Page Table Index

VPN

® Consider the implications for address translation!

= How much space is required for a virtual address space with 4
entries on a 512-byte page? (let's say 4 32-bit integers)

= PDO 1 page, PD1 1 page, PT 1 page = 1,536 bytes

= Memory Usage= 1,536 (3-level) / 8,388,608 (1-level) = .0183% !!!

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024 L17.70
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ADDRESS TRANSLATION CODE

// 5-level Linux page table address lookup
//

// Inputs:
// mm_struct - process’s memory map struct
// vpage - virtual page address

// Define page struct pointers
pgd_t *pgd;

p4d_t *p4d;

pud_t *pud;

pmd_t *pmt;

pte_t *pte;

struct page *page;

TCSS422: Operating Systems [Spring 2024]

Mavj23j2028 School of Engineering and Technology, University of Washington - Tacoma

L17.73
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ADDRESS TRANSLATION - 2

pgd_offset():
pgd = pgd_offset (mm, vpage); Takes a vpage address and the mm_struct
if (pgd_none(*pgd) || pgd_bad(*pgd) )| forthe process, returns the PGD entry that
return O; covers the requested address...
p4d = p4d_offset(pgd, vpage);
if (p4d_none(*p4d) || p4d_bad(*p4d)) 4d/pud/pmd_offset():

return O0;
pud = pud_offset (p4d, vpage);
if (pud_none(*pud) || pud_bad(*pud))

relevant p4d/pud/pmd.

Takes a vpage address and the
pgd/p4d/pud entry and returns the

return O;

pmd = pmd_offset (pud, vpage);

if (pmd_none(*pmd) || pmd_bad(*pmd))
return O;

if (! (pte = pte_offset_map (pmd, vpage)))

return 0;
: ’ pte_unmap()
if (! (page = pte_page (*pte))) te_unma

return O;

for the page table entry

release temporary kernel mapping

physical page_addr = page_to_phys (page)
pte_unmap (pte) ;
return physical_page_addr; // param to send back

TCSS422: Operating Systems [Spring 2024]

ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma
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INVERTED PAGE TABLES

= Keep a single page table for each physical page of memory

= Consider 4GB physical memory
= Using 4KB pages, page table requires 4MB to map all of RAM

= Page table stores
= Which process uses each page

= Which process virtual page (from process virtual address
space) maps to the physical page

m All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

= Finding process memory pages requires search of 220 pages
= Hash table: can index memory and speed lookups

TCSS422: Operating Systems [Spring 2024]

Mavj23j2028 School of Engineering and Technology, University of Washington - Tacoma

L17.75
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MULTI-LEVEL PAGE TABLE EXAMPLE

= Consider a 16 MB computer which indexes memory using 4KB
pages

= (#1) For a single level page table, how many pages are
required to index memory? :

= (#2) How many bits are required for the VPN?

= (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many offset bits are required?

= (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

TCSS422: Operating Systems [Spring 2024]

ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma

L17.76
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MULTI LEVEL PAGE TABLE EXAMPLE - 2

= (#5) How many bytes (or KB) are required for a single level
page table?

m | et’'s assume a simple HelloWorld.c program.

= HelloWorld.c requires virtual address translation for 4 pages:
= 1 - code page 1 - stack page
=1 - heap page 1 - data segment page

= (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

= (#7) How many bits are required for the Page Table Index
(PTNH?

TCSS422: Operating Systems [Spring 2024]

L17.77
School of Engineering and Technology, University of Washington - Tacoma
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MULTI LEVEL PAGE TABLE EXAMPLE - 3

m Assume each page directory entry (PDE) and page table entry
(PTE) requires 4 bytes:
= 6 bits for the Page Directory Index (PDI)
= 6 bits for the Page Table Index (PTI)
= 12 offset bits
= 8 status bits

= (#8) How much total memory is required to index the
HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

= HINT: we need to allocate one Page Directory and one Page
Table...

= HINT: how many entries are in the PD and PT

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024 L17.78
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MULTI LEVEL PAGE TABLE EXAMPLE - 4

= (#9) Using a single page directory entry (PDE) pointing to a
single page table (PT), if all of the slots of the page table (PT)
are in use, what is the total amount of memory a two-level
page table scheme can address?

= (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme
consume compared to the 1-level scheme?

® HINT: two-level memory use / one-level memory use

TCSS422: Operating Systems [Spring 2024]

L17.79
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ANSWERS
= #1 - 4096 pages
= #2 - 12 bits
= #3 - 12 bits
B #4 - 4 bytes
m#5 - 4096 x 4 = 16,384 bytes (16KB)
= #6 - 6 bits
= #7 - 6 bits
= #8 - 256 bytes for Page Directory (PD) (64 entries x 4 bytes)
256 bytes for Page Table (PT) TOTAL = 512 bytes

® #9 - 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

= #10- 512/16384 = .03125 > 3.125%

TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma L17.80
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OBJECTIVES - 5/23

® Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - May 31
m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
® Final exam - Thursday June 6 @ 3:40pm
B Quiz 4 - Page Tables - Due June 6 @ 11:59 am
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
| = Chapter 21/22: Beyond Physical Memory |
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2024]

| IMavj2312028 School of Engineering and Technology, University of Washington - Tacoma

L17.81
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CHAPTER 21/22:

BEYOND PHYSICAL
MEMORY

TCSS422: Operating Systems [Spring 2024]

iavjas janzy School of Engineering and Technology, University of Washington -
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MEMORY HIERARCHY

® Disks (HDD, SSD) provide another level of storage in the
memory hierarchy

Registers

Cache

Main Memory

Mass Storage( hard disk, tape, etc...)

Memory Hierarchy in modern system

TCSS422: Operating Systems [Spring 2024]
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MOTIVATION FOR

EXPANDING THE ADDRESS SPACE

® Provide the illusion of an address space larger than
physical RAM

® For a single process
= Convenience
= Ease of use

= For multiple processes

= Large virtual memory space supports running
many concurrent processes. . .

TCSS422: Operating Systems [Spring 2024]
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LATENCY TIMES

®Designh considerations:
= SSDs 4x the time of DRAM
= HDDs 80x the time of DRAM

Action Latency (ns) (ps)
L1 cache reference 0.5ns
L2 cache reference 7 ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1
Read 4K randomly from SSD* 150,000 ns 150 ps ~1GB/sec 55D
Read 1 MB sequentially from memory 250,000 ns 250 ps
Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 ps | 1 ms ~1GB/secSSD,4X memory
Read 1 MB sequentially from disk 20,000,000 ns 20,000 ps 20 ms 80x memory, 20X 55D

= Latency nhumbers every programmer should know
= From: https://gist.github.com/jboner/2841832#file-latency-txt
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OBJECTIVES - 5/23

® Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
® Assignment 2 - May 31
®m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
® Final exam - Thursday June 6 @ 3:40pm
® Quiz 4 - Page Tables - Due June 6 @ 11:59 am
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms| Swapping Policies

TCSS422: Operating Systems [Spring 2024]
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SWAP SPACE

® Disk space for storing memory pages
® “Swap” them in and out of memory to disk as needed

PFN 0 PFN 1 PFN 2 PFN 3
Physical Proc 0 Proc1 Proc1 Proc2
Memory [VPN 0] [VPN 2] [VPN 3] VPN 0]

Block 0  Block 1 Block 2 Block 3 Block4  Block 5 Block6  Block 7

Swap Proc0 Proc0
Space | [VPN 1] | [VPN 2]

Proc 1 Proc 1 Proc 3 Proc 2 Proc 3

(Freel | npnop | veN 1 | (VPN O] | VPN 1] | VPN 1]

Physical Memory and Swap Space

TCSS422: Operating Systems [Spring 2024]
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SWAP SPACE - 2

= The size of the swap space can be seen using the Linux free
command: “free -h”

wlloyd@dione:~$ free -h
total shared buff/cache available

30G 1.3G 4.4G 17G
31G

= With sufficient disk space, a common allocation is to create
Swap space greater than or equal to physical RAM

TCSS422: Operating Systems [Spring 2024]
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SWAP SPACE - 3

m Swap space lives on a separate logical volume in Ubuntu Linux
that is managed separately from the root file system

= Check logical volumes with “sudo Ivdisplay” command:

- Logical volume ---

Path J/devfubuntu-vg/swap_1

Name swap_1

Name ubuntu-vg

uuID 0 -4M33-2YXY-YETH-wf7V-93vF-QRQytG

Write Access read/write

Creation host, time ubuntu, 2018-09-30 15:44:16 -0700
available

976.00 MiB
244
Segments il
Allocation inherit
Read ahead sectors auto
- currently set to 256
Block device 253:1

m See also “lvm lvs” command

TCSS422: Operating Systems [Spring 2024]
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PAGE LOCATION

= Memory pages are:
= Stored in memory
= Swapped to disk

= Present bit
= |[n the page table entry (PTE) indicates if page is present

= Page fault
= Memory page is accessed, but has been swapped to disk

TCSS422: Operating Systems [Spring 2024]
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PAGE FAULT

® OS steps in to handle the page fault
® Loading page from disk requires a free memory page

= Page-Fault Algorithm

PFN = FindFreePhysicalPage ()
if (PFN == -1) // no free
PFN = EvictPage ()
DiskRead (PTE.DiskAddr, pfn)
PTE.present = True

PTE.PFN = PFN //

I N T

RetryInstruction()

TCSS422: Operating Systems [Spring 2024]
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PAGE REPLACEMENTS

= Page daemon
= Background threads which monitors swapped pages

= L ow watermark (LW)
= Threshold for when to swap pages to disk
= Daemon checks: free pages < LW
= Begin swapping to disk until reaching the highwater mark

= High watermark (HW)
= Target threshold of free memory pages
= Daemon free until: free pages >= HW

TCSS422: Operating Systems [Spring 2024]
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OBJECTIVES - 5/23

® Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - May 31
m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
® Final exam - Thursday June 6 @ 3:40pm
B Quiz 4 - Page Tables - Due June 6 @ 11:59 am
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memor
= Swapping Mechanisms Swapping Policiesl
Schoolof Engineering and Teehnaloy, Uniersty of Washington - Tacoma

May 23, 2024

L17.93
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REPLACEMENT @

POLICIES

TCSS422: Operating Systems [Spring 2024]
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CACHE MANAGEMENT

= Replacement policies apply to “any” cache
® Goal is to minimize the number of misses
= Average memory access time (AMAT) can be estimated:

‘ AMAT = (Pyic * Tyr) + (Pusiss * Tp) ‘

Argument Meaning

Ty The cost of accessing memory (time)
Tp The cost of accessing disk (time)
Py The probability of finding the data item in the cache(a hit)
Puiss The probability of not finding the data in the cache(a miss)
= Consider T,; = 100 ns, T, = 10ms
= Consider P,;; = .9 (90%), P s = .1

=.001

= Consider P,; = .999 (99.9%), P

miss

TCSS422: Operating Systems [Spring 2024]
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OPTIMAL REPLACEMENT POLICY

= What if:
= We could predict the future (... with a magical oracle)
= All future page accesses are known
= Always replace the page in the cache used farthest in the future

® Used for a comparison
= Provides a “best case” replacement policy

® Consider a 3-element empty cache with the following page

accesses:
What is the hit/miss ratio?

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma
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FIFO REPLACEMENT

® Queue based

= Always replace the oldest element at the back of cache
= Simple to implement

® Doesn’t consider importance... just arrival ordering

® Consider a 3-element empty cache with the following
page accesses:

01201303121
= What is the hit/miss ratio? m

® How is FIFO different than LRU? LRU incorporates history

TCSS422: Operating Systems [Spring 2024]
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RANDOM REPLACEMENT

= Pick a page at random to replace
= Simple and fast implementation
= Performance depends on luck of random choices

01201303121

50

40

Frequency
w
=]

N
=)

-
=)

o

1 2 3 4 5 6
Number of Hits

Random Performance over 10,000 Trials
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HISTORY-BASED POLICIES

® | RU: Least recently used

= Always replace page with oldest access time (front)

= Always move end of cache when element is read again

= LRU requires constant reorganization of the cache

® Considers temporal locality (when pg was last accessed)

01201303121 What Is the hit/miss ratio?

® LFU: Least frequently used m

= Always replace page with the fewest # of accesses (front)
® Incorporates frequency of use - must track pg accesses

® Consider frequency of page accesses

01201303121 Hit/miss ratio is=6 hits

TCSS422: Operating Systems [Spring 2024]
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Consider a 3-element cache. With a FIFO
replacement policy, how many hits occur with the
following page access sequence:
12013120213
2 hits
3 hits
4 hits
5 hits
6 hits
= May 23, 208 th presenttiorss s AT SRS A OIS TP SR e g
100
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Consider a 3-element cache. With an LRU
replacement policy, how many hits occur with the
following page access sequence:

12013120213
2 hits
3 hits
4 hits
5 hits
6 hits
T My 25, 203 e presenttortis s ST NG TS TP RSP P o

101

WORKLOAD EXAMPLES: NO-LOCALITY

= No-Locality (Random Access) Workload
= Perform 10,000 random page accesses
= Across set of 100 memory pages

The No-Locality Workload

A i
100%—]| /// ////
7 #
80% — //// //
7 .
s / y When the cache is
S e / // Jp— large enough to fit
£ / yd — RU the entire workload,
o | / 4 FIFO s )
o / % — RAND it doesn’t matter
ol S which policy you use.
g1y
i
\ \ \ I I >

Cache Size (Blocks)
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Hit Rate

WORKLOAD EXAMPLES: 80/20

= 80/20 Workload
= Perform 10,000 page accesses, against set of 100 pages
= 80% of accesses are to 20% of pages (hot pages)
= 20% of accesses are to 80% of pages (cold pages)

The 80-20 Workload
100%—

LRU is more likely
to hold onto
hot pages

80% —|
60% —

40%—

(recalls history)

20%—

Cache Size (Blocks)

May 23, 2024

L17.103
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WORKLOAD EXAMPLES: SEQUENTIAL

® | ooping sequential workload
= Refer to 50 pages in sequence: O, 1, ..., 49

= Repeat loop

The Looping-Sequential Workload

100%—|
Random performs
80%— better than FIFO and
2 / LRU for
= 8% — OPT cache sizes < 50
T / = LRU
/ FIFO
40%—| — RAND
/
— / Algorithms should provide
[ “scan resistance”
N
Cache Size (Blocks)
TCSS422: Operating Systems [Spring 2024]
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With small cache sizes, for the looping sequential
workload, why do FIFO and LRU fail to provide cache
hits?

Cache hits in this scenario require consideration of
how frequently accessed memeory is for cache
replacement

Memory accesses are unpredictable and too
random. Unpredictable accesses require a random
cache replacement policy for cache hits

Memory accesses to elements that are accessed
repeatedly are too spread apart temporally to
benefit from caching

Unlike Random cache replacement, both FIFO

and LRU fail to speculate memory accesses in
advance to improve caching

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..
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IMPLEMENTING LRU

® Implementing last recently used (LRU) requires tracking
access time for all system memory pages

® Times can be tracked with a list
® For cache eviction, we must scan an entire list

m Consider: 4GB memory system (232),
with 4KB pages (212)

m This requires 220 comparisons !!!

= Simplification is needed
= Consider how to approximate the oldest page access

TCSS422: Operating Systems [Spring 2024]
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IMPLEMENTING LRU - 2

®Harness the Page Table Entry (PTE) Use Bit
= HW sets to 1 when page is used
E0Ssetsto O

®Clock algorithm (approximate LRU)
= Refer to pages in a circular list
=Clock hand points to current page

=Loops around
IF USE_BIT=1 set to USE_BIT =0
IF USE_BIT=0 replace page

TCSS422: Operating Systems [Spring 2024]
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CLOCK ALGORITHM

® Not as efficient as LRU, but better than other
replacement algorithms that do not consider history

The 80-20 Workload

100%—| o /
30%—| //
%

Hit Rate

A4

Cache Size (Blocks)
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CLOCK ALGORITHM - 2

= Consider dirty pages in cache
= |f DIRTY (modified) bit is FALSE
=No cost to evict page from cache

= |f DIRTY (modified) bit is TRUE
=Cache eviction requires updating memory

=Contents have changed

®Clock algorithm should favor no cost eviction

TCSS422: Operating Systems [Spring 2024]
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WHEN TO LOAD PAGES

® On demand - demand paging

® Prefetching
= Preload pages based on anticipated demand

= Prediction based on locality
= Access page P, suggest page P+1 may be used

® What other techniques might help anticipate required
memory pages?
Prediction models, historical analysis
In general: accuracy vs. effort tradeoff
High analysis techniques struggle to respond in real time

TCSS422: Operating Systems [Spring 2024]
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OTHER SWAPPING POLICIES

= Page swaps / writes
=Group/cluster pages together
=Collect pending writes, perform as batch
=Grouping disk writes helps amortize latency costs

®Thrashing

=Occurs when system runs many memory intensive
processes and is low in memory

=Everything is constantly swapped to-and-from disk

TCSS422: Operating Systems [Spring 2024]
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OTHER SWAPPING POLICIES - 2

= Working sets
=Groups of related processes

*When thrashing: prevent one or more working
set(s) from running

*Temporarily reduces memory burden
=Allows some processes to run, reduces thrashing

TCSS422: Operating Systems [Spring 2024]
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QUESTIONS
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