TCSS 422 A — Spring 2024
School of Engineering and Technology

5/28/2024

TCSS 422: OPERATING S

Memory Virtualization |
Translation Lookaside Buffer (TLB),

Smaller Tables,
Multl-Level Page Tables,
Beyond Physical Memory

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2024]

May 23,2024 School of Engineering and Technology, University of Washington

OBJECTIVES - 5/23

|I Questions from 5/21 |
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - May 31
= Assignment 3 - (Tutorial) Introduction to Linux Kernel Modules
= Final exam - Thursday June 6 @ 3:40pm
= Quiz 4 - Page Tables - Due June 6 @ 11:59 am
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCS5422: Operating Systems [Spring 2024]

e School of Engineering and Technology, University of Washington - Tacoma

w72

= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TC55422A > Assignments

Spring 2021

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME

TCS5422: Computer Operating Systems [Spring 2024]

‘ Rlayze202 School of Engineering and Technology, University of Washington - Tacoma.

173

Home
Announcements
Joom * Upcoming Assignments
Syllabus s TCSS422 - Online Daily Feedback Survey - 4/1

i ™ Avallable until Apr 5 at 11:5%pm | DueApr3 at 10pm | -/1pts
Nizerccinne An.r e

TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions

Question 1 05 pes

On.a scale of 110 10, please classify your perspective on material covered in today's
el

1 2 3 4 5 s 7T 8 3 1
manly. et sty
i 10 e ol nevie o
Question 2 05pes

Piease rate the pace of today's class:

TCSS422: Computer Operating Systems [Spring 2024]

May 23,2024 School of Engineering and Technology, University of Washington - Tacoma L7.4

MATERIAL / PACE

class (21 respondents):
= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 5.90 (- previous 6.00

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.14 (4 - previous 5.19)

= Please classify your perspective on material covered in today’s

TCS5422: Computer Operating Systems [Spring 2024]

‘ UEREREED School of Engineering and Technology, University of Washington -Tacoma

u7s

FEEDBACK FROM 5/21

= For Quiz 3, do we only have to worry for the array size 50000
or for all array sizes?

= |n syncarray.c there is a compiler directive which sets the
array size to 50000

Jl ==cecscssosoonconononoosooconooco
// Synchronized Array Data Structure

AR e e S S
#define ARRAY_SIZE 50000

= The array size can be changed by modifying this
= For quiz 3, we can assume that this constant will be changed

TC55422: Operating Systems [Spring 2024]

(RS School of Engineering and Technology, University of Washington - Tacoma

as needed when the syncarray is used
uze

Slides by Wes J. Lloyd

L17.1

TCSS 422 A — Spring 2024 5/28/2024
School of Engineering and Technology

FEEDBACK - 2 FEEDBACK - 3

= Some tips for problems with exponentlal math and bits: = For simplliclty rounding Is often acceptable:

= >>> |t can be helpful to review charts and patterns: = 1 kilobyte (2710) = 1,024 bytes > 1,000 bytes

= 8 bits = 1 byte = 1,024 kilobytes (2720) = 1 megabyte > 1,000,000 bytes
= 16 bits = 2 bytes = 1,024 megabytes = 1 gigabyte (2230)—1,000,000,000 bytes
= 32 bits = 4 bytes = 1,024 gigabytes = 1 terabyte (2”40)~1,000,000,000,000 bytes
= 64 bits = 8 bytes = 1,024 terrabytes = 1 petabyte (2*50)~>1,000,000,000,000,000 bytes

= 1,024 bytes = 1 kilobyte (2710)

= 1,024 kilobytes = 1 megabyte (2720)
= 1,024 megabytes = 1 gigabyte (2730)
= 1,024 gigabytes = 1 terabyte (2740)
= 1,024 terrabytes = 1 petabyte (2250)

TCS5422: Operating Systems [Spring 2024] TCS5422: Operating Systems (Spring 2024]
‘ LAERES b School of Engineering and Technology, University of Washington - Tacoma w7 L ure

School of Engineering and Technology, University of Washington - Tacoma

2|2 27 131072 2® [8589,934592 2% 1562,949 953,421,312
2[4 25 262,144 2% [17,179869,184 2% [1,125,899,906, 842,624
2|8 2¥ (524288 2% 34359738368 2% 12,251,799,813,685,248 FEEDB AC K- 4
2 |16 zﬂm 1,048,576 2% [68,719476,736 214,503,599 627,370 A9
2 |2 Callll) 2 AT Mz = How many bits are required to Index the following amounts of
N 22 (4194304 238 | 274877906944 2% 18,014,398,50.481,984 memory?
27 |8 22 18,388,608 27 |549,755,813,888 2% | 36,028,797,018,963,968 1. 1,024 bytes = 1 kilobyte
ERE 2 16777216 ‘z:; i 1,099,511,627,776 2% | 72157,594/037,927,936 = (2710) > 10 bits
P [512 P Y I 2,199,023,253,352 27 [144,115,188,075,835,872 2. 1,024 kilobytes = 1 megabyte
W [0z 2% (7108864 (22 [4398,046510,104 2% 268,230 376,151,711,744 | @En)e Abiis
;M ;mu 7 [marzs |2 8796093002208 7757646075230, 423,488 3. 1,024 megabytes = 1 glgabyte
= (2"30) > 30 bits

22 Lame [2% 268435456 |2M (1759218644416 29 1,152921,504,606 846,976 4. 1,024 gigabytes = 1 terabyte
W lg192 [2® [s6s70912 2R [35184372088832 25| 2,305,843,009,213 693,952 = (2740) > 40 bits
2M (16384 E:-hrl 107 7a 824 2% | 70,368,744,177 664 251 4,611,686018,427.387,904 5. 1,024 terrabytes = 1 petabyte
75 (0768 |20 |[LUTAGH8 |27 |HOTABEHIB |20 | 92237206854 775808 * (2750) > 50 bits
20 [655% 2% 4967296 (2% [msazomeioese o | L8H67H73 709551616

St [| e sy v e i

FEEDBACK - 5 OBJECTIVES - 5/23

= With paging, we divide an address space In fixed sized pleces ® Questions from 5/21
. 2“"“’"_ ";"e Bazelize) using | = Memory Segmentation Activity + answers (available in Canvas]
1 killobyte memory pages (2710) = Assignment 2 - May 31
- ’:k‘f'l”l" :’ (;’ T re requir man Index memory? = Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
= ilobyte n of memor
.1 pagye Y ® Final exam - Thursday June 6 @ 3:40pm
=1 nggfbyte (2(;2fg)of memory = Quiz 4 - Page Tables - Due June 6 @ 11:59 am
- ages (2™
.1 gigab;teg(Z"sO) of memory = Chapter 19: Translation Lookaside Buffer (TLB)
= 1,048,576 pages (2°20) = TLB Algorithm, Hit-to-Miss Ratios
= 1 terabyte (2°40) of memory . . .
« 1,073,741,824 pages (2°30) = Chapter 20: Paging: Smaller Tables
= 1 petabyte (2"50) of memory = Smaller Tables, Multi-level Page Tables, N-level Page Tables

" 1,099,511,627,776 pages (2°40) = Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCS5422: Operating Systems [Spring 2024] TCS5422: Operating Systems [Spring 2024]
‘ UEREREED School of Engineering and Technology, University of Washington - Tacoma Hr (RS School of Engineering and Technology, University of Washington - Tacoma 2

11 12

Slides by Wes J. Lloyd L17.2

TCSS 422 A — Spring 2024
School of Engineering and Technology

OBJECTIVES - 5/23

= Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
= Asslgnment 2 - May 31
= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
= Final exam - Thursday June 6 @ 3:40pm
= Quiz 4 - Page Tables - Due June 6 @ 11:59 am
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2024] 1713
School of Engineering and Technology, University of Washington - Tacoma

‘ May 23, 2024

5/28/2024

OBJECTIVES - 5/23

= Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - May 31
| = Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June §|
= Final exam - Thursday June 6 @ 3:40pm
= Quiz 4 - Page Tables - Due June 6 @ 11:59 am
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCS5422: Operating Systems [Spring 2024]
L School of Engineering and Technology, University of Washington - Tacoma 17.1e

13

ASSIGNMENT 3:
INTRODUCTION TO LINUX KERNEL MODULES

= Assignment 3 provides an introduction to kernel
programming by demonstrating how to create a
Linux Kernel Module

= Kernel modules are commonly used to write device
drivers and can access protected operating system data
structures
= For example: Linux task_struct process data structure

TCSS422: Operating Systems [Spring 2024]
‘ [N ay2372024 School of Engineering and Technology, University of Washington - Tacoma. 7.1

14

OBJECTIVES - 5/23

= Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - May 31
= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
| = Final exam - Thursday June 6 @ 3:40pm |
= Quiz 4 - Page Tables - Due June 6 @ 11:59 am
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCS5422: Operating Systems [Spring 2024]
‘ [May23;2023 School of Engineering and Technology, University of Washington - Tacoma 1718

15

FINAL EXAM - THURSDAY JUNE 6 @
3:40PM™

= Thursday June 6 from 3:40 to 5:40 pm
= Final (100 points)
= SHORT: similar number of questions as the midterm
= 2-hours
= Focus on new content - since the midterm (~70% new, 30% before)

® Final Exam Review -
= Complete Memory Segmentation Activity
= Complete Quiz 4
= Practice Final Exam Questions - 2"¢ hour of May 30! class session
= Individual work
= 2 pages of notes (any sized paper), double sided
= Basic calculators allowed
= NO smartphones, laptop, book, Internet, group work

TCS5422: Operating Systems [Spring 2024] a7
School of Engineering and Technology, University of Washington - Tacoma

‘ May 23, 2024

16

OBJECTIVES - 5/23

= Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - May 31
= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
® Final exam - Thursday June 6 @ 3:40pm
| = Quiz 4 - Page Tables - Due June 6 @ 11:59 am |
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

7CS5422: Operating Systems [Spring 2024]
(RS School of Engineering and Technology, University of Washington - Tacoma s

17

Slides by Wes J. Lloyd

18

L17.3

TCSS 422 A — Spring 2024 5/28/2024

School of Engineering and Technology

OBJECTIVES - 5/23

= Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - May 31
= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
= Final exam - Thursday June 6 @ 3:40pm
= Quiz 4 - Page Tables - Due June 6 @ 11:59 am
|- Chapter 19: Translation Lookaside Buffer (TLB) |
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCSS422: Operating Systems [Spring 2024] u7.19
School of Engineering and Technology, University of Washington - Tacoma

‘ May 23, 2024

i

CHAPTER 19:

TRANSLATION
LOOKASIDE BUFFER
(TLB)

TCSS422: Operating Systems [Spring 2024]

ayjzsi202y School of Engineering and Technology, University of Washington - Tl L1720

19

20

TRANSLATION LOOKASIDE BUFFER

Elegacy hame...

= Better name, “Address Translation Cache”

=TLB is an on CPU cache of address translations
=virtual > physical memory

TCSS422: Operating Systems [Spring 2024]
‘ [N ay2372024 School of Engineering and Technology, University of Washington - Tacoma .21

COUNTING MEMORY ACCESSES

= Example: Use this Array initialization Code

arraylil

= Assembly equivalent:

mpl $0x03e8, keax
0x1030 jme 0x1024

0x1024 movl $0x0, (%edi, teax, 4) ‘

TCS5422: Operating Systems [Spring 2024]
‘ May 23,2024 School of Engineering and Technology, University of Washington - Tacoma w722

21

22

VISUALIZING MEMORY ACCESSES:

FOR THE FIRST 5 LOOP ITERATIONS

. Page Tabla(29]
= Locations: N -
= Page table o o o o o w2
= Array Page Table{1] um 3

= Code \ 1074

00000 0000 D000 0000 0081

= 50 accesses 2 w00 N 732
for 5 loop F 40050 «‘ . % 7282
iterations * oo = n " 7

Code(va)
CodelPry

Memary Access.

TCS5422: Operating Systems [Spring 2024]
‘ UEREREED School of Engineering and Technology, University of Washington - Tacoma s

TRANSLATION LOOKASIDE BUFFER - 2

Page Table(39)
N

= Goal: N 1224
Reduce access o a o o a Jien
to the page Page Tablel] 1

Page TableiPA)

tables \ 1074

00000 0000-DoL0— 00000001 102
= Example:

50 RAM accesses g oo <‘ N

for first 5 for-loop ¥ “ws
E

e
7282

L] % E
iterations 40000 =] LI o

= Move lookups
from RAM to TLB
by caching page
table entries

Code(va)
CodelPry

Memary Access.

7CS5422: Operating Systems [Spring 2024]
‘ (RS School of Engineering and Technology, University of Washington - Tacoma 724

23

Slides by Wes J. Lloyd

24

L17.4

TCSS 422 A — Spring 2024
School of Engineering and Technology

= Part of the CPU’s Memory Management Unit (MMU)

= Address translation cache

ne
Logical | Leokup TL8 Hit Physical
Address TLB Address
popular v to | ’—’

Page Table
all v to p entries

Address Translation with MMU Physical Memory

TRANSLATION LOOKASIDE BUFFER (TLB)

TCSS422: Operating Systems [Spring 2024]

‘ ey it School of Engineering and Technology, University of Washington - Tacoma

u7.25

5/28/2024

TRANSLATION LOOKASIDE BUFFER (TLB)

= Part of the CPU’s Memory Management Unit (MMU)
= Address translation cache

[1 e T N | —
The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches
Page Table ‘ Fage 0
all v to p entries Page L
Page 2

Page n

Physical Memory

Address Translation with MMU

TCS5422: Operating Systems [Spring 2024]

‘ e School of Engineering and Technology, University of Washington - Tacoma

11726

25

OBJECTIVES - 5/23

= Questions from 5/21
= Assignment 2 - May 31

= Final exam - Thursday June 6 @ 3:40pm
= Quiz 4 - Page Tables - Due June 6 @ 11:59 am
= Chapter 19: Translation Lookaside Buffer (TLB)

= TLB Algorithm| Hit-to-Miss Ratios

= Chapter 20: Paging: Smaller Tables

= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

= Memory Segmentation Activity + answers (available in Canvas)

= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TCSS422: Operating Systems [Spring 2024]

‘ Rlayze202 School of Engineering and Technology, University of Washington - Tacoma

u727

26

TLB BASIC ALGORITHM

= For: array based page table
= Hardware managed TLB

‘ : VEN = (VirtualAddress &

-b

> SHIFT

ue) {

& *ltlbsm:y,?w << SHIFT) | Offset
7 sMemory(Physhddr)
g) RaizeException(PROTECTION ERROR)
| Generate the physical address to access memory |
TCS5422: Operating Systems [Spring 2024]
‘ [May23;2023 School of Engineering and Technology, University of Washington - Tacoma ur.28

27

28

TLB BASIC ALGORITHM - 2

11: {
12: PTEAddr = PTEBR + (VPN * sizeof(PTE))

131 ’ pTE

14: [}

161 TLE_Insert (WEN , PTE.PFN ,
17: RetryInstruction ()

cmory (PTEAAAE)

ck for, and raise exceptions.

PTE. FrotectBits)

| Retry the instruction... (requery the TLB)

TCS5422: Operating Systems [Spring 2024]

‘ UEREREED School of Engineering and Technology, University of Washington - Tacoma

u7.29

TLB - ADDRESS TRANSLATION CACHE

= Key detail:

= For a TLB miss, we first access the page table in RAM to

populate the TLB... we then requery the TLB

= All address translations go through the TLB

TC55422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

1730

‘ May 23, 2024

29

Slides by Wes J. Lloyd

30

L17.5

TCSS 422 A — Spring 2024
School of Engineering and Technology

OBJECTIVES - 5/23

= Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - May 31
= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
= Final exam - Thursday June 6 @ 3:40pm
= Quiz 4 - Page Tables - Due June 6 @ 11:59 am
= Chapter 19: Translation Lookaside Buffer (TLB)
* TLB Algorithm, [Hit-to-MIss Ratios|
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

5/28/2024

TLB EXAMPLE

o: sum = 0 ; orFsET
0w o
1: (<107 d+nr([
2: sum+=a[i]z VPN - 01
3t W -m
= Example: -
e
s - e = =
= Program address space: 256-byte P P e
= Addressable using 8 total bits (28) v - [[
= 4 bits for the VPN (16 total pages) v
e
= Page size: 16 bytes e
w2
= Offset is addressable using 4-bits [
o
= Store an array: of (10) 4-byte integers ven -5
TCSS422: Oy ting Syst IS¢ 2024]
‘ L School of E:gei’:ee’:igngv:ned";‘sech:r;:fgy, University of Washington - Tacoma w732
o: sum = 0 ; orFsET
0w o
1: (=07 15107 d++)] [
2: sum+=a[i]z VPN - 01
3t W -m
-
= For the accesses: a[0], a[1], a[2], a[3], a[4], ™"
VPH - 08 a0 | alll | stn)
= a[5], a[6], a[7], a[8], a[9] v a1 o e | |
v~ [|
[
= How many are hits? J—
= How many are misses? e e
w2
= What is the hit rate? (%) -
= 70% (3 misses one for each VP, 7 hits) Ve - 14
e
TCSS422: Oy iting Syst [Spring 2024]
| e [EREETEETE s

34

TCSS422: Oy ing Sy [Spring 2024]
‘ LAERES b school afE:;r::e’:\gngy:‘nZ"“lsechrmrnggv, University of Washington - Tacoma 1731
0: sum = 0 ; OFFSET
o w
13 (i=0; 1<10; i++){ [
2: sum+=a[i]z VPN - 01
3 } en
. e
= Consider the code above: I
VPN - 16 al0] s
= |nitially the TLB does not know where a[] is ven -1 [[a | | o
= Consider the accesses: s
[
= a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], -
a[8], a[9] [
= How many pages are accessed? e
e
= What happens when accessing a page not P
In the TLB? w13
TCS5422: Operating Sy [Spring 2024]
‘ [N ay2372024 School of E:;r:e“e':\gngy:‘ne:;sezhnzrfgv, University of Washington - Tacoma 11733
0: sum = 0 ; OFFSET
w o o
1: (i=0; i<10; i++H){ w00 |
2: sum+=a[i]z VPN - 01
3 - 01
e
. . VPN 05 |
= What factors affect the hit/miss rate? i
- alol an
= Page size veni =07 [| e | am | a
. ven-os [| am
= Data/Access locality (how is data accessed?) I
Sequential array access vs. random array access ‘-1
. e 1t
= Temporal locality I
= Size of the TLB cache v 13
(how much history can you store?) -
et
TCS5422: Operating Sy [Spring 2024]

OBJECTIVES - 5/23

= Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - May 31
= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
® Final exam - Thursday June 6 @ 3:40pm
® Quiz 4 - Page Tables - Due June 6 @ 11:59 am
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
| = Chapter 20: Paging: Smaller Tables |
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

TCS3422: Operating Systems [Spring 2024] 1736
School of Engineering and Technology, University of Washington - Tacoma

‘ May 23, 2024

35

Slides by Wes J. Lloyd

36

L17.6

TCSS 422 A — Spring 2024
School of Engineering and Technology

5/28/2024

CHAPTER 20:

PAGING:
SMALLER TABLES

TCSS422: Operating Systems [Spring 2024]

L2 PO School of Engineering and Technology, University of Washington -

LINEAR PAGE TABLES

= Consider array-based page tables:
= Each process has its own page table
= 32-bit process address space (up to 4GB)
= With 4 KB pages
= 20 bits for VPN
= 12 bits for the page offset

TCS5422: Operating Systems [Spring 2024]
l L School of Engineering and Technology, University of Washington - Tacoma 7.38

37

LINEAR PAGE TABLES - 2

= Page tables stored in RAM
= Support potential storage of 22° translations

= 1,048,576 pages per process @ 4 bytes/page
= Page table size 4MB / process

32
Page table size = % + 4Byte = 4MByte

= Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

May 23, 2024

1739

39

OBJECTIVES - 5/23

= Questions from 5/21
= Assignment 2 - May 31

® Final exam - Thursday June 6 @ 3:40pm

= Quiz 4 - Page Tables - Due June 6 @ 11:59 am

= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios

= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

= Memory Segmentation Activity + answers (available in Canvas)

= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

= Chapter 20: Paging: Smaller Tables
= Smaller Tables| Multi-level Page Tables, N-level Page Tables

TCS5422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

l May 23, 2024

uz41

41

Slides by Wes J. Lloyd

38

LINEAR PAGE TABLES - 2

= Page tables stored in RAM
= Support potential storage of 22° translations

= 1,048,576 pages per process @ 4 bytes/page
= Page table size 4MB / process

Page tables are too big and
consume too much memory.

Need Solutions ...

= Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

TCS5422: Operating Systems [Spring 2024]
l May 23,2024 School of Engineering and Technology, University of Washington - Tacoma .40

40

PAGING: USE LARGER PAGES

= Larger pages = 16KB = 214
= 32-bit address space: 232
= 218 = 262,144 pages

32
%* 4 = 1MB per page table

= Memory requirement cut to %
= However pages are huge
= Internal fragmentation results

= 16KB page(s) allocated for small programs with only a
few variables

TCS5422: Operating Systems [Spring 2024]
l (RS School of Engineering and Technology, University of Washington - Tacoma e

42

L17.7

TCSS 422 A — Spring 2024
School of Engineering and Technology

PAGE TABLES: WASTED SPACE

= Process: 16 KB Address Space w/ 1KB pages

A 16KB Address Space with 1KB Pages

Page Table Physical Memory
Virtusl Address g
code .
T .
. PFN valid prot present dirty
s 10 1 rx 1 [}
heap “ b 0 -
s - [] - -
“
7 - o - -
® 15 1 w- 1 1
. . -
"
n 0
2 3 1 w- 1
stack 3 23 1 w 1
i
— A Page Table For 16KB Address Space

TCSS422: Operating Systems [Spring 2024]

‘ ey it School of Engineering and Technology, University of Washington - Tacoma

1743

43

OBJECTIVES - 5/23

= Questions from 5/21

= Assignment 2 - May 31

= Final exam - Thursday June 6 @ 3:40pm

= Quiz 4 - Page Tables - Due June 6 @ 11:59 am

= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios

= Chapter 20: Pa

= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms, Swapping Policies

= Memory Segmentation Activity + answers (available in Canvas)

= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

Smaller Tables
= Smaller Tables|Multi-level Page Tables, N-level Page Tables

TCSS422: Operating Systems [Spring 2024]

‘ Rlayze202 School of Engineering and Technology, University of Washington - Tacoma

u7.4s

45

MULTI-LEVEL PAGE TABLES - 2

= Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table

PaTR 201)—‘ PETR =0
3 z
3 B
5 & PN PEN IE e

School of Engineering and Technology, University of Washington - Tacoma

3 z
3]
N IR T = T =
] u |8 2 tof : :
2 2 o] o 5
1 2 £ [o] 5
R S il
[g The Pege Diraciory [Page 1 of PT:Nat Allocated
[H —
o N
ol] LoTs
o 8
=] = £ a B]
T =] % %
|
Linear (Left) And Multi-Level (Right) Page Tables
‘ e TCS5422: Operating Systems [Spring 2024] 747

47

Slides by Wes J. Lloyd

5/28/2024

PAGE TABLES: WASTED SPACE

= Process: 16 KB Address Space w/ 1KB pages
PageJﬂable Physical Memory

Virtusl

PFN valid prot present dirty

Most of the page table is unused
and full of wasted space. (73%)

stack 1 3 1 . 1 1

—
A 16KB Address Space with 1KB Pages

A Page Table For 16KB Address Space

117.44

TCS5422: Operating Systems [Spring 2024]

‘ e School of Engineering and Technology, University of Washington - Tacoma

44

MULTI-LEVEL PAGE TABLES

= Consider a page table:
= 32-bit addressing, 4KB pages
= 220 page table entries

= Even if memory is sparsely populated the per process page
table requires:

Page table size = 4Byte = 4MByte

= Often most of the 4MB per process page table is empty
= Page table must be placed in 4MB contiguous block of RAM

= MUST SAVE MEMORY!

TCS5422: Operating Systems [Spring 2024]

‘ {May 23,2024 School of Engineering and Technology, University of Washington - Tacoma

7.6

46

MULTI-LEVEL PAGE TABLES - 2

= Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table
20

pages addressed with

two level-indexing
(page directory index, page table index)

Linear (Left) And Multi-Level (Right) Page Tables

TC55422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

‘ May 23, 2024

u7.48

48

L17.8

TCSS 422 A — Spring 2024 5/28/2024

School of Engineering and Technology

4 GB computer (2%32) and 4KB pages (2°12)

1. How much space is required for a 2-level page table with one page directory (PD) and
one page table (PT)?

4 GB computer (2432) and 4KB pages (212

1. How much space is required for a 2-level page table with one page directory (PD) and
one page table (PT)?

2. How much memory can a single PD pointing to a single PT address?

oS P ,owxo PT °

2. How muc| can a single PD pointing to a single PT address?
TCSS422: Operating Systems [Spring 2024]
May 23, 2023 School of Engineering and Technology, University of Washington - Tacoma L17.51

MULTI-LEVEL PAGE TABLES - 3

= Advantages
= Only allocates page table space in proportion to the
address space actually used
= Can easily grab next free page to expand page table

= Disadvantages
= Multi-level page tables are an example of a time-space
tradeoff
= Sacrifice address translation time (now 2-level) for space
= Complexity: multi-level schemes are more complex

TCS5422; Operating Systems [Spring 2024]
(IS School of Engineering and Technology, University of Washington - Tacoma L3

53

Slides by Wes J. Lloyd

10] o=
T 4046 b
o2dx 04 ‘\ BzU£Y04%
o 4046
ECh 024 % o kB
112 byfes
1\0 L\L
.. 2% 4mb 7 b
Wt A
secon> BT
50

f’TZOz“?/ozy

KB p4

IR,
57y 5 I MDEXIAE
APS 169 4 q;ﬁ

Xﬁ
40 096
1é<€§i012 B Tes \

7 1097 HP

car’
1 NPEX

TCSS422: Operating Systems [Spring 2024]

4
May 23,2023 School of Engineering and Technology, University of Washington - Tacoma L1752

52

EXAMPLE

= 16KB address space, 64byte pages
= How large would a one-level page table need to be?
= 214 (address space) / 2% (page size) = 28 = 256 (pages)

o000 aog€ede |
0000 0001 eede

Oetail
16 4B
64 byre

heap

Page table entry (256)

stack
RECREEE =TT A 16-KB Address Space With 64-byte Pages

[13[12[nfw0[e[s[7[s[s[a[3][2]1]0
= =
Offsat

TCS3422: Operating Systems [Spring 2024] 7sa
School of Engineering and Technology, University of Washington - Tacoma

‘ May 23, 2024

54

L17.9

TCSS 422 A — Spring 2024 5/28/2024

School of Engineering and Technology

EXAMPLE - 2 PAGE DIRECTORY INDEX

= 256 total page table entries (64 bytes each) = Now, let’s split the page table into two:
= 8 bit VPN to map 256 pages
= 4 bits for page directory index (PDI - 15t level page table)

= 6 bits offset into 64-byte page

= 1,024 bytes page table size, stored using 64-byte pages
= (1024/64) = 16 page directory entries (PDEs)

= Each page directory entry (PDE) can hold 16 page table Page Directory Index |
N P ——]
entries (PTEs) e.g. lookups Blalalnl s } 3 I 7 ‘ 3 |3 } 2 I 1 [0|

VPN Offset
14-bits Virtual address

= 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

= Key Idea: the page table Is stored using pages too!

TCS5422: Operating Systems [Spring 2024] TCS5422: Operating Systems (Spring 2024]
‘ LAERES b School of Engineering and Technology, University of Washington - Tacoma L1755 L School of Engineering and Technology, University of Washington - Tacoma 17.56

55 56

PAGE TABLE INDEX EXAMPLE - 3

= For this example, how much space Is required to store as a

= 4 bits page directory index (PDI - 15t [evel)
single-level page table with any number of PTEs?

= 4 bits page table index (PTI - 2™ level)

. Page Directory Index | Page Table Index = 16KB address space, 64 byte pages
[BB]]a]a] o [s[7[6[s5]a3]2]2]0] = 256 page frames, 4 byte page size
VPN Offset = 1,024 bytes required (single level)

14-bits Virtual address
= How much space Is required for a two-level page table with
only 4 page table entrles (PTEs) ?
= Page directory = 16 entries x 4 bytes (1 x 64 byte page)
= Page table = 16 entries (4 used) x 4 bytes (1 x 64 byte page)
= 128 bytes required (2 x 64 byte pages)
= Savings = using just 12.5% the space !!!

= To dereference one 64-byte memory page,
= We need one page directory entry (PDE)
= One page table Index (PTI) - can address 16 pages

TCS5422: Operating Systems [(Spring 2024] TCS5422: Operating Systems (Spring 2024]
‘ [N ay2372024 School of Engineering and Technology, University of Washington - Tacoma 787 [May23;2023 School of Engineering and Technology, University of Washington - Tacoma 17.s8

57 58

For this example, how much space is required to store as a single-level page table
with any number of PTEs?
16KB address space, 64 byte pages, 256 page frames, 4 byte page size

Storage requirement: bytes required (single level)

59

Slides by Wes J. Lloyd

For this example, how much space is required to store as a single-level page table

with any number of PTEs?
16KB address space, 64 byte pages, 256 page frames, 4 byte page size
P 2y 16xB Lam
(o]

ZQ —> Y bytes Pale sv2ZE

2%/562 282 pages 2256

25 Wke’\#r_/ cests 4 L,/+f5

256 entres ® qk/-r-est I)OZ“{ bytes
[1%

Storage requirement: bytes required (single level)

60

TCSS 422 A — Spring 2024
School of Engineering and Technology

5/28/2024

How much space is required for a two-level page table with only 4 page table entries

16KB address space, 64 byte pages, 256 page frames 4 byte page size

Page directory = 16 entries x 4 bytes (1 x 64 byte page)
Page table = 16 entries (4 used) x 4 bytes (1 x 64 byte page)
Store requirement = 128 bytes required (2 x 64 byte pages)
Savings =

(PTEs) ? (one page each for code hea data

How much space is required for a two-level page table with only 4 page table entries

(PTEs) ? (one page each for code hea data
16KB address space, 64 byte pages, 256 page frames 4 byte page size
3 b1 VPN e ¢ R
PO [G T re

B
[W ¥ 6

PR
L\D
15 U] B o2 yteS
16 % Hoyres lo X Iy tes
(g ¥ (Y bytes
128 by tes "JD'Il&f
-

ANA G spnneS 1 eyteS
Page directory = 16 entries x 4 bytes (1 x 64 byte page) \7.8/ lozd= V2. 5’7:
Page table = 16 entries (4 used) x 4 bytes (1 x 64 byte page)
Store requirement = 128 bytes required (2 x 64 byte pages)
Savings =

61

62

32-BIT EXAMPLE

= Consider: 32-bit address space, 4KB pages, 22° pages
= Only 4 mapped pages

Q_\%qg
= Single level: 4 MB (we’ve done this before)

= Two level: (old VPN was 20 bits, split in half)
= Page directory = 210 entries x 4 bytes = 1 x 4 KB page

= 8KB (8,192 bytes) required
= Savings = usingjust.’7_§ % the space !!!

= 8KB x 100 = 800KB
—

= Page table = 4 entries x 4 bytes (mapped to 1 4KB page)

= 100 sparse processes now require < 1MB for page tables

TCSS422: Operating Systems [Spring 2024]

‘ [N ay2372024 School of Engineering and Technology, University of Washington - Tacoma

1763

OBJECTIVES - 5/23

= Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - May 31
= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
= Final exam - Thursday June 6 @ 3:40pm
= Quiz 4 - Page Tables - Due June 6 @ 11:59 am
= Chapter 19: Translation Lookaside Buffer (TLB)

= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables

= Smaller Tables, Multi-level Page Tables
= Chapter 21/22: Beyond Physical Memory

= Swapping Mechanisms, Swapping Policies

TCS5422: Operating Systems [Spring 2024]
May 23,2024 School of Engineering and Technology, University of Washington - Tacoma 7.64

63

WE WILL RETURN AT

5:00 PM

TCSS422: Operating Systems [Spring 2024]

)
avis 2022 School of Engineering and Technology. University of Washington -

65

Slides by Wes J. Lloyd

64

MORE THAN TWO LEVELS - 2

= Page table entries per page = 512 / 4 = 128
= 7 bytes - for page table index (PTI)
3029282726252423222120191817161514131211098 7654 3 21 0
[T T T T T T

< PageDvectoryindex 1 g |

VPN offset

Virtual address 30 bit

Page size 512 byte

VPN 21 bit

Offset 9 bit
[Page entry per page | 128 PTEs =+ > log,128 = 7
7CS5422: Operating Systems [Spring 2024]

‘ (RS School of Engineering and Technology, University of Washington - Tacoma L7ee

66

TCSS 422 A — Spring 2024
School of Engineering and Technology

5/28/2024

MORE THAN TWO LEVELS - 3

= 214 = 16,384 page directory entries (PDEs) are required
= When using 27 (128 entry) page tables...
= Page size = 512 bytes * 4 bytes per addr

302928272625242322 2101918171615 14131211109 8 76 54 3 21 0

Fage Directory Index

-

VPN offset
Flag Detail
Virtual address 30 bit
Page size 512 byte
VN IET
Offset loeit
Page entry perpage | 128 PTE: — g, 128=7

= Consider 1 GB computer: 239=1GB RAM, 512-byte (2° pages)

TCSS422: Operating Systems [Spring 2024]

‘ ey it School of Engineering and Technology, University of Washington - Tacoma

u7.67

MORE THAN TWO LEVELS - 3

= Consider 1 GB computer: 239=1GB RAM, 512-byte (2° pages)
= 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...
= Paggeaing et

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

Page size 512 byte
VPN 21 bit
Cffset 9 bit
Page entry per page | 128 PTEs > log,128 =7
TCS5422: Operating Systems [Spring 2024]
‘ L) AR School of Engineering and Technology, University of Washington - Tacoma L7.68

67

MORE THAN TWO LEVELS - 3

= 214 = 16,384 page directory entries (PDEs) are required
= When using 27 (128 entry) page tables...
= Pa : d
Need three level page table:
Page directory 0 (PD Index 0)

Page directory 1 (PD Index 1)
Page Table Index

Page size 512 byte
= [2bit
Ofiet 96it
Page entry per page | 128 PTEs —— > log;128=7

= Consider 1 GB computer: 23°=1GB RAM, 512-byte (2° pages)

TCSS422: Operating Systems [Spring 2024]

[N ay2372024 School of Engineering and Technology, University of Washington - Tacoma

u7.69

69

TCSS422: Operating Systems [Spring 2024]

[ayjadia02s School of Engineering and Technology, University of Washington - Tacoma

L17.7
1

71

Slides by Wes J. Lloyd

68

MORE THAN TWO LEVELS - 4

= We can now address 1GB with“fine grained” 512 byte pages
= Using multiple levels of indirection

30292827262524232221 2019181716 1514131211109 B 7654 3 21 0
< i€ - i

“Page Table Index
< < > >

VPN

= Consider the implications for address translation!

= How much space is required for a virtual address space with 4
entries on a 512-byte page? (let’s say 4 32-bit integers)

= PDO 1 page, PD1 1 page, PT 1 page = 1,536 bytes

= Memory Usage= 1,536 (3-level) / 8,388,608 (1-level) = .0183% !!!

TCS5422: Operating Systems [Spring 2024]
[May23;2023 School of Engineering and Technology, University of Washington - Tacoma uz.70

70

220168 2% s by paresize sivele
Level
2% (2% 4 27 pages —3 2 illion PAGeS Po-
TABLE
’l“ » 1 bykes —> Z7.‘>__9 ABLE
UPN -2| &iFs
o4 Th
Levit
Pe-
TasLL

May 23, 2024

TCSS422: Operating Systems [Spring 2024] 7.7
School of Engineering and Technology, University of Washington - Tacoma 2

72

TCSS 422 A — Spring 2024
School of Engineering and Technology

5/28/2024

ADDRESS TRANSLATION CODE

// 5-level Linux page table address lookup
//

// Inputs:

// mm_struct - process’s memory map struct
// vpage - virtual page address

// Define page struct pointers
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmt;

pte_t *pte;
struct page *page;
TCSS422: Operating Systems [Spring 2024]
‘ LAERES b School of Engineering and Technology, University of Washington - Tacoma 7.7

ADDRESS TRANSLATION - 2

pgd = pgd_offset(mm, vpage); Takes a vpage address and the mm_struct
if (pgd_none (*pgd) || pgd_bad (*pgd))|forthe process, returns the PGD entry that
return 0; covers the requested address.

p4d = pdd_offset(pgd, vpage);

if (p4d_none(*p4d) || p4d_bad(*p4d))
return 0;

pud = pud_offset(pd4d, vpage);

p4d/pud/pmd_offset():
Takes a vpage address and the
pgd/p4d/pud entry and returns the

if (pud_none(*pud) || pud_bad(*pud)) relevant p4d/pud/pmd.
return 0;

pmd = pmd_offset (pud, vpage);

if (pmd_none (*pmd) || pmd_bad (*pmd))
return 0;

if (!(pte = pte_offset_map(pmd, vpage)))
return 0;

} P o 20

if (!(page = pte_page (*pte))) te_unma

release temporary kernel mapping
for the page table entry

return 0;

physical_page_addr = page_to_phys (page)
pte_unmap (pte) ;
return physical_page_addr; // param to send back

TCS5422: Operating Systems [Spring 2024] ur.7a
School of Engineering and Technology, University of Washington - Tacoma

‘ May 23, 2024

73

INVERTED PAGE TABLES

= Keep a single page table for each physical page of memory

= Consider 4GB physical memory
= Using 4KB pages, page table requires 4MB to map all of RAM

= Page table stores
= Which process uses each page
= Which process virtual page (from process virtual address

space) maps to the physical page

= All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

= Finding process memory pages requires search of 22° pages

= Hash table: can index memory and speed lookups

TCSS422: Operating Systems [Spring 2024]
[N ay2372024 School of Engineering and Technology, University of Washington - Tacoma 7.7

75

MULTI LEVEL PAGE TABLE EXAMPLE - 2

= (#5) How many bytes (or KB) are required for a single level
page table?

= Let’s assume a simple HelloWorld.c program.

= HelloWorld.c requires virtual address translation for 4 pages:
= 1 - code page 1 - stack page
= 1 - heap page 1 - data segment page

= (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

= (#7) How many bits are required for the Page Table Index
(PTI)?

TCS5422: Operating Systems [Spring 2024]
UEREREED School of Engineering and Technology, University of Washington - Tacoma L

77

Slides by Wes J. Lloyd

74

MULTI-LEVEL PAGE TABLE EXAMPLE

= Consider a 16 MB computer which indexes memory using 4KB
pages

= (#1) For a single level page table, how many pages are
required to index memory?

= (#2) How many bits are required for the VPN?

= (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many offset bits are required?

= (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

TCS5422: Operating Systems [Spring 2024]
‘ Mav2312024 School of Engineering and Technology, University of Washington - Tacoma e

76

MULTI LEVEL PAGE TABLE EXAMPLE - 3

= Assume each page directory entry (PDE) and page table entry
(PTE) requires 4 bytes:
= 6 bits for the Page Directory Index (PDI)
= 6 bits for the Page Table Index (PTI)
= 12 offset bits
= 8 status bits

= (#8) How much total memory is required to index the
HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

= HINT: we need to allocate one Page Directory and one Page

Table...
= HINT: how many entries are in the PD and PT
TCS5422: Operating Systems [Spring 2024]
(EGEES D School of Engineering and Technology, University of Washington - Tacoma Lz

78

L17.13

TCSS 422 A — Spring 2024
School of Engineering and Technology

MULTI LEVEL PAGE TABLE EXAMPLE - 4

= (#9) Using a single page directory entry (PDE) pointing to a
single page table (PT), if all of the slots of the page table (PT)
are in use, what is the total amount of memory a two-level
page table scheme can address?

= (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme
consume compared to the 1-level scheme?

= HINT: two-level memory use / one-level memory use

TCSS422: Operating Systems [Spring 2024]
‘ LAERES b School of Engineering and Technology, University of Washington - Tacoma L7

5/28/2024

ANSWERS

= #1 - 4096 pages

= #2 - 12 bits

= #3 - 12 bits

= #4 - 4 bytes

= #5 - 4096 x 4 = 16,384 bytes (16KB)

= #6 - 6 bits

= #7 - 6 bits

= #8 - 256 bytes for Page Directory (PD) (64 entries x 4 bytes)
256 bytes for Page Table (PT) TOTAL = 512 bytes

= #9 - 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)
= #10- 512/16384 = .03125 > 3.125%

TCS5422: Operating Systems [Spring 2024] 17.80
School of Engineering and Technology, University of Washington - Tacoma

‘ May 23, 2024

79

OBJECTIVES - 5/23

= Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - May 31
= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
= Final exam - Thursday June 6 @ 3:40pm
= Quiz 4 - Page Tables - Due June 6 @ 11:59 am
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

80

CHAPTER 21/22:

BEYOND PHYSICAL
MEMORY

TCSS422: Operating Systems [Spring 2024]

eyj22.2028 School of Engineering and Technology, University of Washington -

| = Chapter 21/22: Beyond Physlcal Memory |
= Swapping Mechanisms, Swapping Policies
[wwvmamn [um o smentoe il eingon - oo

82

MEMORY HIERARCHY

= Disks (HDD, SSD) provide another level of storage in the
memory hierarchy

Va

/

Registers ",

,/ Cache N

AN

Main Memory \‘\

/" Mass Storage(hard disk, tape, etc.)

Memory Hierarchy in modern system

TCS5422: Operating Systems [Spring 2024] 1783
School of Engineering and Technology, University of Washington - Tacoma

‘ May 23, 2024

MOTIVATION FOR
EXPANDING THE ADDRESS SPACE

= Provide the illusion of an address space larger than
physical RAM

= For a single process
= Convenience
= Ease of use

= For multiple processes

= Large virtual memory space supports running
many concurrent processes. . .

7CS5422: Operating Systems [Spring 2024]
‘ (RS School of Engineering and Technology, University of Washington - Tacoma e

83

Slides by Wes J. Lloyd

84

L17.14

TCSS 422 A — Spring 2024 5/28/2024
School of Engineering and Technology

LATENCY TIMES OBJECTIVES - 5/23

= Design considerations: ® Questions from 5/21
= SSDs 4x the time of DRAM = Memory Segmentation Activity + answers (available in Canvas)
= HDDs 80x the time of DRAM = Assignment 2 - May 31
Action Tatency (m5)) = Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
L1 cache reference 0.5ns = Final exam - Thursday June 6 @ 3:40pm
L2 cache reference 7ns 14x L1 cache .
Mutex lockfunlook gy = Quiz 4 - Page Tables - Due June 6 @ 11:59 am
Main memory reference 100 ns 20x L2 cache, 200x L1 = Chapter 19: Translation Lookaside Buffer (TLB)
Read 4K randomly from S5D* 150,000 ns 150 ps ~1GB/sec SSD -
Read 1 MB sequentially from memory 250,000 ns 250 s TLB Algorithm, Hit-to-Miss Ratios
Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 ps_| 1 ms ~1GB/sec D, 4X memory = Chapter 20: Paging: Smaller Tables
Read 1 MB sequentially from disk 20,000,000 ns 20,000 ps 20 ms 80x memory, 20X SSD

= Smaller Tables, Multi-level Page Tables, N-level Page Tables

= Latency numbers every programmer should know = Chapter 21/22: Beyond Physical Memory
= From: https://gist.github.com/jboner/2841832#file-latency-txt < . g Policies

TCS5422: Operating Systems [Spring 2024] TCS5422: Operating Systems (Spring 2024]
‘ LAERES b School of Engineering and Technology, University of Washington - Tacoma L1785 L School of Engineering and Technology, University of Washington - Tacoma 17.86

SWAP SPACE SWAP SPACE - 2

= Disk space for storing memory pages = The size of the swap space can be seen using the Linux free
= “Swap” them in and out of memory to disk as needed Gz e =1
Wiloyd@dione:~$ free -h
PEN D PFN 1 PFN 2 PEN 3 s / e E‘-'Eﬂ-ﬂi};
76
Physical | p,o. Proc 1 Proc 1 Proc 2
Memory VPN 0] VPN 2] VPN 3] VPN 0]
= With sufficient disk space, a common allocation is to create
Swap space greater than or equal to physical RAM
Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Black 7
Swap Proc 0 Proc 0 [Free] Proc 1 Proc 1 Proc 3 Proc 2 Proc 3
Space | [VPN1] | [VPN 2] " PN O] | VPN D] | VPN 1]

VPN D) | VPN 1]

Physical Memory and Swap Space

‘ May 23, 2024

TCS8422: Operating Systems [Spring 2024] 787 D TCS5422; Operating Systems [Spring 2024] L1788
School of Engineering and Technology, University of Washington - Tacoma “Uess School of Engineering and Technology, University of Washington - Tacoma

SWAP SPACE - 3 PAGE LOCATION

= Swap space lives on a separate logical volume in Ubuntu Linux = Memory pages are:
that is managed separately from the root file system = Stored in memory

= Check logical volumes with “sudo Ivdisplay” command: = Swapped to disk

= Present bit
= |In the page table entry (PTE) indicates if page is present

= Page fault
= Memory page is accessed, but has been swapped to disk

= See also “lvm lvs” command

TCS5422; Operating Systems [Spring 2024] TCS5422: Operating Systems [Spring 2024]
‘ (IS School of Engineering and Technology, University of Washington - Tacoma Lo (EGEES D School of Engineering and Technology, University of Washington - Tacoma 1780

89 90

Slides by Wes J. Lloyd L17.15

TCSS 422 A — Spring 2024
School of Engineering and Technology

PAGE FAULT

= OS steps in to handle the page fault
= Loading page from disk requires a free memory page

= Page-Fault Algorithm

1: PPN = FindFreePhysicalPage ()
2: (PFN == -1)
3 DFN = EvictPage ()
LH DiskRead (PTE.Diskaddr, pfn)
5: PTE.present =
LH PTE.PFN = PFN
T RetryInstruction()
I e wan

5/28/2024

PAGE REPLACEMENTS

= Page daemon
= Background threads which monitors swapped pages

= Low watermark (LW)
= Threshold for when to swap pages to disk
=Daemon checks: free pages < LW
= Begin swapping to disk until reaching the highwater mark

= High watermark (HW)
= Target threshold of free memory pages
= Daemon free until: free pages >= HW

TCS5422: Operating Systems [Spring 2024] u7.92
School of Engineering and Technology, University of Washington - Tacoma

‘ May 23, 2024

91

OBJECTIVES - 5/23

= Questions from 5/21
= Memory Segmentation Activity + answers (available in Canvas)
= Assignment 2 - May 31
= Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9
= Final exam - Thursday June 6 @ 3:40pm
= Quiz 4 - Page Tables - Due June 6 @ 11:59 am
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanismsl Swapping PoIIcIesI

TCSS422: Operating Systems [Spring 2024] 17.93
School of Engineering and Technology, University of Washington - Tacoma

‘ May 23, 2024

92

REPLACEMENT

POLICIES

TCSS422: Operating Systems [Spring 2024]

eyj22.2028 School of Engineering and Technology, University of Washington -

93

CACHE MANAGEMENT

= Replacement policies apply to “any” cache
® Goal is to minimize the number of misses
= Average memory access time (AMAT) can be estimated:

| AMAT = B T + Puss)|

Argument Meaning

Ty The cost of accessing memory (time)
T, The cost of accessing disk (time)

Puie. The probability of finding the data item in the cache(a hit)

Pasiss The probability of not finding the data in the cache(a miss)

= Consider Ty, = 100 ns, T, = 10ms
= Consider Pp; = .9 (90%), Piss = -1
= Consider Py, = .999 (99.9%), P, = .001

TCS5422: Operating Systems [Spring 2024] 1795
School of Engineering and Technology, University of Washington - Tacoma

‘ May 23, 2024

OPTIMAL REPLACEMENT POLICY

= What if:
= We could predict the future (... with a magical oracle)
= All future page accesses are known
= Always replace the page in the cache used farthest in the future

= Used for a comparison
= Provides a “best case” replacement policy

= Consider a 3-element empty cache with the following page

accesses:
What is the hit/miss ratio?

TCS3422: Operating Systems [Spring 2024] 1796
School of Engineering and Technology, University of Washington - Tacoma

01201303121

‘ May 23, 2024

95

Slides by Wes J. Lloyd

96

L17.16

TCSS 422 A — Spring 2024
School of Engineering and Technology

FIFO REPLACEMENT

= Queue based

= Always replace the oldest element at the back of cache
= Simple to implement
= Doesn’t consider importance... just arrival ordering

= Consider a 3-element empty cache with the following
page accesses:

01201303121

LRU incorporates history

TCSS422: Operating Systems [Spring 2024] u7.97
School of Engineering and Technology, University of Washington - Tacoma

= What is the hit/miss ratio?
= How is FIFO different than LRU?

‘ May 23, 2024

97

HISTORY-BASED POLICIES

= LRU: Least recently used

= Always replace page with oldest access time (front)

= Always move end of cache when element is read again

= LRU requires constant reorganization of the cache

= Considers temporal locality (when pg was last accessed)

01201303121 What is the hit/miss ratio?

= LFU: Least frequently used m

= Always replace page with the fewest # of accesses (front)
= Incorporates frequency of use - must track pg accesses

= Consider frequency of page accesses

01201303121 Hit/miss ratlo Is=6 hits

5/28/2024

RANDOM REPLACEMENT

= Pick a page at random to replace
= Simple and fast implementation
= Performance depends on luck of random choices

01201303121

gn
i
NI

'
Humber of Hits
Random Performance over 10,000 Trials

\ May 23,2024 oo o Eegiinns s Tecrmoneos ntersityof Weshington - Tacoma urss
98
I- |
Consider a 3-element cache. With a FIFO
replacement policy, how many hits occur with the
following page access sequence:
12013120213
2 hits
3 hits
4 hits
5 hits
6 hits
.l May 23, 2034, TCSS422: D:em(mgjys\ems LSpr\r;q.2024] T Uu’a.l
100

WORKLOAD EXAMPLES: NO-LOCALITY

= No-Locality (Random Access) Workload
= Perform 10,000 random page accesses
= Across set of 100 memory pages
The No-Locality Workdoad

100%.

When the cache is

2
2 on — ot large enough to fit
£ — LRy the entire workload,
N FIFO = ;
B — RAND it doesn’t matter
which policy you use.
20
I
Cache Size (Blocks)
TCS5422: Operating Systems [Spring 2024]
‘ (EGEES D School of Engineering and Technology, University of Washington - Tacoma L0z

\ May 23,204 St o oghst e ot Uy of Washigton Tacoma g
99
I- -I
Consider a 3-element cache. With an LRU
replacement policy, how many hits occur with the
following page access sequence:
12013120213
2 hits
3 hits
4 hits
5 hits
6 hits
.. May 23, 2034 TCSS422: Operating Systems LSpnr;g'ZOZA] T Uu71-l
101

Slides by Wes J. Lloyd

102

L17.17

TCSS 422 A — Spring 2024
School of Engineering and Technology

WORKLOAD EXAMPLES: 80/20

= 80/20 Workload
= Perform 10,000 page accesses, against set of 100 pages
= 80% of accesses are to 20% of pages (hot pages)
= 20% of accesses are to 80% of pages (cold pages)

The 80.20 Workioad

School of Engineering and Technology, University of Washington - Tacoma

w| LRU is more likely
. to hold onto
: | et hot pages
] ¥
I (recalls history)
o
¥
A R —
IR
Cache Saze (Blocks)
‘ May 23, 2024 TCSS422: Operating Systems [Spring 2024] 117.103

WORKLOAD EXAMPLES: SEQUENTIAL

= Looping sequential workload
= Refer to 50 pages in sequence: O, 1, ..., 49
= Repeat loop
The Loaping-Sequential Worldosd
100%
Random performs

L better than FIFO and
2 LRU for
i — et cache sizes < 50
£ — LRy
- FIFO
. = RAND
205 Algorithms should provide
“scan resistance”
P
Cache Size (Blocks)
TCS5422: Operating Systems [Spring 2024]
‘ L School of Engineering and Technology, University of Washington - Tacoma L17.104

103

hits?

Cache hits in this scenario require consideration of
how frequently accessed memory is for cache
replacement

Memary accesses are unpredictable and too
random. Unpredictable accesses require a random
cache replacement policy for cache hits

Memory accesses to elements that are accessed
repeatedly are too spread apart temporally to
benefit from caching

Unlike Random cache replacement, both FIFO

and LRU fail to speculate memory accesses in
advance to improve caching

None of the above

™ o comten, .

® with small cache sizes, for the looping sequential "
workload, why do FIFO and LRU fail to provide cache

104

IMPLEMENTING LRU

= Implementing last recently used (LRU) requires tracking
access time for all system memory pages
= Times can be tracked with a list
= For cache eviction, we must scan an entire list
= Consider: 4GB memory system (232),
with 4KB pages (212)

= This requires 22° comparisons !!!

= Simplification is needed
= Consider how to approximate the oldest page access

TCS5422: Operating Systems [Spring 2024] 117.106
School of Engineering and Technology, University of Washington - Tacoma

‘ May 23, 2024

105

IMPLEMENTING LRU - 2

= Harness the Page Table Entry (PTE) Use Bit
= HW sets to 1 when page is used
m0S setsto O

= Clock algorithm (approximate LRU)
=Refer to pages in a circular list
=Clock hand points to current page

=Loops around
IF USE_BIT=1 set to USE_BIT = 0
IF USE_BIT=0 replace page

TCS5422: Operating Systems [Spring 2024]

‘ UEREREED School of Engineering and Technology, University of Washington -Tacoma

117.107

106

CLOCK ALGORITHM

= Not as efficient as LRU, but better than other
replacement algorithms that do not consider history
The 80.20 Worload

100%

3 wn
H
%
20%—] [,
i
T T T T
@ ow e #0 e
Cache Size (Blocks)
7CS5422: Operating Systems [Spring 2024]
‘ (RS School of Engineering and Technology, University of Washington - Tacoma L7108

107

Slides by Wes J. Lloyd

108

5/28/2024

L17.18

TCSS 422 A — Spring 2024 5/28/2024
School of Engineering and Technology

CLOCK ALGORITHM - 2 WHEN TO LOAD PAGES
= Consider dirty pages in cache = On demand -> demand paging
= |f DIRTY (modified) bit is FALSE = Prefetching
=No cost to evict page from cache = Preload pages based on anticipated demand

= Prediction based on locality

=|f DIRTY (modified) bit is TRUE = Access page P, suggest page P+1 may be used
=Cache eviction requires updating memory = What other techniques might help anticipate required

=Contents have changed memory pages?

Prediction models, historical analysis

In general: accuracy vs. effort tradeoff

=Clock algorithm should favor no cost eviction High analysis techniques struggle to respond in real time

‘ May 23, 2024

TCSS422: Operating Systems [Spring 2024] TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, Universiy of Washington - Tscoma 17109 L School of Engineering and Technology, University of Washington - Tacoma ur.10

109 110

OTHER SWAPPING POLICIES OTHER SWAPPING POLICIES - 2
= Page swaps / writes = Working sets
=Group/cluster pages together =Groups of related processes
=Collect pending writes, perform as batch =When thrashing: prevent one or more working
=Grouping disk writes helps amortize latency costs set(s) from running
=Temporarily reduces memory burden
=Thrashing =Allows some processes to run, reduces thrashing

=Occurs when system runs many memory intensive
processes and is low in memory

=Everything is constantly swapped to-and-from disk

‘ May 23, 2024

TCS5422: Operating Systems [(Spring 2024] TCS5422: Operating Systems (Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma w7 [May23;2023 School of Engineering and Technology, University of Washington - Tacoma n7.a12

111 112

QUESTIONS

113

Slides by Wes J. Lloyd L17.19

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 5/23
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 5/21
	Slide 7: Feedback - 2
	Slide 8: Feedback - 3
	Slide 9
	Slide 10: Feedback - 4
	Slide 11: Feedback - 5
	Slide 12: OBJECTIVES – 5/23
	Slide 13: OBJECTIVES – 5/23
	Slide 14: OBJECTIVES – 5/23
	Slide 15: Assignment 3: introduction to linux kernel modules
	Slide 16: OBJECTIVES – 5/23
	Slide 17: Final exam – Thursday June 6 @ 3:40pmth
	Slide 18: OBJECTIVES – 5/23
	Slide 19: OBJECTIVES – 5/23
	Slide 20: Chapter 19: Translation lookaside buffer (TLB)
	Slide 21: Translation lookaside buffer
	Slide 22: Counting memory accesses
	Slide 23: Visualizing Memory accesses: For the first 5 loop iterations
	Slide 24: TRANSLATION LOOKASIDE BUFFER - 2
	Slide 25: Translation lookaside buffer (TLB)
	Slide 26: Translation lookaside buffer (TLB)
	Slide 27: OBJECTIVES – 5/23
	Slide 28: Tlb basic algorithm
	Slide 29: Tlb basic algorithm - 2
	Slide 30: TLb – address translation cache
	Slide 31: OBJECTIVES – 5/23
	Slide 32: Tlb example
	Slide 33: Tlb Example - 2
	Slide 34: Tlb Example - 3
	Slide 35: Tlb example - 4
	Slide 36: OBJECTIVES – 5/23
	Slide 37: Chapter 20: Paging: smaller tables
	Slide 38: Linear page tables
	Slide 39: Linear page tables - 2
	Slide 40: Linear page tables - 2
	Slide 41: OBJECTIVES – 5/23
	Slide 42: Paging: use larger pages
	Slide 43: Page tables: wasted space
	Slide 44: Page tables: wasted space
	Slide 45: OBJECTIVES – 5/23
	Slide 46: Multi-level page tables
	Slide 47: Multi-level page tables - 2
	Slide 48: Multi-level page tables - 2
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Multi-level page tables - 3
	Slide 54: example
	Slide 55: Example - 2
	Slide 56: Page directory index
	Slide 57: Page table index
	Slide 58: Example - 3
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63: 32-bit example
	Slide 64: OBJECTIVES – 5/23
	Slide 65: We will return at 5:00 pm
	Slide 66: More than two levels - 2
	Slide 67: More than two levels - 3
	Slide 68: More than two levels - 3
	Slide 69: More than two levels - 3
	Slide 70: More than two levels - 4
	Slide 71
	Slide 72
	Slide 73: Address translation code
	Slide 74: Address translation - 2
	Slide 75: Inverted page tables
	Slide 76: Multi-level page table example
	Slide 77: Multi level page table example - 2
	Slide 78: Multi level page table example - 3
	Slide 79: Multi level page table example - 4
	Slide 80: Answers
	Slide 81: OBJECTIVES – 5/23
	Slide 82: Chapter 21/22: Beyond physical memory
	Slide 83: Memory hierarchy
	Slide 84: Motivation for expanding the address space
	Slide 85: Latency times
	Slide 86: OBJECTIVES – 5/23
	Slide 87: Swap space
	Slide 88: Swap space - 2
	Slide 89: Swap space - 3
	Slide 90: Page location
	Slide 91: Page fault
	Slide 92: Page replacements
	Slide 93: OBJECTIVES – 5/23
	Slide 94: Replacement policies
	Slide 95: Cache management
	Slide 96: Optimal replacement policy
	Slide 97: FIFO replacement
	Slide 98: Random replacement
	Slide 99: History-based policies
	Slide 100
	Slide 101
	Slide 102: Workload examples: no-locality
	Slide 103: Workload examples: 80/20
	Slide 104: Workload examples: sequential
	Slide 105
	Slide 106: Implementing LRU
	Slide 107: Implementing lru - 2
	Slide 108: Clock algorithm
	Slide 109: Clock algorithm - 2
	Slide 110: When to load pages
	Slide 111: Other swapping policies
	Slide 112: Other swapping policies - 2
	Slide 113: Questions

