
TCSS 422 A – Spring 2024
School of Engineering and Technology

5/28/2024

L17.1Slides by Wes J. Lloyd

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

Memory Vir tualization IV:
Translation Lookaside Buffer (TLB),

Smaller Tables,
Multi-Level Page Tables,
Beyond Physical Memory

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 – May 31

 Assignment 3 - (Tutorial) Introduction to Linux Kernel Modules

 Final exam – Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.2

OBJECTIVES – 5/23

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

May 23, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.3

ONLINE DAILY FEEDBACK SURVEY

May 23, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L17.4

 Please classify your perspective on material covered in today’s

class (21 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 5.90 (- previous 6.00)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.14 (- previous 5.19)

May 23, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.5

MATERIAL / PACE

 For Quiz 3, do we only have to worry for the array s ize 50000
or for a l l array s izes?

 In syncarray.c there is a compiler directive which sets the
array size to 50000

// ---------------------------------

// Synchronized Array Data Structure

// ---------------------------------

#define ARRAY_SIZE 50000

 The array size can be changed by modifying this

 For quiz 3, we can assume that this constant will be changed
as needed when the syncarray is used

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.6

FEEDBACK FROM 5/21

1 2

3 4

5 6

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/28/2024

L17.2Slides by Wes J. Lloyd

 Some tips for problems with exponential math and bits:

 >>> It can be helpful to review charts and patterns:

 8 bits = 1 byte

 16 bits = 2 bytes

 32 bits = 4 bytes

 64 bits = 8 bytes

 1,024 bytes = 1 kilobyte (2^10)

 1,024 kilobytes = 1 megabyte (2^20)

 1,024 megabytes = 1 gigabyte (2^30)

 1,024 gigabytes = 1 terabyte (2^40)

 1,024 terrabytes = 1 petabyte (2^50)

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.7

FEEDBACK - 2

 For simplicity rounding is of ten acceptable:

 1 kilobyte (2^10) = 1,024 bytes → 1,000 bytes

 1,024 kilobytes (2^20) = 1 megabyte → 1,000,000 bytes

 1,024 megabytes = 1 gigabyte (2^30)→1,000,000,000 bytes

 1,024 gigabytes = 1 terabyte (2^40)→1,000,000,000,000 bytes

 1,024 terrabytes = 1 petabyte (2^50)→1 ,0 00 ,000 ,00 0,0 00,0 00 b y t e s

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.8

FEEDBACK - 3

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L17.9

 How many bits are required to index the following amounts of

memory?

1. 1,024 bytes = 1 kilobyte

▪ (2^10) → 10 bits

2. 1,024 kilobytes = 1 megabyte

▪ (2^20) → 20 bits

3. 1,024 megabytes = 1 gigabyte

▪ (2^30) → 30 bits

4. 1,024 gigabytes = 1 terabyte

▪ (2^40) → 40 bits

5. 1,024 terrabytes = 1 petabyte

▪ (2^50) → 50 bits

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.10

FEEDBACK - 4

 With paging, we d iv ide an address space in f ixed s ized p ieces
(known as the page s ize)

 Assuming a computer indexes memory us ing
1 ki lobyte memory pages (2^10)

 How many unique pages are required to manage/index memory?

 1 kilobyte (2^10) of memory

▪ 1 page

 1 megabyte (2^20) of memory

▪ 1024 pages (2^10)

 1 gigabyte (2^30) of memory

▪ 1,048,576 pages (2^20)

 1 terabyte (2^40) of memory

▪ 1,073,741,824 pages (2^30)

 1 petabyte (2^50) of memory

▪ 1,099,511,627,776 pages (2^40)

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.11

FEEDBACK - 5

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 – May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam – Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.12

OBJECTIVES – 5/23

7 8

9 10

11 12

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/28/2024

L17.3Slides by Wes J. Lloyd

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 – May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam – Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.13

OBJECTIVES – 5/23

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 – May 31

 Assignment 3: (Tutorial) Intro to L inux Kernel Modules - June 9

 Final exam – Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.14

OBJECTIVES – 5/23

 Assignment 3 provides an introduction to kernel

programming by demonstrating how to create a

Linux Kernel Module

 Kernel modules are commonly used to write device

drivers and can access protected operating system data

structures

▪ For example: Linux task_struct process data structure

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.15

ASSIGNMENT 3:

INTRODUCTION TO LINUX KERNEL MODULES

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 – May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam – Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.16

OBJECTIVES – 5/23

 Thursday June 6 from 3:40 to 5:40 pm

▪ Final (100 points)

▪ SHORT: similar number of questions as the midterm

▪ 2-hours

▪ Focus on new content - since the midterm (~70% new, 30% before)

 Final Exam Review -

▪ Complete Memory Segmentation Activity

▪ Complete Quiz 4

▪ Practice Final Exam Questions – 2nd hour of May 30th class session

▪ Individual work

▪ 2 pages of notes (any sized paper), double sided

▪ Basic calculators allowed

▪ NO smartphones, laptop, book, Internet, group work

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.17

FINAL EXAM – THURSDAY JUNE 6 @

3:40PMTH

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 – May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam – Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.18

OBJECTIVES – 5/23

13 14

15 16

17 18

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/28/2024

L17.4Slides by Wes J. Lloyd

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 – May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam – Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.19

OBJECTIVES – 5/23

CHAPTER 19:

TRANSLATION

LOOKASIDE BUFFER

(TLB)

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L17.20

 Legacy name…

Better name, “Address Translation Cache”

 TLB is an on CPU cache of address translations

▪virtual → physical memory

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.21

TRANSLATION LOOKASIDE BUFFER

 Example: Use this Array initialization Code

 Assembly equivalent:

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.22

COUNTING MEMORY ACCESSES

 Locations:

▪ Page table

▪ Array

▪ Code

 50 accesses

for 5 loop

iterations

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.23

VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS

 Goal:

Reduce access

to the page

tables

 Example:

50 RAM accesses

for first 5 for - loop

i terations

 Move lookups

from RAM to TLB

by caching page

table entries

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.24

TRANSLATION LOOKASIDE BUFFER - 2

19 20

21 22

23 24

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/28/2024

L17.5Slides by Wes J. Lloyd

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.25

TRANSLATION LOOKASIDE BUFFER (TLB)

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.26

TRANSLATION LOOKASIDE BUFFER (TLB)

The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 – May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam – Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.27

OBJECTIVES – 5/23

 For: array based page table

 Hardware managed TLB

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.28

TLB BASIC ALGORITHM

Extract the virtual page numberCheck if the TLB holds the translation for the VPNExtract page frame number from TLBGenerate the physical address to access memory

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.29

TLB BASIC ALGORITHM - 2

If TLB miss, access the pg table (in RAM) to find address translationUpdate the TLB with the translationRetry the instruction… (requery the TLB)

Key detail:

 For a TLB miss, we first access the page table in RAM to

populate the TLB… we then requery the TLB

 All address translations go through the TLB

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.30

TLB – ADDRESS TRANSLATION CACHE

25 26

27 28

29 30

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/28/2024

L17.6Slides by Wes J. Lloyd

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 – May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam – Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.31

OBJECTIVES – 5/23

 Example:

 Program address space: 256-byte

▪ Addressable using 8 total bits (28)

▪ 4 bits for the VPN (16 total pages)

 Page size: 16 bytes

▪ Offset is addressable using 4-bits

 Store an array: of (10) 4-byte integers

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.32

TLB EXAMPLE

 Consider the code above:

 Initially the TLB does not know where a[] is

 Consider the accesses:

 a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],

a[8], a[9]

 How many pages are accessed?

 What happens when accessing a page not

in the TLB?

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.33

TLB EXAMPLE - 2

 For the accesses: a[0], a[1], a[2], a[3], a[4],

 a[5], a[6], a[7], a[8], a[9]

 How many are hits?

 How many are misses?

 What is the hit rate? (%)

▪ 70% (3 misses one for each VP, 7 hits)

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.34

TLB EXAMPLE - 3

 What factors affect the hit/miss rate?

▪ Page size

▪ Data/Access locality (how is data accessed?)

▪ Sequential array access vs. random array access

▪ Temporal locality

▪ Size of the TLB cache
(how much history can you store?)

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.35

TLB EXAMPLE - 4

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 – May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam – Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.36

OBJECTIVES – 5/23

31 32

33 34

35 36

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/28/2024

L17.7Slides by Wes J. Lloyd

CHAPTER 20:

PAGING:

SMALLER TABLES

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L17.37

Consider array -based page tables:

▪ Each process has its own page table

▪ 32-bit process address space (up to 4GB)

▪With 4 KB pages

▪ 20 bits for VPN

▪ 12 bits for the page offset

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.38

LINEAR PAGE TABLES

 Page tables stored in RAM

 Support potential storage of 2 20 translations

= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes

▪ Requires 400+ MB of RAM to store process information

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.39

LINEAR PAGE TABLES - 2

 Page tables stored in RAM

 Support potential storage of 2 20 translations

= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes

▪ Requires 400+ MB of RAM to store process information

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.40

LINEAR PAGE TABLES - 2

Page tables are too big and
consume too much memory.

Need Solutions …

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 – May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam – Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.41

OBJECTIVES – 5/23

 Larger pages = 16KB = 214

 32-bit address space: 232

 218 = 262,144 pages

 Memory requirement cut to ¼

 However pages are huge

 Internal fragmentation results

 16KB page(s) allocated for small programs with only a

few variables

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.42

PAGING: USE LARGER PAGES

37 38

39 40

41 42

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/28/2024

L17.8Slides by Wes J. Lloyd

 Process: 16KB Address Space w/ 1KB pages

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.43

PAGE TABLES: WASTED SPACE

Page Table

 Process: 16KB Address Space w/ 1KB pages

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.44

PAGE TABLES: WASTED SPACE

Page Table

Most of the page table is unused
and full of wasted space. (73%)

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 – May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam – Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.45

OBJECTIVES – 5/23

 Consider a page table:

 32-bit addressing, 4KB pages

 220 page table entries

 Even if memory is sparsely populated the per process page

table requires:

 Often most of the 4MB per process page table is empty

 Page table must be placed in 4MB contiguous block of RAM

 MUST SAVE MEMORY!

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.46

MULTI-LEVEL PAGE TABLES

 Add level of indirection, the “page directory”

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.47

MULTI-LEVEL PAGE TABLES - 2

 Add level of indirection, the “page directory”

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.48

MULTI-LEVEL PAGE TABLES - 2

Two level page table:
220 pages addressed with

 two level-indexing
(page directory index, page table index)

43 44

45 46

47 48

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/28/2024

L17.9Slides by Wes J. Lloyd

4 GB computer (2^32) and 4KB pages (2^12)
1. How much space is required for a 2-level page table with one page directory (PD) and
one page table (PT)?
2. How much memory can a single PD pointing to a single PT address?

4 GB computer (2^32) and 4KB pages (2^12)
1. How much space is required for a 2-level page table with one page directory (PD) and
one page table (PT)?
2. How much memory can a single PD pointing to a single PT address?

May 23, 2023
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L17.51 May 23, 2023

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L17.52

 Advantages

▪ Only allocates page table space in proportion to the

address space actually used

▪ Can easily grab next free page to expand page table

 Disadvantages

▪Multi-level page tables are an example of a time-space

tradeoff

▪ Sacrifice address translation time (now 2-level) for space

▪ Complexity: multi-level schemes are more complex

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.53

MULTI-LEVEL PAGE TABLES - 3

 16KB address space, 64byte pages

 How large would a one-level page table need to be?

 214 (address space) / 26 (page size) = 28 = 256 (pages)

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.54

EXAMPLE

49 50

51 52

53 54

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/28/2024

L17.10Slides by Wes J. Lloyd

 256 total page table entries (64 bytes each)

 1,024 bytes page table size, stored using 64 -byte pages

= (1024/64) = 16 page directory entries (PDEs)

 Each page directory entry (PDE) can hold 16 page table

entries (PTEs) e.g. lookups

 16 page directory entries (PDE) x 16 page table entries (PTE)

= 256 total PTEs

 Key idea: the page table is stored using pages too!

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.55

EXAMPLE - 2

 Now, let’s split the page table into two:

▪ 8 bit VPN to map 256 pages

▪ 4 bits for page directory index (PDI – 1st level page table)

▪ 6 bits offset into 64-byte page

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.56

PAGE DIRECTORY INDEX

 4 bits page directory index (PDI – 1st level)

 4 bits page table index (PTI – 2nd level)

 To dereference one 64-byte memory page,

▪ We need one page directory entry (PDE)

▪ One page table Index (PTI) – can address 16 pages

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.57

PAGE TABLE INDEX

 For this example, how much space is required to store as a
single-level page table with any number of PTEs?

 16KB address space, 64 byte pages

 256 page frames, 4 byte page size

 1,024 bytes required (single level)

 How much space is required for a two-level page table with
only 4 page table entries (PTEs) ?

 Page directory = 16 entries x 4 bytes (1 x 64 byte page)

 Page table = 16 entries (4 used) x 4 bytes (1 x 64 byte page)

 128 bytes required (2 x 64 byte pages)

▪ Savings = using just 12.5% the space !!!

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.58

EXAMPLE - 3

For this example, how much space is required to store as a single-level page table
with any number of PTEs?
16KB address space, 64 byte pages, 256 page frames, 4 byte page size

Storage requirement: bytes required (single level)

For this example, how much space is required to store as a single-level page table
with any number of PTEs?
16KB address space, 64 byte pages, 256 page frames, 4 byte page size

Storage requirement: bytes required (single level)

55 56

57 58

59 60

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/28/2024

L17.11Slides by Wes J. Lloyd

How much space is required for a two-level page table with only 4 page table entries
(PTEs) ? (one page each for code segment, stack segment, heap segment, data segment)
16KB address space, 64 byte pages, 256 page frames, 4 byte page size

Page directory = 16 entries x 4 bytes (1 x 64 byte page)
Page table = 16 entries (4 used) x 4 bytes (1 x 64 byte page)
Store requirement = 128 bytes required (2 x 64 byte pages)
Savings =

How much space is required for a two-level page table with only 4 page table entries
(PTEs) ? (one page each for code segment, stack segment, heap segment, data segment)
16KB address space, 64 byte pages, 256 page frames, 4 byte page size

Page directory = 16 entries x 4 bytes (1 x 64 byte page)
Page table = 16 entries (4 used) x 4 bytes (1 x 64 byte page)
Store requirement = 128 bytes required (2 x 64 byte pages)
Savings =

 Consider: 32-bit address space, 4KB pages, 2 20 pages

 Only 4 mapped pages

 Single level : 4 MB (we’ve done this before)

 Two level: (old VPN was 20 bits, split in half)

 Page directory = 210 entries x 4 bytes = 1 x 4 KB page

 Page table = 4 entries x 4 bytes (mapped to 1 4KB page)

 8KB (8,192 bytes) required

 Savings = using just .78 % the space !!!

 100 sparse processes now require < 1MB for page tables

▪ 8KB x 100 = 800KB

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.63

32-BIT EXAMPLE

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 – May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam – Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.64

OBJECTIVES – 5/23

WE WILL RETURN AT

5:00 PM

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L17.65

 Page table entries per page = 512 / 4 = 128

 7 bytes – for page table index (PTI)

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.66

MORE THAN TWO LEVELS - 2

61 62

63 64

65 66

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/28/2024

L17.12Slides by Wes J. Lloyd

 Consider 1 GB computer: 230=1GB RAM, 512-byte (29 pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes * 4 bytes per addr

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.67

MORE THAN TWO LEVELS - 3

 Consider 1 GB computer: 230=1GB RAM, 512-byte (29 pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.68

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

 Consider 1 GB computer: 230=1GB RAM, 512-byte (29 pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.69

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

 We can now address 1GB with“fine grained” 512 byte pages

 Using multiple levels of indirection

 Consider the implications for address translation!

 How much space is required for a vir tual address space with 4

entries on a 512-byte page? (let’s say 4 32 -bit integers)

 PD0 1 page, PD1 1 page, PT 1 page = 1,536 bytes

 Memory Usage= 1,536 (3- leve l) / 8,388,608 (1- leve l) = .0183% !!!

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.70

MORE THAN TWO LEVELS - 4

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.7
1

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.7
2

67 68

69 70

71 72

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/28/2024

L17.13Slides by Wes J. Lloyd

// 5-level Linux page table address lookup

//

// Inputs:

// mm_struct – process’s memory map struct

// vpage – virtual page address

// Define page struct pointers

pgd_t *pgd;

p4d_t *p4d;

pud_t *pud;

pmd_t *pmt;

pte_t *pte;

struct page *page;

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.73

ADDRESS TRANSLATION CODE

pgd = pgd_offset(mm, vpage);

if (pgd_none(*pgd) || pgd_bad(*pgd))

 return 0;

p4d = p4d_offset(pgd, vpage);

if (p4d_none(*p4d) || p4d_bad(*p4d))

 return 0;

pud = pud_offset(p4d, vpage);

if (pud_none(*pud) || pud_bad(*pud))

 return 0;

pmd = pmd_offset(pud, vpage);

if (pmd_none(*pmd) || pmd_bad(*pmd))

 return 0;

if (!(pte = pte_offset_map(pmd, vpage)))

 return 0;

if (!(page = pte_page(*pte)))

 return 0;

physical_page_addr = page_to_phys(page);

pte_unmap(pte);

return physical_page_addr; // param to send back

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.74

ADDRESS TRANSLATION - 2

pgd_offset():
Takes a vpage address and the mm_struct

for the process, returns the PGD entry that
covers the requested address…

p4d/pud/pmd_offset():
Takes a vpage address and the
pgd/p4d/pud entry and returns the
relevant p4d/pud/pmd.

pte_unmap()
release temporary kernel mapping
for the page table entry

 Keep a single page table for each physical page of memory

 Consider 4GB physical memory

 Using 4KB pages, page table requires 4MB to map all of RAM

 Page table stores

▪ Which process uses each page

▪ Which process virtual page (from process virtual address

space) maps to the physical page

 All processes share the same page table for memory mapping,

kernel must isolate all use of the shared structure

 Finding process memory pages requires search of 2 20 pages

 Hash table: can index memory and speed lookups

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.75

INVERTED PAGE TABLES

 Consider a 16 MB computer which indexes memory using 4KB
pages

 (#1) For a single level page table, how many pages are
required to index memory?

 (#2) How many bits are required for the VPN?

 (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many offset bits are required?

 (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.76

MULTI-LEVEL PAGE TABLE EXAMPLE

 (#5) How many bytes (or KB) are required for a single level
page table?

 Let’s assume a simple HelloWorld.c program.

 HelloWorld.c requires vir tual address translation for 4 pages:

▪ 1 – code page 1 – stack page

▪ 1 – heap page 1 – data segment page

 (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

 (#7) How many bits are required for the Page Table Index
(PTI)?

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.77

MULTI LEVEL PAGE TABLE EXAMPLE - 2

 Assume each page directory entry (PDE) and page table entry

(PTE) requires 4 bytes:

▪ 6 bits for the Page Directory Index (PDI)

▪ 6 bits for the Page Table Index (PTI)

▪ 12 offset bits

▪ 8 status bits

 (#8) How much total memory is required to index the

HelloWorld.c program using a two-level page table when we

only need to translate 4 total pages?

 HINT: we need to allocate one Page Directory and one Page

Table…

 HINT: how many entries are in the PD and PT

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.78

MULTI LEVEL PAGE TABLE EXAMPLE - 3

73 74

75 76

77 78

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/28/2024

L17.14Slides by Wes J. Lloyd

 (#9) Using a single page directory entry (PDE) pointing to a

single page table (PT), if all of the slots of the page table (PT)

are in use, what is the total amount of memory a two -level

page table scheme can address?

 (#10) And finally, for this example, as a percentage (%),

how much memory does the 2-level page table scheme

consume compared to the 1-level scheme?

 HINT: two-level memory use / one-level memory use

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.79

MULTI LEVEL PAGE TABLE EXAMPLE - 4

 #1 – 4096 pages

 #2 – 12 bits

 #3 – 12 bits

 #4 – 4 bytes

 #5 – 4096 x 4 = 16,384 bytes (16KB)

 #6 – 6 bits

 #7 – 6 bits

 #8 – 256 bytes for Page Directory (PD) (64 entries x 4 bytes)

 256 bytes for Page Table (PT) TOTAL = 512 bytes

 #9 – 64 entries, where each entry maps a 4,096 byte page

With 12 offset bits, can address 262,144 bytes (256 KB)

 #10- 512/16384 = .03125 → 3.125%

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.80

ANSWERS

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 – May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam – Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.81

OBJECTIVES – 5/23

CHAPTER 21/22:

BEYOND PHYSICAL

MEMORY

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L17.82

 Disks (HDD, SSD) provide another level of storage in the

memory hierarchy

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.83

MEMORY HIERARCHY

 Provide the illusion of an address space larger than

physical RAM

 For a single process

▪ Convenience

▪ Ease of use

 For multiple processes

▪ Large virtual memory space supports running

many concurrent processes. . .

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.84

MOTIVATION FOR

EXPANDING THE ADDRESS SPACE

79 80

81 82

83 84

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/28/2024

L17.15Slides by Wes J. Lloyd

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.85

LATENCY TIMES

Design considerations:
▪ SSDs 4x the time of DRAM

▪ HDDs 80x the time of DRAM

 Latency numbers every programmer should know
 From: https://g ist .g ithub.com/jboner/2841832#fi le - la tency - txt

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 – May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam – Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.86

OBJECTIVES – 5/23

 Disk space for storing memory pages

 “Swap” them in and out of memory to disk as needed

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.87

SWAP SPACE

 The size of the swap space can be seen using the Linux free

command: “free –h”

 With sufficient disk space, a common allocation is to create

Swap space greater than or equal to physical RAM

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.88

SWAP SPACE - 2

 Swap space lives on a separate logical volume in Ubuntu Linux

that is managed separately from the root file system

 Check logical volumes with “sudo lvdisplay” command:

 See also “ lvm lvs” command

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.89

SWAP SPACE - 3

 Memory pages are:

▪ Stored in memory

▪ Swapped to disk

 Present bit

▪ In the page table entry (PTE) indicates if page is present

 Page fault

▪Memory page is accessed, but has been swapped to disk

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.90

PAGE LOCATION

85 86

87 88

89 90

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/28/2024

L17.16Slides by Wes J. Lloyd

 OS steps in to handle the page fault

 Loading page from disk requires a free memory page

 Page-Fault Algorithm

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.91

PAGE FAULT

 Page daemon

▪ Background threads which monitors swapped pages

 Low watermark (LW)

▪ Threshold for when to swap pages to disk

▪ Daemon checks: free pages < LW

▪ Begin swapping to disk until reaching the highwater mark

 High watermark (HW)

▪ Target threshold of free memory pages

▪ Daemon free until: free pages >= HW

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.92

PAGE REPLACEMENTS

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 – May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam – Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.93

OBJECTIVES – 5/23

REPLACEMENT

POLICIES

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.9
4

 Replacement policies apply to “any” cache

 Goal is to minimize the number of misses

 Average memory access t ime (AMAT) can be estimated:

 Consider TM = 100 ns, TD = 10ms

 Consider Phit = .9 (90%), Pmiss = .1

 Consider Phit = .999 (99.9%), Pmiss = .001

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.95

CACHE MANAGEMENT

𝐴𝑀𝐴𝑇 = 𝑃𝐻𝑖𝑡 ∗ 𝑇𝑀 + (𝑃𝑀𝑖𝑠𝑠 ∗ 𝑇𝐷)

Argument Meaning

𝑇𝑀 The cost of accessing memory (time)

𝑇𝐷 The cost of accessing disk (time)

𝑃𝐻𝑖𝑡 The probability of finding the data item in the cache(a hit)

𝑃𝑀𝑖𝑠𝑠 The probability of not finding the data in the cache(a miss)

 What if :

▪ We could predict the future (… with a magical oracle)

▪ All future page accesses are known

▪ Always replace the page in the cache used farthest in the future

 Used for a comparison

 Provides a “best case” replacement policy

 Consider a 3-element empty cache with the following page

accesses:

0 1 2 0 1 3 0 3 1 2 1

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.96

OPTIMAL REPLACEMENT POLICY

What is the hit/miss ratio?What is the hit/miss ratio?

6 hits6 hits

91 92

93 94

95 96

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/28/2024

L17.17Slides by Wes J. Lloyd

 Queue based

 Always replace the oldest element at the back of cache

 Simple to implement

 Doesn’t consider importance… just arrival ordering

 Consider a 3-element empty cache with the following

page accesses:

0 1 2 0 1 3 0 3 1 2 1

 What is the hit/miss ratio?

 How is FIFO different than LRU?

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.97

FIFO REPLACEMENT

4 hits4 hits

LRU incorporates historyLRU incorporates history

 Pick a page at random to replace

 Simple and fast implementation

 Performance depends on luck of random choices

0 1 2 0 1 3 0 3 1 2 1

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.98

RANDOM REPLACEMENT

 LRU: Least recently used

 Always replace page with oldest access time (front)

 Always move end of cache when element is read again

 LRU requires constant reorganization of the cache

 Considers temporal locality (when pg was last accessed)

0 1 2 0 1 3 0 3 1 2 1

 LFU: Least frequently used

 Always replace page with the fewest # of accesses (front)

 Incorporates frequency of use - must track pg accesses

 Consider frequency of page accesses

0 1 2 0 1 3 0 3 1 2 1

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.99

HISTORY-BASED POLICIES

What is the hit/miss ratio?What is the hit/miss ratio?

6 hits6 hits

Hit/miss ratio is=6 hitsHit/miss ratio is=6 hits

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.1
00

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.1
01

 No-Locality (Random Access) Workload

▪ Perform 10,000 random page accesses

▪ Across set of 100 memory pages

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.102

WORKLOAD EXAMPLES: NO-LOCALITY

When the cache is
 large enough to fit
the entire workload,
 it doesn’t matter

which policy you use.

97 98

99 100

101 102

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/28/2024

L17.18Slides by Wes J. Lloyd

 80/20 Workload

▪ Perform 10,000 page accesses, against set of 100 pages

▪ 80% of accesses are to 20% of pages (hot pages)

▪ 20% of accesses are to 80% of pages (cold pages)

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.103

WORKLOAD EXAMPLES: 80/20

LRU is more likely
to hold onto
hot pages

(recalls history)

 Looping sequential workload

▪ Refer to 50 pages in sequence: 0, 1, …, 49

▪ Repeat loop

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.104

WORKLOAD EXAMPLES: SEQUENTIAL

Random performs
better than FIFO and

LRU for
cache sizes < 50

Algorithms should provide
“scan resistance”

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.1
05

 Implementing last recently used (LRU) requires tracking

access time for all system memory pages

 Times can be tracked with a list

 For cache eviction, we must scan an entire list

 Consider: 4GB memory system (232),

 with 4KB pages (212)

 This requires 220 comparisons !!!

 Simplification is needed

▪ Consider how to approximate the oldest page access

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.106

IMPLEMENTING LRU

Harness the Page Table Entry (PTE) Use Bit

HW sets to 1 when page is used

OS sets to 0

Clock algorithm (approximate LRU)

▪Refer to pages in a circular list

▪Clock hand points to current page

▪Loops around

▪ IF USE_BIT=1 set to USE_BIT = 0

▪ IF USE_BIT=0 replace page

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.107

IMPLEMENTING LRU - 2

 Not as efficient as LRU, but better than other

replacement algorithms that do not consider history

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.108

CLOCK ALGORITHM

103 104

105 106

107 108

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/28/2024

L17.19Slides by Wes J. Lloyd

Consider dirty pages in cache

 If DIRTY (modified) bit is FALSE

▪No cost to evict page from cache

 If DIRTY (modified) bit is TRUE

▪Cache eviction requires updating memory

▪Contents have changed

Clock algorithm should favor no cost eviction

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.109

CLOCK ALGORITHM - 2

 On demand → demand paging

 Prefetching

▪ Preload pages based on anticipated demand

▪ Prediction based on locality

▪ Access page P, suggest page P+1 may be used

 What other techniques might help anticipate required
memory pages?

▪ Prediction models, historical analysis

▪ In general: accuracy vs. effort tradeoff

▪ High analysis techniques struggle to respond in real time

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.110

WHEN TO LOAD PAGES

Page swaps / writes

▪Group/cluster pages together

▪Collect pending writes, perform as batch

▪Grouping disk writes helps amortize latency costs

 Thrashing

▪Occurs when system runs many memory intensive

processes and is low in memory

▪Everything is constantly swapped to-and-from disk

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.111

OTHER SWAPPING POLICIES

Working sets

▪Groups of related processes

▪When thrashing: prevent one or more working

set(s) from running

▪Temporarily reduces memory burden

▪Allows some processes to run, reduces thrashing

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.112

OTHER SWAPPING POLICIES - 2

QUESTIONS

109 110

111 112

113

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 5/23
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 5/21
	Slide 7: Feedback - 2
	Slide 8: Feedback - 3
	Slide 9
	Slide 10: Feedback - 4
	Slide 11: Feedback - 5
	Slide 12: OBJECTIVES – 5/23
	Slide 13: OBJECTIVES – 5/23
	Slide 14: OBJECTIVES – 5/23
	Slide 15: Assignment 3: introduction to linux kernel modules
	Slide 16: OBJECTIVES – 5/23
	Slide 17: Final exam – Thursday June 6 @ 3:40pmth
	Slide 18: OBJECTIVES – 5/23
	Slide 19: OBJECTIVES – 5/23
	Slide 20: Chapter 19: Translation lookaside buffer (TLB)
	Slide 21: Translation lookaside buffer
	Slide 22: Counting memory accesses
	Slide 23: Visualizing Memory accesses: For the first 5 loop iterations
	Slide 24: TRANSLATION LOOKASIDE BUFFER - 2
	Slide 25: Translation lookaside buffer (TLB)
	Slide 26: Translation lookaside buffer (TLB)
	Slide 27: OBJECTIVES – 5/23
	Slide 28: Tlb basic algorithm
	Slide 29: Tlb basic algorithm - 2
	Slide 30: TLb – address translation cache
	Slide 31: OBJECTIVES – 5/23
	Slide 32: Tlb example
	Slide 33: Tlb Example - 2
	Slide 34: Tlb Example - 3
	Slide 35: Tlb example - 4
	Slide 36: OBJECTIVES – 5/23
	Slide 37: Chapter 20: Paging: smaller tables
	Slide 38: Linear page tables
	Slide 39: Linear page tables - 2
	Slide 40: Linear page tables - 2
	Slide 41: OBJECTIVES – 5/23
	Slide 42: Paging: use larger pages
	Slide 43: Page tables: wasted space
	Slide 44: Page tables: wasted space
	Slide 45: OBJECTIVES – 5/23
	Slide 46: Multi-level page tables
	Slide 47: Multi-level page tables - 2
	Slide 48: Multi-level page tables - 2
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Multi-level page tables - 3
	Slide 54: example
	Slide 55: Example - 2
	Slide 56: Page directory index
	Slide 57: Page table index
	Slide 58: Example - 3
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63: 32-bit example
	Slide 64: OBJECTIVES – 5/23
	Slide 65: We will return at 5:00 pm
	Slide 66: More than two levels - 2
	Slide 67: More than two levels - 3
	Slide 68: More than two levels - 3
	Slide 69: More than two levels - 3
	Slide 70: More than two levels - 4
	Slide 71
	Slide 72
	Slide 73: Address translation code
	Slide 74: Address translation - 2
	Slide 75: Inverted page tables
	Slide 76: Multi-level page table example
	Slide 77: Multi level page table example - 2
	Slide 78: Multi level page table example - 3
	Slide 79: Multi level page table example - 4
	Slide 80: Answers
	Slide 81: OBJECTIVES – 5/23
	Slide 82: Chapter 21/22: Beyond physical memory
	Slide 83: Memory hierarchy
	Slide 84: Motivation for expanding the address space
	Slide 85: Latency times
	Slide 86: OBJECTIVES – 5/23
	Slide 87: Swap space
	Slide 88: Swap space - 2
	Slide 89: Swap space - 3
	Slide 90: Page location
	Slide 91: Page fault
	Slide 92: Page replacements
	Slide 93: OBJECTIVES – 5/23
	Slide 94: Replacement policies
	Slide 95: Cache management
	Slide 96: Optimal replacement policy
	Slide 97: FIFO replacement
	Slide 98: Random replacement
	Slide 99: History-based policies
	Slide 100
	Slide 101
	Slide 102: Workload examples: no-locality
	Slide 103: Workload examples: 80/20
	Slide 104: Workload examples: sequential
	Slide 105
	Slide 106: Implementing LRU
	Slide 107: Implementing lru - 2
	Slide 108: Clock algorithm
	Slide 109: Clock algorithm - 2
	Slide 110: When to load pages
	Slide 111: Other swapping policies
	Slide 112: Other swapping policies - 2
	Slide 113: Questions

