TCSS 422 A — Spring 2024 5/28/2024
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Memory Virtualization IV:
Translation Lookaside Buffer (TLB),

Smaller Tables,
Multi-Level Page Tables,
Beyond Physical Memory

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2024]

iavjes 2028 School of Engineering and Technology, University of Washington il Tacoma

OBJECTIVES - 5/23

|' Questions from 5/21 |
= Memory Segmentation Activity + answers (available in Canvas)
® Assignment 2 - May 31
= Assignment 3 - (Tutorial) Introduction to Linux Kernel Modules
® Final exam - Thursday June 6 @ 3:40pm
® Quiz 4 - Page Tables - Due June 6 @ 11:59 am
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory

= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024 L17.2

Slides by Wes J. Lloyd L17.1

TCSS 422 A — Spring 2024

School of Engineering and Technology

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME

= Tuesday surveys: due by ~ Wed @ 11:59p

= Thursday surveys: due ~ Mon @ 11:59p

=— TCSS 422 A > Assignments

Spring 2021
Home

Announcements

* Upcoming Assignments

Zoom
Syllabus . .
¢ TCSS 422 - Online Daily Feedback Survey - 4/1
™ Awailable until Apr 5 at 11:59pm | Due Apr 5 at 10pm | -/1 pts
Nicrnssinng i N el vl cnimenne
TCSS422: Computer Operating Systems [Spring 2024]
iavies 2028 School of Engineering and Technology, University of Washington - Tacoma t73
3
TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions
[©| Question1 0.5 pts
On a scale of 1 to 10, please classify your perspective on material covered in today’s
class:
1 2 3 4 5 6 7 8 9 10
Mostly Equal Mostly
Review To Me New and Review New to Me
[| Question 2 0.5 pts
Please rate the pace of today's class:
1 2 3 4 5 6 7 8 9 1e
slow aust Right Fast
TCSS422: Computer Operating Systems [Spring 2024]
ilavj2si2028 School of Engineering and Technology, University of Washington - Tacoma L17.4
4

Slides by Wes J. Lloyd

5/28/2024

L17.2

TCSS 422 A — Spring 2024 5/28/2024
School of Engineering and Technology

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (21 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 5.90 (Y - previous 6.00)

= Please rate the pace of today’s class:
m 1-slow, 5-just right, 10-fast
= Average - 5.14 (J - previous 5.19)

TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.5

May 23, 2024

FEEDBACK FROM 5/21

= For Quiz 3, do we only have to worry for the array size 50000
or for all array sizes?

= In syncarray.c there is a compiler directive which sets the
array size to 50000

/] mmmmm e

// Synchronized Array Data Structure

#define ARRAY_SIZE 50000

= The array size can be changed by modifying this

= For quiz 3, we can assume that this constant will be changed
as heeded when the syncarray is used

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.6

May 23, 2024

Slides by Wes J. Lloyd L17.3

TCSS 422 A — Spring 2024 5/28/2024
School of Engineering and Technology

FEEDBACK - 2

= Some tips for problems with exponential math and bits:
= >>> |t can be helpful to review charts and patterns:
= 8 bits = 1 byte

® 16 bits = 2 bytes

m 32 bhits = 4 bytes

® 64 bits = 8 bytes

= 1,024 bytes = 1 kilobyte (2710)

= 1,024 kilobytes = 1 megabyte (27420)

= 1,024 megabytes = 1 gigabyte (2230)

= 1,024 gigabytes = 1 terabyte (2%40)

= 1,024 terrabytes = 1 petabyte (2750)

TCSS422: Operating Systems [Spring 2024]

L17.7
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024

FEEDBACK - 3

® For simplicity rounding is often acceptable:

= 1 Kkilobyte (27210) = 1,024 bytes »> 1,000 bytes

= 1,024 Kkilobytes (2720) = 1 megabyte > 1,000,000 bytes
= 1,024 megabytes = 1 gigabyte (2230)—>1,000,000,000 bytes
m 1,024 gigabytes = 1 terabyte (27240)-1,000,000,000,000 bytes
= 1,024 terrabytes = 1 petabyte (250)~1,000,000,000,000,000 bytes

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.8

May 23, 2024

Slides by Wes J. Lloyd L17.4

TCSS 422 A — Spring 2024

School of Engineering and Technology

2l |2 2 31072 2 18,589,934502 1 562,949,953,421 312

2 |4 2% 262,144 M [17,179,869,184 2% {1,125,899,906,842,624
2 |8 2P 1524288 2% 134,359.738,368 271 {2,251,799,813,685,248
2 |16 2 18576 |2 [68.719476,736 2 |4,503,599,627 370 4%
? |3 24 12007152 27 137438953472 23| 9,007,199,254,740,992
2 |64 22 14,194,304 238 | 274,877,906,944 23 118,014,398,509 481,984
27 |8 28 18,388,608 2% | 549,755 813,888 2| 36,028,797,018,963,968
2 1256 2 16777216 Iz;”m " 1,099,511,627,776 2% | 72,057,594,037,927,936
2 512 25 133554432 21 12,199,023,255,552 27 [144,115,188,075 855,872
E::ml‘m 2% 67,108,864 22 |4,398,046,511,104 2% | 288,230,376,151,711,744
s 27 iz |28 (8796093022208 | 576,460,752,303,423,488
22 |4006 2% |268435456 |2M [17.592186044416 2% 11,152,921,504,606,846,976
28 18192 (2% [s3es70912 (2% |35184.372,088,832 291 12,305,843,009,213,693,952
29 116,384 3‘2*,“ 1073741824 2% | 70,368.744,177 664 262 {4,611,686,018,427 387,904
25 32768 27 (2147483548 |27 [140,737488,355,328 283 19,223 372,036,854,775,808
2 165536 (2% 4204967296 (2% [281474,976,710,656 %:;m}g!,m,m,un,mssl,am
May 23, 2024 Sohoolof Enpimaening and Toehmoloty. Uniiersity of Washington - Tacora

E17:9;

FEEDBACK - 4

(2710) > 10 bits

(2740) > 40 bits

(2750) > 50 bits

2. 1,024 kilobytes = 1 megabyte
(2720) > 20 bits
3. 1,024 megabytes = 1 gigabyte
(2730) > 30 bits
4. 1,024 gigabytes = 1 terabyte

5. 1,024 terrabytes = 1 petabyte

= How many bits are required to index the following amounts of
memory?
1. 1,024 bytes = 1 kilobyte

May 23, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.10

10

Slides by Wes J. Lloyd

5/28/2024

L17.5

TCSS 422 A — Spring 2024
School of Engineering and Technology

FEEDBACK -5

= With paging, we divide an address space in fixed sized pieces
(known as the page size)

= Assuming a computer indexes memory using
1 kilobyte memory pages (2”210)
= How many unique pages are required to manage/index memory?
1 kilobyte (2710) of memory
= 1 page
" 1 megabyte (2720) of memory
= 1024 pages (2"710)
= 1 gigabyte (2730) of memory
= 1,048,576 pages (2"20)
= 1 terabyte (2240) of memory
= 1,073,741,824 pages (2°30)
= 1 petabyte (2*50) of memory
= 1,099,511,627,776 pages (2°40)

TCSS422: Operating Systems [Spring 2024]

Mavj23j2028 School of Engineering and Technology, University of Washington - Tacoma

L17.11

11

OBJECTIVES - 5/23

® Questions from 5/21
|- Memory Segmentation Activity + answers (available in Canvas]
® Assignment 2 - May 31
®m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
® Final exam - Thursday June 6 @ 3:40pm
® Quiz 4 - Page Tables - Due June 6 @ 11:59 am
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2024]

ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma

L17.12

12

Slides by Wes J. Lloyd

5/28/2024

L17.6

TCSS 422 A — Spring 2024
School of Engineering and Technology

OBJECTIVES - 5/23

® Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
|l Assignment 2 - May 31 |
m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
® Final exam - Thursday June 6 @ 3:40pm
B Quiz 4 - Page Tables - Due June 6 @ 11:59 am
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2024]

117.13
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024

13

OBJECTIVES - 5/23

® Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
® Assignment 2 - May 31
|- Assighment 3: (Tutorial) Intro to Linux Kernel Modules - June 9|
® Final exam - Thursday June 6 @ 3:40pm
® Quiz 4 - Page Tables - Due June 6 @ 11:59 am
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma L1714

May 23, 2024

14

Slides by Wes J. Lloyd

5/28/2024

L17.7

TCSS 422 A — Spring 2024 5/28/2024
School of Engineering and Technology

ASSIGNMENT 3:

INTRODUCTION TO LINUX KERNEL MODULES

m Assignment 3 provides an introduction to kernel
programming by demonstrating how to create a
Linux Kernel Module

= Kernel modules are commonly used to write device
drivers and can access protected operating system data
structures
* For example: Linux task_struct process data structure

TCSS422: Operating Systems [Spring 2024]

L17.15
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024

15

OBJECTIVES - 5/23

® Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
® Assignment 2 - May 31
®m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
| = Final exam - Thursday June 6 @ 3:40pm |
® Quiz 4 - Page Tables - Due June 6 @ 11:59 am
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma L17.16

May 23, 2024

16

Slides by Wes J. Lloyd L17.8

TCSS 422 A — Spring 2024 5/28/2024
School of Engineering and Technology

FINAL EXAM - THURSDAY JUNE 6 @

3:40PM™H

® Thursday June 6 from 3:40 to 5:40 pm
= Final (100 points)
= SHORT: similar number of questions as the midterm
= 2-hours
= Focus on new content - since the midterm (~70% new, 30% before)

= Final Exam Review -
= Complete Memory Segmentation Activity
= Complete Quiz 4
= Practice Final Exam Questions - 2" hour of May 30th class session
= Individual work
= 2 pages of notes (any sized paper), double sided
= Basic calculators allowed
= NO smartphones, laptop, book, Internet, group work

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.17

May 23, 2024

17

OBJECTIVES - 5/23

® Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
® Assignment 2 - May 31
®m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
® Final exam - Thursday June 6 @ 3:40pm
| " Quiz 4 - Page Tables - Due June 6 @ 11:59 am |
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.18

May 23, 2024

18

Slides by Wes J. Lloyd L17.9

TCSS 422 A — Spring 2024 5/28/2024
School of Engineering and Technology

OBJECTIVES - 5/23

® Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - May 31
m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
® Final exam - Thursday June 6 @ 3:40pm
B Quiz 4 - Page Tables - Due June 6 @ 11:59 am
| = Chapter 19: Translation Lookaside Buffer (TLB) |
= TLB Algorithm, Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024 117.19

19

L'
CHAPTER 19:

TRANSLATION
LOOKASIDE BUFFER
(TLB)

TCSS422: Operating Systems [Spring 2024]

iavjas janzy School of Engineering and Technology, University of Washington -

20

Slides by Wes J. Lloyd L17.10

TCSS 422 A — Spring 2024 5/28/2024
School of Engineering and Technology

TRANSLATION LOOKASIDE BUFFER

= Legacy name...

m Better name, “Address Translation Cache”

ETLB is an on CPU cache of address translations
=virtual - physical memory

TCSS422: Operating Systems [Spring 2024]

117.21
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024

21

COUNTING MEMORY ACCESSES

= Example: Use this Array initialization Code

int array[1000];

for (1 = 07 1 < 1000; i++)
array[i] = 0;

= Assembly equivalent:

0x1024 movl $0x0, (%edi, %eax,4)
0x1028 incl %eax

0x102c cmpl $0x03e8, %eax
01030 jne 0xl024

TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma L17.22

May 23, 2024

22

Slides by Wes J. Lloyd L17.11

TCSS 422 A — Spring 2024
School of Engineering and Technology

® | ocations:

VISUALIZING MEMORY ACCESSES:

FOR THE FIRST 5 LOOP ITERATIONS

Page Table[39]

School of Engineering and Technology, University of Washington - Tacoma

1224
= Page table o o o o 1 2
K
= Array Page Table[1] 1124 3
= Code I 1074 §f
0 0000 goo0d goog oood gool i
= 50 accesses 2 40100 - IR
Z 2 &
for 5 loop ® 40050 - © - o2s 3
. q <] 3
iterations 40000 ——m o n 3
1124 419
< g
I 1074 4146 T
o)
©]
1024 4096
Memory Access
May 23, 2024 TCSS422: Operating Systems [Spring 2024] 117.23

23

Page Table[39]

TRANSLATION LOOKASIDE BUFFER - 2

= Goal: \ a2
Reduce access o o o o Lz g
to the page Page Table[1] - 1124 é:
tables - 1074 “ij
0O 0oo0 onoo o0o0o0o oood - ooob g
= Example:
50 RAM accesses g 40100 4 r712
. < c =
for first 5 for-loop % 40050 7w F
iterations < a0000 —m | n u 7232 <
= Move lookups o 12 41%
from RAM to TLB 3 1m e 3
. S <1
by caching page “ o 4096
table entries
Memory Access
TCSS422: Operating Systems [Spring 2024]
ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma L1724

24

Slides by Wes J. Lloyd

5/28/2024

L17.12

TCSS 422 A — Spring 2024

5/28/2024
School of Engineering and Technology

TRANSLATION LOOKASIDE BUFFER (TLB)

= Part of the CPU’s Memory Management Unit (MMU)

®m Address translation cache

L6 TLB Hit

. i .
Logical Physical
Address TLB Address

popular v to p ’ ‘lr
Page 0

Page Table J
. Page 1
all v to p entries

Address Translation with MMU .
Physical Memory

TCSS422: Operating Systems [Spring 2024]
Mavj23j2028 School of Engineering and Technology, University of Washington - Tacoma

L17.25

25

TRANSLATION LOOKASIDE BUFFER (TLB)

= Part of the CPU’s Memory Management Unit (MMU)

® Address translation cache

| s T 1
The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

A

:

Physical Memory

Address Translation with MMU

TCSS422: Operating Systems [Spring 2024]

ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma

L17.26

26

Slides by Wes J. Lloyd L17.13

TCSS 422 A — Spring 2024 5/28/2024
School of Engineering and Technology

OBJECTIVES - 5/23

® Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
® Assignment 2 - May 31
m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
® Final exam - Thursday June 6 @ 3:40pm
B Quiz 4 - Page Tables - Due June 6 @ 11:59 am
® Chapter 19: Translation Lookaside Buffer (TLB)
| =TLB Algorithml Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024

L17.27 |

27

TLB BASIC ALGORITHM

® For: array based page table
® Hardware managed TLB

»
»

: VPN = (VirtualaAddress & VPN _MASK) >> SHIFT

: (Success , TlbEntry) = TLB Lookup (VPN)

if(Success == True){ // TLE Hit

1f (CanAccess (T1bEntry.ProtectBits) == True){
Offset = VirtualAddress & OFFSET_MASK

»PhysAddr»(leEntry.PFN << SHIFT) | offset

AccessMemory (PhysAddr)

[T B N E R T I

}else RaiseException (PROTECTION ERROR)

| Generate the physical address to access memory |

TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma L17.28

| May 23, 2024

28

Slides by Wes J. Lloyd L17.14

TCSS 422 A — Spring 2024
School of Engineering and Technology

TLB BASIC ALGORITHM - 2

11: else{ //TLB Miss

12: PTEAddr = PTBR + (VPN * sizeof (PTE))

13: » PTE = AccessMemory (PTEAddr)

14: (..) // Check for, and raise exceptions..

15:

16: TLB_ Insert(VEN , PTE.PFN , PTE.ProtectBits)

17: RetryInstruction ()

18: }

19:}

| Retry the instruction... (requery the TLB) |
iavies 2028 Zgizgfgf g::i?;:er:'ignsgy;zn]rset[:i?'ngrllggi%i]iversity of Washington - Tacoma t17.29

29

TLB - ADDRESS TRANSLATION CACHE

= Key detail:

® For a TLB miss, we first access the page table in RAM to
populate the TLB... we then requery the TLB

= All address translations go through the TLB

TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma L17.30

May 23, 2024

30

Slides by Wes J. Lloyd

5/28/2024

L17.15

TCSS 422 A — Spring 2024
School of Engineering and Technology

OBJECTIVES - 5/23

® Questions from 5/21
® Assignment 2 - May 31

® Final exam - Thursday June 6 @ 3:40pm

B Quiz 4 - Page Tables - Due June 6 @ 11:59 am

® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, [Hit-to-Miss Ratios|

® Chapter 20: Paging: Smaller Tables

= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

= Smaller Tables, Multi-level Page Tables, N-level Page Tables

= Memory Segmentation Activity + answers (available in Canvas)

m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

TCSS422: Operating Systems [Spring 2024]

Mavj23j2028 School of Engineering and Technology, University of Washington - Tacoma

L17.31

31

TLB EXAMPLE

0 int sum =0 ; OFFSET
00 08 12 16
1: for(i=0; i<10; i++){ _—
z: sum+=alil; VPN = 01
3: } VPN =03
VPN = 04
= Example: -

VPN - 06 o | am | a2
= Program address space: 256-byte wn - [:w :m :[51
= Addressable using 8 total bits (28) veni - o2 ['am [e | et

= 4 bits for the VPN (16 total pages) VPN - 09

m Page size: 16 bytes

School of Engineering and Technology, University of Washington - Tacoma

= Offset is addressable using 4-bits VPN < 13

VPN = 14

= Store an array: of (10) 4-byte integers VPN - 15
May 23, 2024 TCSS422: Operating Systems [Spring 2024] 117.32

32

Slides by Wes J. Lloyd

5/28/2024

L17.16

TCSS 422 A — Spring 2024

School of Engineering and Technology

TLB EXAMPLE - 2

School of Engineering and Technology, University of Washington - Tacoma

0: int sum = 0 ; OFFSET
00 04 12 16
1: for(i=0; i<10; i++){ VPN - 00
2: sum+=a[i]; VPN = 01
3: 1 VPN = 03
. VPN = 04
= Consider the code above: VPN - 05
L i VPN = 06 al0] | a[l | a[2
® |nitially the TLB does not know where a[] is ven = 07 [ag1 | ot | a1 | a6l
= Consider the accesses: VPN =08 | | atEl | a9l
VPN = 09
= a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], ven - 10
a[8]7 a[9] VPN = 11
= How many pages are accessed? v
VPN =13
= What happens when accessing a page not VPN - 1
in the TLB? VPN - 15
May 23, 2024 TCSS422: Operating Systems [Spring 2024] 117.33

33

TLB EXAMPLE - 3

0: int sum = 0 ; OFFSET
00 04 08 12 16
1: for(i=0; i<10; i++){ VPN - 00
2: sum+=ali]; VPN = 01
3: } VPN - 03
VPN = 04
= For the accesses: a[0], a[1], a[2], a[3], a[4], . *
VPN = 06 a[o] | am | a2
= a[5], a[6], a[7], a[8], a[9] VPN =07 | 2 | a4 | ap) | ate)
VPN = 08 | a7y | af] | a0
VPN = 09
= How many are hits? eN = 10
® How many are misses? VPN - 11
VPN - 12
= What is the hit rate? (%) I
= 70% (3 misses one for each VP, 7 hits) VPN = 14
VPN = 15
TCSS422: Operating Systems [Spring 2024]
ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma L1734

34

Slides by Wes J. Lloyd

5/28/2024

L17.17

TCSS 422 A — Spring 2024 5/28/2024
School of Engineering and Technology

TLB EXAMPLE - 4

0: int sum = 0 ; OFFSET
00 04 03 12 16
1: for(i=0; i<10; i++){ VPN < 00
2: sum+=a[i]; VPN = 01
3: 1 VPN = 03
VPN =04
. . VPN = 05
= What factors affect the hit/miss rate? - T T
U Page size VPN =07 | ap3] | ag4] | afs] | a6l
. VPN =08 | 71 | afg] | afe
= Data/Access locality (how is data accessed?) VPN = 09

Sequential array access vs. random array access V-1
* Temporal locality N

= Size of the TLB cache VRN - 13
(how much history can you store?) VPN - 14

VPN =11

VPN =15

TCSS422: Operating Systems [Spring 2024] |

L17.35
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024

35

OBJECTIVES - 5/23

® Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
® Assignment 2 - May 31
®m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
® Final exam - Thursday June 6 @ 3:40pm
® Quiz 4 - Page Tables - Due June 6 @ 11:59 am
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
| * Chapter 20: Paging: Smaller Tables |
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.36

| May 23, 2024

36

Slides by Wes J. Lloyd L17.18

TCSS 422 A — Spring 2024 5/28/2024
School of Engineering and Technology

CHAPTER 20:
PAGING:
SMALLER TABLES

TCSS422: Operating Systems [Spring 2024]

avjasa0zs School of Engineering and Technology, University of Washington -

LINEAR PAGE TABLES

mConsider array-based page tables:
= Each process has its own page table
= 32-bit process address space (up to 4GB)
= With 4 KB pages
= 20 bits for VPN
= 12 bits for the page offset

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.38

May 23, 2024

38

Slides by Wes J. Lloyd L17.19

TCSS 422 A — Spring 2024
School of Engineering and Technology

LINEAR PAGE TABLES - 2

= Page tables stored in RAM

= Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page
= Page table size 4MB / process

32
Page table size = % + 4Byte = 4AMByte

® Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

TCSS422: Operating Systems [Spring 2024]

Mavj23j2028 School of Engineering and Technology, University of Washington - Tacoma

L17.39

39

LINEAR PAGE TABLES - 2

= Page tables stored in RAM

= Support potential storage of 229 translations
= 1,048,576 pages per process @ 4 bytes/page
m Page table size 4MB / process

Page tables are too big and
consume too much memory.

Need Solutions ...

® Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

TCSS422: Operating Systems [Spring 2024]

ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma

L17.40

40

Slides by Wes J. Lloyd

5/28/2024

L17.20

TCSS 422 A — Spring 2024
School of Engineering and Technology

OBJECTIVES - 5/23

® Questions from 5/21
® Assignment 2 - May 31

® Final exam - Thursday June 6 @ 3:40pm
B Quiz 4 - Page Tables - Due June 6 @ 11:59 am
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables
|- Smaller Tables| Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

= Memory Segmentation Activity + answers (available in Canvas)

m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

TCSS422: Operating Systems [Spring 2024]

| Mavj23j2028 School of Engineering and Technology, University of Washington - Tacoma

L17.41

41

PAGING: USE LARGER PAGES

= Larger pages = 16KB = 214
m 32-bit address space: 232
m 218 = 262,144 pages

232
s

x4 =1MB per page table

= Memory requirement cut to ¥
= However pages are huge
® |[nternal fragmentation results

= 16 KB page(s) allocated for small programs with only a
few variables

TCSS422: Operating Systems [Spring 2024]

ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma

L17.42

42

Slides by Wes J. Lloyd

5/28/2024

L17.21

TCSS 422 A — Spring 2024
School of Engineering and Technology

= Process: 16KB Address Space w/ 1KB pages

PAGE TABLES: WASTED SPACE

Page Table Physical Memory
Virtual Address
Space

code 0. |
1 Allocate | . :
2) PFN valid prot present dirty
3 N 10 1 - - .

"

heap 4 / 5

AN /
0

6 \ . : :
7
8 \ - - = . -
. :
w |/
n/ 0
12 / 3 1 -~ : -

stack 13/ > : - : :
“u—

A 16KB Address Space with 1KB Pages

A Page Table For 16KB Address Space

TCSS422: Operating Systems [Spring 2024]
Mavj23j2028 School of Engineering and Technology, University of Washington - Tacoma

L17.43

43

Page Table Physical Memory
Virtual Address
Space

code

0. 4
1 \Allucate /

PFN

® Process: 16KB Address Space w/ 1KB pages

valid prot

PAGE TABLES: WASTED SPACE

present

heap Most of the page table is unused

dirty

9

w o/
n /

12/

stack 13

3 1 rw- 1 1
23 1 rw- 1 1

w—

A 16KB Address Space with 1KB Pages

A Page Table For 16KB Address Space

May 23, 2024 TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma

L17.44

44

Slides by Wes J. Lloyd

5/28/2024

L17.22

TCSS 422 A — Spring 2024
School of Engineering and Technology

OBJECTIVES - 5/23

® Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
® Assignment 2 - May 31
m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
® Final exam - Thursday June 6 @ 3:40pm
B Quiz 4 - Page Tables - Due June 6 @ 11:59 am
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables,lN-IeveI Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2024]

Mavj23j2028 School of Engineering and Technology, University of Washington - Tacoma

L17.45

45

MULTI-LEVEL PAGE TABLES

® Consider a page table:

® 32-bit addressing, 4KB pages

m 220 page table entries

= Even if memory is sparsely populated the per process page
table requires:

232

Page table size =

* 4Byte = 4MByte

212

= Often most of the 4MB per process page table is empty
= Page table must be placed in 4MB contiguous block of RAM

= MUST SAVE MEMORY!

TCSS422: Operating Systems [Spring 2024]

ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma

L17.46

46

Slides by Wes J. Lloyd

5/28/2024

L17.23

TCSS 422 A — Spring 2024 5/28/2024
School of Engineering and Technology

MULTI-LEVEL PAGE TABLES - 2

= Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table

PBTR 201 PBTR 200
PFN W ; PFN ; PFN

T
$ i 3 33
T 2 g > o
™ o 1| 200 [—>1] 12
L ™ b S g [o 1 13 s
o - - Z z =
£ z
o ic |0 - 0 - - E
1] w 100 a &
5 1| 203 1] w 100
- "
0 < The Page Directory [Page 1 of PT:Not Allocated]
B z
£ -
&
0
0 o
] & 9 -
& 0 8
1w 86 T s
T w 5 1] rw 86 £
Y 15

Linear (Left) And Multi-Level (Right) Page Tables

TCSS422: Operating Systems [Spring 2024]

L17.47
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024

47

MULTI-LEVEL PAGE TABLES - 2

= Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table
PBTR 201

23

Two level page table:
220 pages addressed with

two level-indexing
(page directory index, page table index)

Y on
- 2 0
9 S 5 2
1 rw 86 o =
1w 5 1| rw 86 &
1| rw 15
Linear (Left) And Multi-Level (Right) Page Tables
TCSS422: Operating Systems [Spring 2024]
ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma L1748

48

Slides by Wes J. Lloyd L17.24

TCSS 422 A — Spring 2024
School of Engineering and Technology

4 GB computer (2432) and 4KB pages (2212)

1. How much space is required for a 2-level page table with one page directory (PD) and
one page table (PT)?

2. How much

can a single PD pointing to a single PT address?

49

4 GB computer (2432) and 4KB pages (2412)

1. How much space is required for a 2-level page table with one page directory (PD) and
one page table (PT)?

2. How much memory can a single PD pointing to a single PT address?

wrs

(39

bis PT
10
PD 1D

oz~ Y096
. ST
VO 102 % 4 bR

[>] \Z
2
2. ZLL-—-V "//V\B a%m&

wriH A
st cond P

50

Slides by Wes J. Lloyd

5/28/2024

L17.25

TCSS 422 A — Spring 2024

School of Engineering and Technology

TCSS422: Operating Systems [Spring 2024]

May 23,2023 School of Engineering and Technology, University of Washington - Tacoma

L17.51

51

102

AR

S| 016
O%chG{Z BY Tes ‘J/
! 1090 HR

LT —

TCSS422: Operating Systems [Spring 2024]

iayj2s32022 School of Engineering and Technology, University of Washington - Tacoma

L17.52

52

Slides by Wes J. Lloyd

5/28/2024

L17.26

TCSS 422 A — Spring 2024 5/28/2024
School of Engineering and Technology

MULTI-LEVEL PAGE TABLES - 3

= Advantages

= Only allocates page table space in proportion to the
address space actually used

= Can easily grab next free page to expand page table

= Disadvantages

= Multi-level page tables are an example of a time-space
tradeoff

= Sacrifice address translation time (now 2-level) for space
= Complexity: multi-level schemes are more complex

TCSS422: Operating Systems [Spring 2024]

L17.53
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024

53

EXAMPLE

= 16KB address space, 64byte pages
= How large would a one-level page table need to be?
m 214 (address space) / 2° (page size) = 28 = 256 (pages)

0000 0oog___€9%€
0000 0001 code Flag Detail
(free) Address space 16 KB
(free) Page size 64 byte
heap Virtual address 14 bit
iz VPN 8 bit
(free) 5
Offset 6 bit
(free)
Page table entry 28(256)
stack
1111 111 stack A 16-KB Address Space With 64-byte Pages

13[12[ufw|o]8][7]6|s]a]3]2]1]0]
Offset ‘

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.54

May 23, 2024

54

Slides by Wes J. Lloyd L17.27

TCSS 422 A — Spring 2024
School of Engineering and Technology

EXAMPLE - 2

m 256 total page table entries (64 bytes each)

= 1,024 bytes page table size, stored using 64-byte pages
= (1024/64) = 16 page directory entries (PDEs)

® Each page directory entry (PDE) can hold 16 page table
entries (PTEs) e.g. lookups

= 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

= Key idea: the page table Is stored using pages too!

TCSS422: Operating Systems [Spring 2024]

L17.55
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024

55

PAGE DIRECTORY INDEX

= Now, let’s split the page table into two:
= 8 bit VPN to map 256 pages
= 4 bits for page directory index (PDI - 15t level page table)
= 6 bits offset into 64-byte page

Page Directory Index |
S

13[12]11fw0] 98| 7][6][s5]4a]3]2]1]0]
< < >
VPN Offset '
14-bits Virtual address
TCSS422: Operating Systems [Spring 2024]
ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma L1756

56

Slides by Wes J. Lloyd

5/28/2024

L17.28

TCSS 422 A — Spring 2024
School of Engineering and Technology

PAGE TABLE INDEX

= 4 bits page directory index (PDI - 15t level)
= 4 bits page table index (PTI - 24 |evel)

Page Directory Index | Page Table Index

10’\" 9

12

11

It sl7]6[s]a]3]2]1]0]

VPN ‘ Offset
14-bits Virtual address

® To dereference one 64-byte memory page,
= We need one page directory entry (PDE)
= One page table Index (PTI) - can address 16 pages

TCSS422: Operating Systems [Spring 2024]

L17.57
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024

57

EXAMPLE - 3

= For this example, how much space is required to store as a
single-level page table with any number of PTEs?

= 16KB address space, 64 byte pages
m 256 page frames, 4 byte page size
= 1,024 bytes required (single level)

= How much space is required for a two-level page table with
only 4 page table entries (PTEs) ?

m Page directory = 16 entries x 4 bytes (1 x 64 byte page)
= Page table = 16 entries (4 used) x 4 bytes (1 x 64 byte page)
m 128 bytes required (2 x 64 byte pages)

= Savings = using just 12.5% the space !!!

TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma L17.58

May 23, 2024

58

Slides by Wes J. Lloyd

5/28/2024

L17.29

TCSS 422 A — Spring 2024
School of Engineering and Technology

For this example, how much space is required to store as a single-level page table
with any number of PTEs?
16KB address space, 64 byte pages, 256 page frames, 4 byte page size

Storage requirement: bytes required (single level)

59

For this example, how much space is required to store as a single-level page table
with any number of PTEs?
16KB address space, 64 byte pages, 256 page frames, 4 byte page size

P T

ZH.._) 16WB 2.4 m
Zc’ﬁ 6 (:yk.s P St2@

™

2 2_63 =" faves—»ZSG

ZSC) &oc\'\e/\—l-f;/ cests Y by,}_(s
256 catres * L{ b)//f—es = LOZ‘{ fo>/+c <
[B
Storage requirement: bytes required (single level)

60

Slides by Wes J. Lloyd

5/28/2024

L17.30

TCSS 422 A — Spring 2024 5/28/2024
School of Engineering and Technology

How much space is required for a two-level page table with only 4 page table entries
(PTEs) ? (one page each for code segment, stack segment, heap segment, data segment)
16KB address space, 64 byte pages, 256 page frames, 4 byte page size

Page directory = 16 entries x 4 bytes (1 x 64 byte page)
Page table = 16 entries (4 used) x 4 bytes (1 x 64 byte page)
Store requirement = 128 bytes required (2 x 64 byte pages)

Savings =

61

How much space is required for a two-level page table with only 4 page'table entries
(PTEs) ? (one page each for code segment, stack segment, heap segment, data segment)
16KB address space, 64 byte pages, 256 page frames, 4 byte page size

3 b1 VPN re ¢ Pt
PD s G\ s €
oo —> et 0
P 16 % ¢
3 AN
Z\t>
/ 15
5 (CNULL | o2 e
(S Q
16 % S oyres lo X by fes
eg\ \DYH) 4 (DL| \Q)l‘)’c S
/
|24 by tes 0\107_(/
= 12¢
B 6 saneS 14 ey TS
Page directory = 16 entries x 4 bytes (1 x 64 byte page) \zs/ lort=12. 5471:

Page table = 16 entries (4 used) x 4 bytes (1 x 64 byte page)
Store requirement = 128 bytes required (2 x 64 byte pages)
Savings =

62

Slides by Wes J. Lloyd L17.31

TCSS 422 A — Spring 2024
School of Engineering and Technology

32-BIT EXAMPLE

= Consider: 32-bit address space, 4KB pages, 22° pages
= Only 4 mapped pages

\’)_‘%q.o
= Single level: 4 MB (we’ve done this before)

= Two level: (old VPN was 20 bits, split in half)

= Page directory = 210 entries x 4 bytes = 1 x 4 KB page

= Page table = 4 entries x 4 bytes (mapped to 1 4KB page)
= 8KB (8,192 bytes) required

® Savings = using just.,7_8_ % the space !!!

= 100 sparse processes now require < 1MB for page tables
= 8KB x 100 = 800KB

—_—

TCSS422: Operating Systems [Spring 2024]

Mavj23j2028 School of Engineering and Technology, University of Washington - Tacoma

L17.63

63

OBJECTIVES - 5/23

® Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
® Assignment 2 - May 31
®m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
® Final exam - Thursday June 6 @ 3:40pm
® Quiz 4 - Page Tables - Due June 6 @ 11:59 am
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables

= Smaller Tables, Multi-level Page Tablesl N-level Page Tables

= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2024]

ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma

L17.64

64

Slides by Wes J. Lloyd

5/28/2024

L17.32

TCSS 422 A — Spring 2024

School of Engineering and Technology

WE WILL RETURN AT
5:00 PM

TCSS422: Operating Systems [Spring 2024]
avjasa0zs School of Engineering and Technology, University of Washington -

MORE THAN TWO LEVELS - 2

= Page table entries per page = 512 / 4 = 128
= 7 bytes - for page table index (PTI)

3029282726252423222120191817161514131211109 8 76 54 3 21 0

[T P e e

Page Directory Index | Page Table Index |
VPN offset
ET] Detail
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs ——1—> log,128 =7

TCSS422: Operating Systems [Spring 2024]
ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma

L17.66

66

Slides by Wes J. Lloyd

5/28/2024

L17.33

TCSS 422 A — Spring 2024
School of Engineering and Technology

MORE THAN TWO LEVELS - 3

= Consider 1 GB computer: 23°=1GB RAM, 512-byte (2° pages)
m 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...

® Page size = 512 bytes * 4 bytes per addr

302928 27262524232221201918171615141312111098 76 54 3 21 0

LT e

Page Directory Index

VPN offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs ——> log,128 =7

TCSS422: Operating Systems [Spring 2024]

L17.67
School of Engineering and Technology, University of Washington - Tacoma 6

May 23, 2024

67

MORE THAN TWO LEVELS - 3

= Consider 1 GB computer: 239=1GB RAM, 512-byte (2° pages)

m 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...

= Pagosaine 2o LA buton nor od.

Can't Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

Virtual address bit

Page size 512 byte

VPN 21 bit

Offset 9 bit

Page entry per page 128 PTEs —— 1> log,128 =7

May 23, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.68

68

Slides by Wes J. Lloyd

5/28/2024

L17.34

TCSS 422 A — Spring 2024
School of Engineering and Technology

MORE THAN TWO LEVELS - 3

Need three level page table:

Page directory 0 (PD Index 0)

Page directory 1 (PD Index 1)
Page Table Index

Virtual address bit

Page size 512 byte

VPN 21 bit

Offset 9 bit

Page entry per page 128 PTEs ——> log,128 =7

= Consider 1 GB computer: 23°=1GB RAM, 512-byte (22 pages)
m 214 = 16,384 page directory entries (PDEs) are required
= When usmg 27 (128 entry) page tables...

TCSS422: Operating Systems [Spring 2024]

L17.
School of Engineering and Technology, University of Washington - Tacoma 69

May 23, 2024

69

MORE THAN TWO LEVELS - 4

= We can now address 1GB with“fine grained” 512 byte pages
= Using multiple levels of indirection

3029282726252423222120191817161514131211109 8 76 54 3 2

||||||H||H| |||||||||

’E Page Table Index

VPN

® Consider the implications for address translation!

= How much space is required for a virtual address space with 4
entries on a 512-byte page? (let's say 4 32-bit integers)

= PDO 1 page, PD1 1 page, PT 1 page = 1,536 bytes

= Memory Usage= 1,536 (3-level) / 8,388,608 (1-level) = .0183% !!!

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024 L17.70

70

Slides by Wes J. Lloyd

5/28/2024

L17.35

TCSS 422 A — Spring 2024

School of Engineering and Technology

TCSS422: Operating Systems [Spring 2024]

Mavjas 2028 School of Engineering and Technology, University of Washington - Tacoma L117'7
71
22 :\6B 27 : 812 byreraresize (swvele
Level_
z3u/2°\ = 22" pages —3 2 illion PAGRS Pl
i TABLEL
2 %y bytes =3 2 ,; \(
JyPN -2 bifs
PT .
Threg
Levet L
Pe-
177 TaslLL
% % 4 AR 128 Y
o F 5\ 82
{1,536 bymcs
TCSS422: Operating Systems [Spring 2024] 117.7

ilavj2si2028 School of Engineering and Technology, University of Washington - Tacoma

72

Slides by Wes J. Lloyd

5/28/2024

L17.36

TCSS 422 A — Spring 2024
School of Engineering and Technology

ADDRESS TRANSLATION CODE

// 5-level Linux page table address lookup
//

// Inputs:
// mm_struct - process’s memory map struct
// vpage - virtual page address

// Define page struct pointers
pgd_t *pgd;

p4d_t *p4d;

pud_t *pud;

pmd_t *pmt;

pte_t *pte;

struct page *page;

TCSS422: Operating Systems [Spring 2024]

Mavj23j2028 School of Engineering and Technology, University of Washington - Tacoma

L17.73

73

ADDRESS TRANSLATION - 2

pgd_offset():
pgd = pgd_offset (mm, vpage); Takes a vpage address and the mm_struct
if (pgd_none(*pgd) || pgd_bad(*pgd))| forthe process, returns the PGD entry that
return O; covers the requested address...
p4d = p4d_offset(pgd, vpage);
if (p4d_none(*p4d) || p4d_bad(*p4d)) 4d/pud/pmd_offset():

return O0;
pud = pud_offset (p4d, vpage);
if (pud_none(*pud) || pud_bad(*pud))

relevant p4d/pud/pmd.

Takes a vpage address and the
pgd/p4d/pud entry and returns the

return O;

pmd = pmd_offset (pud, vpage);

if (pmd_none(*pmd) || pmd_bad(*pmd))
return O;

if (! (pte = pte_offset_map (pmd, vpage)))

return 0;
: ’ pte_unmap()
if (! (page = pte_page (*pte))) te_unma

return O;

for the page table entry

release temporary kernel mapping

physical page_addr = page_to_phys (page)
pte_unmap (pte) ;
return physical_page_addr; // param to send back

TCSS422: Operating Systems [Spring 2024]

ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma

L17.74

74

Slides by Wes J. Lloyd

5/28/2024

L17.37

TCSS 422 A — Spring 2024
School of Engineering and Technology

INVERTED PAGE TABLES

= Keep a single page table for each physical page of memory

= Consider 4GB physical memory
= Using 4KB pages, page table requires 4MB to map all of RAM

= Page table stores
= Which process uses each page

= Which process virtual page (from process virtual address
space) maps to the physical page

m All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

= Finding process memory pages requires search of 220 pages
= Hash table: can index memory and speed lookups

TCSS422: Operating Systems [Spring 2024]

Mavj23j2028 School of Engineering and Technology, University of Washington - Tacoma

L17.75

75

MULTI-LEVEL PAGE TABLE EXAMPLE

= Consider a 16 MB computer which indexes memory using 4KB
pages

= (#1) For a single level page table, how many pages are
required to index memory? :

= (#2) How many bits are required for the VPN?

= (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many offset bits are required?

= (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

TCSS422: Operating Systems [Spring 2024]

ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma

L17.76

76

Slides by Wes J. Lloyd

5/28/2024

L17.38

TCSS 422 A — Spring 2024
School of Engineering and Technology

MULTI LEVEL PAGE TABLE EXAMPLE - 2

= (#5) How many bytes (or KB) are required for a single level
page table?

m | et’'s assume a simple HelloWorld.c program.

= HelloWorld.c requires virtual address translation for 4 pages:
= 1 - code page 1 - stack page
=1 - heap page 1 - data segment page

= (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

= (#7) How many bits are required for the Page Table Index
(PTNH?

TCSS422: Operating Systems [Spring 2024]

L17.77
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024

77

MULTI LEVEL PAGE TABLE EXAMPLE - 3

m Assume each page directory entry (PDE) and page table entry
(PTE) requires 4 bytes:
= 6 bits for the Page Directory Index (PDI)
= 6 bits for the Page Table Index (PTI)
= 12 offset bits
= 8 status bits

= (#8) How much total memory is required to index the
HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

= HINT: we need to allocate one Page Directory and one Page
Table...

= HINT: how many entries are in the PD and PT

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024 L17.78

78

Slides by Wes J. Lloyd

5/28/2024

L17.39

TCSS 422 A — Spring 2024
School of Engineering and Technology

MULTI LEVEL PAGE TABLE EXAMPLE - 4

= (#9) Using a single page directory entry (PDE) pointing to a
single page table (PT), if all of the slots of the page table (PT)
are in use, what is the total amount of memory a two-level
page table scheme can address?

= (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme
consume compared to the 1-level scheme?

® HINT: two-level memory use / one-level memory use

TCSS422: Operating Systems [Spring 2024]

L17.79
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024

79

ANSWERS
= #1 - 4096 pages
= #2 - 12 bits
= #3 - 12 bits
B #4 - 4 bytes
m#5 - 4096 x 4 = 16,384 bytes (16KB)
= #6 - 6 bits
= #7 - 6 bits
= #8 - 256 bytes for Page Directory (PD) (64 entries x 4 bytes)
256 bytes for Page Table (PT) TOTAL = 512 bytes

® #9 - 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

= #10- 512/16384 = .03125 > 3.125%

TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma L17.80

May 23, 2024

80

Slides by Wes J. Lloyd

5/28/2024

L17.40

TCSS 422 A — Spring 2024 5/28/2024
School of Engineering and Technology

OBJECTIVES - 5/23

® Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - May 31
m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
® Final exam - Thursday June 6 @ 3:40pm
B Quiz 4 - Page Tables - Due June 6 @ 11:59 am
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
| = Chapter 21/22: Beyond Physical Memory |
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2024]

| IMavj2312028 School of Engineering and Technology, University of Washington - Tacoma

L17.81

81

CHAPTER 21/22:

BEYOND PHYSICAL
MEMORY

TCSS422: Operating Systems [Spring 2024]

iavjas janzy School of Engineering and Technology, University of Washington -

82

Slides by Wes J. Lloyd L17.41

TCSS 422 A — Spring 2024
School of Engineering and Technology

MEMORY HIERARCHY

® Disks (HDD, SSD) provide another level of storage in the
memory hierarchy

Registers

Cache

Main Memory

Mass Storage(hard disk, tape, etc...)

Memory Hierarchy in modern system

TCSS422: Operating Systems [Spring 2024]

L17.83
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024

83

MOTIVATION FOR

EXPANDING THE ADDRESS SPACE

® Provide the illusion of an address space larger than
physical RAM

® For a single process
= Convenience
= Ease of use

= For multiple processes

= Large virtual memory space supports running
many concurrent processes. . .

TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma L17.84

May 23, 2024

84

Slides by Wes J. Lloyd

5/28/2024

L17.42

TCSS 422 A — Spring 2024
School of Engineering and Technology

LATENCY TIMES

®Designh considerations:
= SSDs 4x the time of DRAM
= HDDs 80x the time of DRAM

Action Latency (ns) (ps)
L1 cache reference 0.5ns
L2 cache reference 7 ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1
Read 4K randomly from SSD* 150,000 ns 150 ps ~1GB/sec 55D
Read 1 MB sequentially from memory 250,000 ns 250 ps
Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 ps | 1 ms ~1GB/secSSD,4X memory
Read 1 MB sequentially from disk 20,000,000 ns 20,000 ps 20 ms 80x memory, 20X 55D

= Latency nhumbers every programmer should know
= From: https://gist.github.com/jboner/2841832#file-latency-txt

TCSS422: Operating Systems [Spring 2024]

L17.85
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024

85

OBJECTIVES - 5/23

® Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
® Assignment 2 - May 31
®m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
® Final exam - Thursday June 6 @ 3:40pm
® Quiz 4 - Page Tables - Due June 6 @ 11:59 am
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms| Swapping Policies

TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma L17.86

May 23, 2024

86

Slides by Wes J. Lloyd

5/28/2024

L17.43

TCSS 422 A — Spring 2024 5/28/2024
School of Engineering and Technology

SWAP SPACE

® Disk space for storing memory pages
® “Swap” them in and out of memory to disk as needed

PFN 0 PFN 1 PFN 2 PFN 3
Physical Proc 0 Proc1 Proc1 Proc2
Memory [VPN 0] [VPN 2] [VPN 3] VPN 0]

Block 0 Block 1 Block 2 Block 3 Block4 Block 5 Block6 Block 7

Swap Proc0 Proc0
Space | [VPN 1] | [VPN 2]

Proc 1 Proc 1 Proc 3 Proc 2 Proc 3

(Freel | npnop | veN 1 | (VPN O] | VPN 1] | VPN 1]

Physical Memory and Swap Space

TCSS422: Operating Systems [Spring 2024]

Mavj23j2028 School of Engineering and Technology, University of Washington - Tacoma

L17.87

87

SWAP SPACE - 2

= The size of the swap space can be seen using the Linux free
command: “free -h”

wlloyd@dione:~$ free -h
total shared buff/cache available

30G 1.3G 4.4G 17G
31G

= With sufficient disk space, a common allocation is to create
Swap space greater than or equal to physical RAM

TCSS422: Operating Systems [Spring 2024]

ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma

L17.88

88

Slides by Wes J. Lloyd L17.44

TCSS 422 A — Spring 2024
School of Engineering and Technology

SWAP SPACE - 3

m Swap space lives on a separate logical volume in Ubuntu Linux
that is managed separately from the root file system

= Check logical volumes with “sudo Ivdisplay” command:

- Logical volume ---

Path J/devfubuntu-vg/swap_1

Name swap_1

Name ubuntu-vg

uuID 0 -4M33-2YXY-YETH-wf7V-93vF-QRQytG

Write Access read/write

Creation host, time ubuntu, 2018-09-30 15:44:16 -0700
available

976.00 MiB
244
Segments il
Allocation inherit
Read ahead sectors auto
- currently set to 256
Block device 253:1

m See also “lvm lvs” command

TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma L17.89

May 23, 2024

89

PAGE LOCATION

= Memory pages are:
= Stored in memory
= Swapped to disk

= Present bit
= |[n the page table entry (PTE) indicates if page is present

= Page fault
= Memory page is accessed, but has been swapped to disk

TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma L17.90

May 23, 2024

90

Slides by Wes J. Lloyd

5/28/2024

L17.45

TCSS 422 A — Spring 2024
School of Engineering and Technology

PAGE FAULT

® OS steps in to handle the page fault
® Loading page from disk requires a free memory page

= Page-Fault Algorithm

PFN = FindFreePhysicalPage ()
if (PFN == -1) // no free
PFN = EvictPage ()
DiskRead (PTE.DiskAddr, pfn)
PTE.present = True

PTE.PFN = PFN //

I N T

RetryInstruction()

TCSS422: Operating Systems [Spring 2024]

L17.91
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024

91

PAGE REPLACEMENTS

= Page daemon
= Background threads which monitors swapped pages

= L ow watermark (LW)
= Threshold for when to swap pages to disk
= Daemon checks: free pages < LW
= Begin swapping to disk until reaching the highwater mark

= High watermark (HW)
= Target threshold of free memory pages
= Daemon free until: free pages >= HW

TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma L17.92

May 23, 2024

92

Slides by Wes J. Lloyd

5/28/2024

L17.46

TCSS 422 A — Spring 2024 5/28/2024
School of Engineering and Technology

OBJECTIVES - 5/23

® Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - May 31
m Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
® Final exam - Thursday June 6 @ 3:40pm
B Quiz 4 - Page Tables - Due June 6 @ 11:59 am
® Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
® Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memor
= Swapping Mechanisms Swapping Policiesl
Schoolof Engineering and Teehnaloy, Uniersty of Washington - Tacoma

May 23, 2024

L17.93

93

REPLACEMENT @

POLICIES

TCSS422: Operating Systems [Spring 2024]

iavjas janzy School of Engineering and Technology, University of Washington -

94

Slides by Wes J. Lloyd L17.47

TCSS 422 A — Spring 2024 5/28/2024
School of Engineering and Technology

CACHE MANAGEMENT

= Replacement policies apply to “any” cache
® Goal is to minimize the number of misses
= Average memory access time (AMAT) can be estimated:

‘ AMAT = (Pyic * Tyr) + (Pusiss * Tp) ‘

Argument Meaning

Ty The cost of accessing memory (time)
Tp The cost of accessing disk (time)
Py The probability of finding the data item in the cache(a hit)
Puiss The probability of not finding the data in the cache(a miss)
= Consider T,; = 100 ns, T, = 10ms
= Consider P,;; = .9 (90%), P s = .1

=.001

= Consider P,; = .999 (99.9%), P

miss

TCSS422: Operating Systems [Spring 2024]

L17.95
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024

95

OPTIMAL REPLACEMENT POLICY

= What if:
= We could predict the future (... with a magical oracle)
= All future page accesses are known
= Always replace the page in the cache used farthest in the future

® Used for a comparison
= Provides a “best case” replacement policy

® Consider a 3-element empty cache with the following page

accesses:
What is the hit/miss ratio?

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

01201303121

May 23, 2024 L17.96

96

Slides by Wes J. Lloyd L17.48

TCSS 422 A — Spring 2024 5/28/2024

School of Engineering and Technology

FIFO REPLACEMENT

® Queue based

= Always replace the oldest element at the back of cache
= Simple to implement

® Doesn’t consider importance... just arrival ordering

® Consider a 3-element empty cache with the following
page accesses:

01201303121
= What is the hit/miss ratio? m

® How is FIFO different than LRU? LRU incorporates history

TCSS422: Operating Systems [Spring 2024]
Mavj23j2028 School of Engineering and Technology, University of Washington - Tacoma

L17.97

97

RANDOM REPLACEMENT

= Pick a page at random to replace
= Simple and fast implementation
= Performance depends on luck of random choices

01201303121

50

40

Frequency
w
=]

N
=)

-
=)

o

1 2 3 4 5 6
Number of Hits

Random Performance over 10,000 Trials

TCSS422: Operating Systems [Spring 2024]
ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma

L17.98

98

Slides by Wes J. Lloyd L17.49

TCSS 422 A — Spring 2024
School of Engineering and Technology

HISTORY-BASED POLICIES

® | RU: Least recently used

= Always replace page with oldest access time (front)

= Always move end of cache when element is read again

= LRU requires constant reorganization of the cache

® Considers temporal locality (when pg was last accessed)

01201303121 What Is the hit/miss ratio?

® LFU: Least frequently used m

= Always replace page with the fewest # of accesses (front)
® Incorporates frequency of use - must track pg accesses

® Consider frequency of page accesses

01201303121 Hit/miss ratio is=6 hits

TCSS422: Operating Systems [Spring 2024]

L17.99
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024

99
"u . . n
Consider a 3-element cache. With a FIFO
replacement policy, how many hits occur with the
following page access sequence:
12013120213
2 hits
3 hits
4 hits
5 hits
6 hits
= May 23, 208 th presenttiorss s AT SRS A OIS TP SR e g
100

Slides by Wes J. Lloyd

5/28/2024

L17.50

TCSS 422 A — Spring 2024
School of Engineering and Technology

"

Consider a 3-element cache. With an LRU
replacement policy, how many hits occur with the
following page access sequence:

12013120213
2 hits
3 hits
4 hits
5 hits
6 hits
T My 25, 203 e presenttortis s ST NG TS TP RSP P o

101

WORKLOAD EXAMPLES: NO-LOCALITY

= No-Locality (Random Access) Workload
= Perform 10,000 random page accesses
= Across set of 100 memory pages

The No-Locality Workload

A i
100%—]| /// ////
7 #
80% — //// //
7 .
s / y When the cache is
S e / // Jp— large enough to fit
£ / yd — RU the entire workload,
o | / 4 FIFO s)
o / % — RAND it doesn’t matter
ol S which policy you use.
g1y
i
\ \ \ I I >

Cache Size (Blocks)

TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma L17.102

| May 23, 2024

102

Slides by Wes J. Lloyd

5/28/2024

L17.51

TCSS 422 A — Spring 2024

School of Engineering and Technology

Hit Rate

WORKLOAD EXAMPLES: 80/20

= 80/20 Workload
= Perform 10,000 page accesses, against set of 100 pages
= 80% of accesses are to 20% of pages (hot pages)
= 20% of accesses are to 80% of pages (cold pages)

The 80-20 Workload
100%—

LRU is more likely
to hold onto
hot pages

80% —|
60% —

40%—

(recalls history)

20%—

Cache Size (Blocks)

May 23, 2024

L17.103

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

103

WORKLOAD EXAMPLES: SEQUENTIAL

® | ooping sequential workload
= Refer to 50 pages in sequence: O, 1, ..., 49

= Repeat loop

The Looping-Sequential Workload

100%—|
Random performs
80%— better than FIFO and
2 / LRU for
= 8% — OPT cache sizes < 50
T / = LRU
/ FIFO
40%—| — RAND
/
— / Algorithms should provide
[“scan resistance”
N
Cache Size (Blocks)
TCSS422: Operating Systems [Spring 2024]
ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma L17.104

104

Slides by Wes J. Lloyd

5/28/2024

L17.52

TCSS 422 A — Spring 2024 5/28/2024
School of Engineering and Technology

With small cache sizes, for the looping sequential
workload, why do FIFO and LRU fail to provide cache
hits?

Cache hits in this scenario require consideration of
how frequently accessed memeory is for cache
replacement

Memory accesses are unpredictable and too
random. Unpredictable accesses require a random
cache replacement policy for cache hits

Memory accesses to elements that are accessed
repeatedly are too spread apart temporally to
benefit from caching

Unlike Random cache replacement, both FIFO

and LRU fail to speculate memory accesses in
advance to improve caching

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

105

IMPLEMENTING LRU

® Implementing last recently used (LRU) requires tracking
access time for all system memory pages

® Times can be tracked with a list
® For cache eviction, we must scan an entire list

m Consider: 4GB memory system (232),
with 4KB pages (212)

m This requires 220 comparisons !!!

= Simplification is needed
= Consider how to approximate the oldest page access

TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma L17.106

May 23, 2024

106

Slides by Wes J. Lloyd L17.53

TCSS 422 A — Spring 2024
School of Engineering and Technology

IMPLEMENTING LRU - 2

®Harness the Page Table Entry (PTE) Use Bit
= HW sets to 1 when page is used
E0Ssetsto O

®Clock algorithm (approximate LRU)
= Refer to pages in a circular list
=Clock hand points to current page

=Loops around
IF USE_BIT=1 set to USE_BIT =0
IF USE_BIT=0 replace page

TCSS422: Operating Systems [Spring 2024]

Mavj23j2028 School of Engineering and Technology, University of Washington - Tacoma

L17.107

107

CLOCK ALGORITHM

® Not as efficient as LRU, but better than other
replacement algorithms that do not consider history

The 80-20 Workload

100%—| o /
30%—| //
%

Hit Rate

A4

Cache Size (Blocks)

TCSS422: Operating Systems [Spring 2024]

ayj2s RU2s School of Engineering and Technology, University of Washington - Tacoma

L17.108

108

Slides by Wes J. Lloyd

5/28/2024

L17.54

TCSS 422 A — Spring 2024
School of Engineering and Technology

CLOCK ALGORITHM - 2

= Consider dirty pages in cache
= |f DIRTY (modified) bit is FALSE
=No cost to evict page from cache

= |f DIRTY (modified) bit is TRUE
=Cache eviction requires updating memory

=Contents have changed

®Clock algorithm should favor no cost eviction

TCSS422: Operating Systems [Spring 2024]

L17.109
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024

109

WHEN TO LOAD PAGES

® On demand - demand paging

® Prefetching
= Preload pages based on anticipated demand

= Prediction based on locality
= Access page P, suggest page P+1 may be used

® What other techniques might help anticipate required
memory pages?
Prediction models, historical analysis
In general: accuracy vs. effort tradeoff
High analysis techniques struggle to respond in real time

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024 L17.110

110

Slides by Wes J. Lloyd

5/28/2024

L17.55

TCSS 422 A — Spring 2024
School of Engineering and Technology

OTHER SWAPPING POLICIES

= Page swaps / writes
=Group/cluster pages together
=Collect pending writes, perform as batch
=Grouping disk writes helps amortize latency costs

®Thrashing

=Occurs when system runs many memory intensive
processes and is low in memory

=Everything is constantly swapped to-and-from disk

TCSS422: Operating Systems [Spring 2024]

117.111
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024

111

OTHER SWAPPING POLICIES - 2

= Working sets
=Groups of related processes

*When thrashing: prevent one or more working
set(s) from running

*Temporarily reduces memory burden
=Allows some processes to run, reduces thrashing

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024 117.112

112

Slides by Wes J. Lloyd

5/28/2024

L17.56

TCSS 422 A — Spring 2024 5/28/2024
School of Engineering and Technology

QUESTIONS

113

Slides by Wes J. Lloyd L17.57

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 5/23
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 5/21
	Slide 7: Feedback - 2
	Slide 8: Feedback - 3
	Slide 9
	Slide 10: Feedback - 4
	Slide 11: Feedback - 5
	Slide 12: OBJECTIVES – 5/23
	Slide 13: OBJECTIVES – 5/23
	Slide 14: OBJECTIVES – 5/23
	Slide 15: Assignment 3: introduction to linux kernel modules
	Slide 16: OBJECTIVES – 5/23
	Slide 17: Final exam – Thursday June 6 @ 3:40pmth
	Slide 18: OBJECTIVES – 5/23
	Slide 19: OBJECTIVES – 5/23
	Slide 20: Chapter 19: Translation lookaside buffer (TLB)
	Slide 21: Translation lookaside buffer
	Slide 22: Counting memory accesses
	Slide 23: Visualizing Memory accesses: For the first 5 loop iterations
	Slide 24: TRANSLATION LOOKASIDE BUFFER - 2
	Slide 25: Translation lookaside buffer (TLB)
	Slide 26: Translation lookaside buffer (TLB)
	Slide 27: OBJECTIVES – 5/23
	Slide 28: Tlb basic algorithm
	Slide 29: Tlb basic algorithm - 2
	Slide 30: TLb – address translation cache
	Slide 31: OBJECTIVES – 5/23
	Slide 32: Tlb example
	Slide 33: Tlb Example - 2
	Slide 34: Tlb Example - 3
	Slide 35: Tlb example - 4
	Slide 36: OBJECTIVES – 5/23
	Slide 37: Chapter 20: Paging: smaller tables
	Slide 38: Linear page tables
	Slide 39: Linear page tables - 2
	Slide 40: Linear page tables - 2
	Slide 41: OBJECTIVES – 5/23
	Slide 42: Paging: use larger pages
	Slide 43: Page tables: wasted space
	Slide 44: Page tables: wasted space
	Slide 45: OBJECTIVES – 5/23
	Slide 46: Multi-level page tables
	Slide 47: Multi-level page tables - 2
	Slide 48: Multi-level page tables - 2
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Multi-level page tables - 3
	Slide 54: example
	Slide 55: Example - 2
	Slide 56: Page directory index
	Slide 57: Page table index
	Slide 58: Example - 3
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63: 32-bit example
	Slide 64: OBJECTIVES – 5/23
	Slide 65: We will return at 5:00 pm
	Slide 66: More than two levels - 2
	Slide 67: More than two levels - 3
	Slide 68: More than two levels - 3
	Slide 69: More than two levels - 3
	Slide 70: More than two levels - 4
	Slide 71
	Slide 72
	Slide 73: Address translation code
	Slide 74: Address translation - 2
	Slide 75: Inverted page tables
	Slide 76: Multi-level page table example
	Slide 77: Multi level page table example - 2
	Slide 78: Multi level page table example - 3
	Slide 79: Multi level page table example - 4
	Slide 80: Answers
	Slide 81: OBJECTIVES – 5/23
	Slide 82: Chapter 21/22: Beyond physical memory
	Slide 83: Memory hierarchy
	Slide 84: Motivation for expanding the address space
	Slide 85: Latency times
	Slide 86: OBJECTIVES – 5/23
	Slide 87: Swap space
	Slide 88: Swap space - 2
	Slide 89: Swap space - 3
	Slide 90: Page location
	Slide 91: Page fault
	Slide 92: Page replacements
	Slide 93: OBJECTIVES – 5/23
	Slide 94: Replacement policies
	Slide 95: Cache management
	Slide 96: Optimal replacement policy
	Slide 97: FIFO replacement
	Slide 98: Random replacement
	Slide 99: History-based policies
	Slide 100
	Slide 101
	Slide 102: Workload examples: no-locality
	Slide 103: Workload examples: 80/20
	Slide 104: Workload examples: sequential
	Slide 105
	Slide 106: Implementing LRU
	Slide 107: Implementing lru - 2
	Slide 108: Clock algorithm
	Slide 109: Clock algorithm - 2
	Slide 110: When to load pages
	Slide 111: Other swapping policies
	Slide 112: Other swapping policies - 2
	Slide 113: Questions

