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Translation Lookaside Buffer (TLB),
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TCSS 422: OPERATING SYSTEMS

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 –  May 31

 Assignment 3 - (Tutorial) Introduction to Linux Kernel Modules

 Final exam –  Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies
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OBJECTIVES – 5/23

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class (21 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average –  5.90  (  -  previous 6.00) 

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average –  5.14 (  -  previous 5.19)
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MATERIAL / PACE

 For Quiz 3,  do we only have to worry for the array s ize 50000 
or for a l l  array s izes?

 In syncarray.c there is a compiler directive which sets the 
array size to 50000

// ---------------------------------

// Synchronized Array Data Structure

// ---------------------------------

#define ARRAY_SIZE 50000

 The array size can be changed by modifying this

 For quiz 3, we can assume that this constant will be changed 
as needed when the syncarray is used
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FEEDBACK FROM 5/21

1 2

3 4

5 6



TCSS 422 A – Spring 2024
School of Engineering and Technology

5/28/2024

L17.2Slides by Wes J. Lloyd

 Some tips for problems with exponential math and bits:

 >>> It can be helpful to review charts and patterns:

 8 bits = 1 byte

 16 bits = 2 bytes

 32 bits = 4 bytes

 64 bits = 8 bytes

 1,024 bytes = 1 kilobyte  (2^10)

 1,024 kilobytes = 1 megabyte (2^20)

 1,024 megabytes = 1 gigabyte (2^30)

 1,024 gigabytes = 1 terabyte (2^40)

 1,024 terrabytes = 1 petabyte (2^50)
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FEEDBACK - 2

 For simplicity rounding is  of ten acceptable: 

 1 kilobyte  (2^10) = 1,024 bytes →  1,000 bytes

 1,024 kilobytes (2^20) = 1 megabyte →  1,000,000 bytes

 1,024 megabytes = 1 gigabyte (2^30)→1,000,000,000 bytes

 1,024 gigabytes = 1 terabyte (2^40)→1,000,000,000,000 bytes

 1,024 terrabytes = 1 petabyte (2^50)→1 ,0 00 ,000 ,00 0,0 00,0 00  b y t e s
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FEEDBACK - 3
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 How many bits are required to index the following amounts of  

memory?

1. 1,024 bytes = 1 kilobyte 

▪  (2^10) → 10 bits

2. 1,024 kilobytes = 1 megabyte 

▪ (2^20) → 20 bits

3. 1,024 megabytes = 1 gigabyte 

▪ (2^30) → 30 bits

4. 1,024 gigabytes = 1 terabyte

▪  (2^40) → 40 bits

5. 1,024 terrabytes = 1 petabyte

▪  (2^50) → 50 bits
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FEEDBACK - 4

 With paging, we d iv ide an address space in  f ixed s ized p ieces 
(known as  the page s ize)

 Assuming a  computer indexes memory us ing 
1 ki lobyte memory pages (2^10)

 How many unique pages are required to  manage/index memory?

 1 kilobyte  (2^10) of memory

▪ 1 page

 1 megabyte (2^20) of memory

▪ 1024 pages (2^10)

 1 gigabyte (2^30) of memory

▪ 1,048,576 pages (2^20)

 1 terabyte (2^40) of memory 

▪ 1,073,741,824 pages (2^30)

 1 petabyte (2^50) of memory

▪ 1,099,511,627,776 pages (2^40)
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FEEDBACK - 5

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 –  May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam –  Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios 

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies
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OBJECTIVES – 5/23
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 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 –  May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam –  Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios 

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies
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OBJECTIVES – 5/23

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 –  May 31

 Assignment 3:  (Tutorial) Intro to L inux Kernel Modules -  June 9

 Final exam –  Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios 

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies
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OBJECTIVES – 5/23

 Assignment 3 provides an introduction to  kernel 

programming by demonstrating how to create a

Linux Kernel Module

 Kernel modules are commonly used to write device 

drivers and can access protected operating system data 

structures 

▪ For example: Linux task_struct process data structure
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ASSIGNMENT 3:

INTRODUCTION TO LINUX KERNEL MODULES

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 –  May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam –  Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies
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OBJECTIVES – 5/23

 Thursday June 6 from 3:40 to 5:40 pm

▪ Final (100 points)

▪ SHORT: similar number of questions as the midterm

▪ 2-hours 

▪ Focus on new content - since the midterm (~70% new, 30% before)

 Final Exam Review - 

▪ Complete Memory Segmentation Activity

▪ Complete Quiz 4

▪ Practice Final Exam Questions – 2nd hour of May 30th class session

▪ Individual work 

▪ 2 pages of notes (any sized paper), double sided

▪ Basic calculators allowed

▪ NO smartphones, laptop, book, Internet, group work

May 23, 2024
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FINAL EXAM – THURSDAY JUNE 6 @ 

3:40PMTH 

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 –  May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam –  Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios 

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies
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OBJECTIVES – 5/23
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 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 –  May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam –  Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios 

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies
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OBJECTIVES – 5/23

CHAPTER 19:

TRANSLATION 

LOOKASIDE BUFFER 

(TLB)
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 Legacy name…

Better name, “Address Translation Cache”

 TLB is an on CPU cache of address translations

▪virtual → physical memory

May 23, 2024
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TRANSLATION LOOKASIDE BUFFER

 Example: Use this Array initialization Code

 Assembly equivalent:
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COUNTING MEMORY ACCESSES

 Locations:

▪ Page table

▪ Array

▪ Code

 50 accesses

for 5 loop 

iterations
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VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS

 Goal:

Reduce access

to the page

tables

 Example:

50 RAM accesses

for first 5 for - loop 

i terations

 Move lookups

from RAM to TLB 

by caching page

table entries
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TRANSLATION LOOKASIDE BUFFER - 2
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 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache
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TRANSLATION LOOKASIDE BUFFER (TLB)

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache
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TRANSLATION LOOKASIDE BUFFER (TLB)

The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 –  May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam –  Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios 

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies
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OBJECTIVES – 5/23

 For: array based page table

 Hardware managed TLB
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TLB BASIC ALGORITHM

Extract the virtual page numberCheck if the TLB holds the translation for the VPNExtract page frame number from TLBGenerate the physical address to access memory

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.29

TLB BASIC ALGORITHM - 2

If TLB miss, access the pg table (in RAM) to find address translationUpdate the TLB with the translationRetry the instruction… (requery the TLB)

Key detail:

 For a TLB miss, we first access the page table in RAM to 

populate the TLB… we then requery the TLB

 All address translations go through the TLB
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TLB – ADDRESS TRANSLATION CACHE
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 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 –  May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam –  Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios 

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies
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OBJECTIVES – 5/23

 Example:

 Program address space: 256-byte

▪ Addressable using 8 total bits  (28)

▪ 4 bits for the VPN (16 total pages)

 Page size: 16 bytes

▪ Offset is addressable using 4-bits

 Store an array: of (10) 4-byte integers

May 23, 2024
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TLB EXAMPLE

 Consider the code above:

 Initially the TLB does not know where a[] is

 Consider the accesses:

 a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],

a[8], a[9]

 How many pages are accessed?

 What happens when accessing a page not 

in the TLB?
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TLB EXAMPLE - 2

 For the accesses: a[0], a[1], a[2], a[3], a[4], 

 a[5], a[6], a[7], a[8], a[9]

 How many are hits?

 How many are misses?

 What is the hit rate? (%)

▪ 70% (3 misses one for each VP, 7 hits)
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TLB EXAMPLE - 3

 What factors affect the hit/miss rate?

▪ Page size

▪ Data/Access locality  (how is data accessed?)

▪ Sequential array access vs. random array access

▪ Temporal locality

▪ Size of the TLB cache 
(how much history can you store?)
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TLB EXAMPLE - 4

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 –  May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam –  Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies
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OBJECTIVES – 5/23
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CHAPTER 20:

PAGING:

SMALLER TABLES

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
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Consider array -based page tables:

▪ Each process has its own page table

▪ 32-bit process address space (up to 4GB)

▪With 4 KB pages

▪ 20 bits for VPN

▪ 12 bits for the page offset

May 23, 2024
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LINEAR PAGE TABLES

 Page tables stored in RAM

 Support potential storage of 2 20 translations 

= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes

▪ Requires 400+ MB of RAM to store process information
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LINEAR PAGE TABLES - 2

 Page tables stored in RAM

 Support potential storage of 2 20 translations 

= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes

▪ Requires 400+ MB of RAM to store process information

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L17.40

LINEAR PAGE TABLES - 2

Page tables are too big and 
consume too much memory.

Need Solutions …

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 –  May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam –  Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies
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OBJECTIVES – 5/23

 Larger pages = 16KB = 214

 32-bit address space: 232

 218 = 262,144 pages

 Memory requirement cut to ¼

 However pages are huge

 Internal fragmentation results

 16KB page(s) allocated for small programs with only a 

few variables
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PAGING: USE LARGER PAGES

37 38
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 Process: 16KB Address Space w/ 1KB pages
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PAGE TABLES: WASTED SPACE

Page Table

 Process: 16KB Address Space w/ 1KB pages
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PAGE TABLES: WASTED SPACE

Page Table

Most of the page table is unused 
and full of wasted space. (73%)

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 –  May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam –  Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies
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OBJECTIVES – 5/23

 Consider a page table:

 32-bit addressing, 4KB pages

 220 page table entries

 Even if memory is sparsely populated the per process page 

table requires:

 Often most of the 4MB per process  page table is empty

 Page table must be placed in 4MB contiguous block of RAM

 MUST SAVE MEMORY!
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MULTI-LEVEL PAGE TABLES

 Add level of indirection, the “page directory”
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MULTI-LEVEL PAGE TABLES - 2

 Add level of indirection, the “page directory”
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MULTI-LEVEL PAGE TABLES - 2

Two level page table:
220 pages addressed with

 two level-indexing
(page directory index, page table index)

43 44

45 46
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4 GB computer (2^32) and 4KB pages (2^12)
1. How much space is required for a 2-level page table with one page directory (PD) and 
one page table (PT)? 
2. How much memory can a single PD pointing to a single PT address?

4 GB computer (2^32) and 4KB pages (2^12)
1. How much space is required for a 2-level page table with one page directory (PD) and 
one page table (PT)? 
2. How much memory can a single PD pointing to a single PT address?

May 23, 2023
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 Advantages

▪ Only allocates page table space in proportion to the 

address space actually used

▪ Can easily grab next free page to expand page table

 Disadvantages

▪Multi-level page tables are an example of a time-space 

tradeoff

▪ Sacrifice address translation time (now 2-level) for space

▪ Complexity: multi-level schemes are more complex
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MULTI-LEVEL PAGE TABLES - 3

 16KB address space, 64byte pages

 How large would a one-level page table need to be?

 214 (address space) / 26 (page size) = 28 = 256 (pages)

May 23, 2024
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EXAMPLE

49 50
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 256 total page table entries (64 bytes each)

 1,024 bytes page table size, stored using 64 -byte pages 

= (1024/64) = 16 page directory entries (PDEs)

 Each page directory entry (PDE) can hold 16 page table 

entries (PTEs)  e.g. lookups

 16 page directory entries (PDE) x 16 page table entries (PTE)

= 256 total PTEs

 Key idea: the page table is  stored using pages too!

May 23, 2024
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EXAMPLE - 2

 Now, let’s split the page table into two:

▪ 8 bit VPN to map 256 pages

▪ 4 bits for page directory index (PDI – 1st level page table)

▪ 6 bits offset into 64-byte page
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PAGE DIRECTORY INDEX

 4 bits page directory index  (PDI – 1st level)

 4 bits page table index (PTI – 2nd level)

 To dereference one 64-byte memory page,

▪ We need one page directory entry  (PDE)

▪ One page table Index (PTI) – can address 16 pages
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PAGE TABLE INDEX

 For this example, how much space is  required to store as a 
single-level  page table with any number of  PTEs?

 16KB address space, 64 byte pages

 256 page frames, 4 byte page size

 1,024 bytes required (single level)

 How much space is  required for a two-level  page table with 
only 4 page table entries (PTEs) ?

 Page directory = 16 entries x 4 bytes (1 x 64 byte page)

 Page table = 16 entries (4 used) x 4 bytes (1 x 64 byte page)

 128 bytes required (2 x 64 byte pages)

▪ Savings = using just 12.5% the space !!!
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EXAMPLE - 3

For this example, how much space is required to store as a single-level page table 
with any number of PTEs?
16KB address space, 64 byte pages, 256 page frames, 4 byte page size

Storage requirement:                   bytes required (single level)

For this example, how much space is required to store as a single-level page table 
with any number of PTEs?
16KB address space, 64 byte pages, 256 page frames, 4 byte page size

Storage requirement:                   bytes required (single level)

55 56
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How much space is required for a two-level page table with only 4 page table entries 
(PTEs) ?  (one page each for code segment, stack segment, heap segment, data segment)
16KB address space, 64 byte pages, 256 page frames, 4 byte page size

Page directory = 16 entries x 4 bytes (1 x 64 byte page)
Page table = 16 entries (4 used) x 4 bytes (1 x 64 byte page)
Store requirement = 128 bytes required (2 x 64 byte pages)
Savings =

How much space is required for a two-level page table with only 4 page table entries 
(PTEs) ?  (one page each for code segment, stack segment, heap segment, data segment)
16KB address space, 64 byte pages, 256 page frames, 4 byte page size

Page directory = 16 entries x 4 bytes (1 x 64 byte page)
Page table = 16 entries (4 used) x 4 bytes (1 x 64 byte page)
Store requirement = 128 bytes required (2 x 64 byte pages)
Savings =

 Consider: 32-bit address space, 4KB pages, 2 20 pages

 Only 4 mapped pages

 Single level : 4 MB  (we’ve done this before)

 Two level:  (old VPN was 20 bits, split in half)

 Page directory = 210 entries x 4 bytes = 1 x 4 KB page

 Page table = 4 entries x 4 bytes (mapped to 1 4KB page)

 8KB (8,192 bytes) required

 Savings = using just .78 % the space !!!

 100 sparse processes now require < 1MB for page tables

▪ 8KB x 100 = 800KB

May 23, 2024
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32-BIT EXAMPLE

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 –  May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam –  Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

May 23, 2024
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OBJECTIVES – 5/23

WE WILL RETURN AT 

5:00 PM

May 23, 2024
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 Page table entries per page = 512 / 4 = 128

 7 bytes – for page table index (PTI) 
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MORE THAN TWO LEVELS - 2
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 Consider 1 GB computer: 230=1GB RAM, 512-byte (29 pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes * 4 bytes per addr

May 23, 2024
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MORE THAN TWO LEVELS - 3

 Consider 1 GB computer: 230=1GB RAM, 512-byte (29 pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr
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MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K 
pages, using 512 bytes pages.  

Pages only dereference 128 addresses 
(512 bytes / 32 bytes)

 Consider 1 GB computer: 230=1GB RAM, 512-byte (29 pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr
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MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K 
pages, using 512 bytes pages.  

Pages only dereference 128 addresses 
(512 bytes / 32 bytes)

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

 We can now address 1GB with“fine  grained” 512 byte pages

 Using multiple levels of indirection

 Consider the implications for address translation!

 How much space is required for a vir tual address space with 4 

entries on a 512-byte page?  ( let’s say 4 32 -bit integers)

 PD0 1 page, PD1 1 page, PT 1 page = 1,536 bytes

 Memory Usage= 1,536  (3- leve l)  / 8,388,608  (1- leve l) = .0183% !!!
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MORE THAN TWO LEVELS - 4
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// 5-level Linux page table address lookup

//

// Inputs: 

// mm_struct – process’s memory map struct

// vpage – virtual page address

// Define page struct pointers

pgd_t *pgd;

p4d_t *p4d;

pud_t *pud;

pmd_t *pmt;

pte_t *pte;

struct page *page;
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ADDRESS TRANSLATION CODE

pgd = pgd_offset(mm, vpage);

if (pgd_none(*pgd) || pgd_bad(*pgd))

    return 0;

p4d = p4d_offset(pgd, vpage);

if (p4d_none(*p4d) || p4d_bad(*p4d))

    return 0;

pud = pud_offset(p4d, vpage);

if (pud_none(*pud) || pud_bad(*pud))

    return 0;

pmd = pmd_offset(pud, vpage);

if (pmd_none(*pmd) || pmd_bad(*pmd))

    return 0;

if (!(pte = pte_offset_map(pmd, vpage)))

    return 0;

if (!(page = pte_page(*pte)))

    return 0;

physical_page_addr = page_to_phys(page);

pte_unmap(pte);

return physical_page_addr;  // param to send back
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ADDRESS TRANSLATION - 2

pgd_offset():
Takes a vpage address and the mm_struct 

for the process, returns the PGD entry that 
covers the requested address…

p4d/pud/pmd_offset():
Takes a vpage address and the 
pgd/p4d/pud entry and returns the 
relevant p4d/pud/pmd.

pte_unmap()
release temporary kernel mapping
for the page table entry

 Keep a single page table for each physical page of memory

 Consider 4GB physical memory

 Using 4KB pages, page table requires 4MB to map all of RAM

 Page table stores 

▪ Which process uses each page

▪ Which process virtual page (from process virtual address 

space) maps to the physical page

 All processes share the same page table for memory mapping, 

kernel must isolate all use of the shared structure

 Finding process memory pages requires search of 2 20 pages

 Hash table: can index memory and speed lookups

May 23, 2024
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INVERTED PAGE TABLES

 Consider a 16 MB computer which indexes memory using 4KB 
pages

 (#1) For a single level page table, how many pages are 
required to index memory?

 (#2) How many bits are required for the VPN?

 (#3) Assuming each page table entry (PTE) can index any byte 
on a 4KB page, how many offset bits are required?

 (#4) Assuming there are 8 status bits, how many bytes are 
required for each page table entry?

May 23, 2024
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MULTI-LEVEL PAGE TABLE EXAMPLE

 (#5) How many bytes (or KB) are required for a single level 
page table?

 Let’s assume a simple HelloWorld.c program.

 HelloWorld.c requires vir tual address translation for 4 pages:

▪ 1 – code page  1 – stack page

▪ 1 – heap page  1 – data segment page

 (#6) Assuming a two-level page table scheme, how many bits 
are required for the Page Directory Index (PDI)?

 (#7) How many bits are required for the Page Table Index 
(PTI)?

May 23, 2024
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MULTI LEVEL PAGE TABLE EXAMPLE - 2

 Assume each page directory entry (PDE) and page table entry 

(PTE) requires 4 bytes:

▪ 6 bits for the Page Directory Index (PDI)

▪ 6 bits for the Page Table Index (PTI)

▪ 12 offset bits

▪ 8 status bits

 (#8) How much total  memory is required to index the 

HelloWorld.c program using a two-level page table when we 

only need to translate 4 total pages?

 HINT: we need to allocate one Page Directory and one Page 

Table…

 HINT: how many entries are in the PD and PT

May 23, 2024
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MULTI LEVEL PAGE TABLE EXAMPLE - 3
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 (#9) Using a single page directory entry (PDE) pointing to a 

single page table (PT), if  all of the slots of the page table (PT) 

are in use, what is the total amount of memory a two -level 

page table scheme can address?

 (#10) And finally, for this example, as a percentage (%),

how much memory does the 2-level page table scheme 

consume compared to the 1-level scheme?

 HINT: two-level memory use / one-level memory use

May 23, 2024
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MULTI LEVEL PAGE TABLE EXAMPLE - 4

 #1 – 4096 pages

 #2 – 12 bits

 #3 – 12 bits

 #4 – 4 bytes

 #5 – 4096 x 4 = 16,384 bytes (16KB)

 #6 – 6 bits

 #7 – 6 bits

 #8 – 256 bytes for Page Directory (PD)  (64 entries x 4 bytes)

 256 bytes for Page Table (PT)  TOTAL = 512 bytes

 #9 – 64 entries, where each entry maps a 4,096 byte page

With 12 offset bits, can address 262,144 bytes (256 KB)

 #10- 512/16384 = .03125 →  3.125%
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ANSWERS

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 –  May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam –  Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

May 23, 2024
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OBJECTIVES – 5/23

CHAPTER 21/22:

BEYOND PHYSICAL 

MEMORY

May 23, 2024
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 Disks (HDD, SSD) provide another level of storage in the 

memory hierarchy
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MEMORY HIERARCHY

 Provide the illusion of an address space larger than 

physical RAM

 For a single process

▪ Convenience

▪ Ease of use 

 For multiple processes

▪ Large virtual memory space supports running 

many concurrent processes. . .
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MOTIVATION FOR 

EXPANDING THE ADDRESS SPACE
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LATENCY TIMES

Design considerations:
▪ SSDs 4x the time of DRAM

▪ HDDs 80x the time of DRAM

 Latency numbers every programmer should know
 From: https://g ist .g ithub.com/jboner/2841832#fi le - la tency - txt

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 –  May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam –  Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies

May 23, 2024
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OBJECTIVES – 5/23

 Disk space for storing memory pages

 “Swap” them in and out of memory to disk as needed

May 23, 2024
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SWAP SPACE

 The size of the swap space can be seen using the Linux free 

command: “free –h”

 With sufficient disk space, a common allocation is to create 

Swap space greater than or equal to physical RAM
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SWAP SPACE - 2

 Swap space lives on a separate logical volume in Ubuntu Linux 

that is managed separately from the root file system

 Check logical volumes with “sudo lvdisplay” command:

 See also “ lvm lvs” command
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SWAP SPACE - 3

 Memory pages are:

▪ Stored in memory

▪ Swapped to disk

 Present bit

▪ In the page table entry (PTE) indicates if page is present

 Page fault

▪Memory page is accessed, but has been swapped to disk
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PAGE LOCATION

85 86

87 88

89 90



TCSS 422 A – Spring 2024
School of Engineering and Technology

5/28/2024

L17.16Slides by Wes J. Lloyd

 OS steps in to handle the page fault

 Loading page from disk requires a free memory page

 Page-Fault Algorithm

May 23, 2024
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PAGE FAULT

 Page daemon

▪ Background threads which monitors swapped pages

 Low watermark (LW)

▪ Threshold for when to swap pages to disk

▪ Daemon checks: free pages < LW

▪ Begin swapping to disk until reaching the highwater mark

 High watermark (HW)

▪ Target threshold of free memory pages

▪ Daemon free until: free pages >= HW
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PAGE REPLACEMENTS

 Questions from 5/21

 Memory Segmentation Activity + answers (available in Canvas)

 Assignment 2 –  May 31

 Assignment 3: (Tutorial) Intro to Linux Kernel Modules - June 9

 Final exam –  Thursday June 6 @ 3:40pm

 Quiz 4 – Page Tables - Due June 6 @ 11:59 am

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

 Chapter 21/22: Beyond Physical Memory

▪ Swapping Mechanisms, Swapping Policies
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OBJECTIVES – 5/23

REPLACEMENT 

POLICIES

May 23, 2024
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 Replacement policies apply to “any” cache

 Goal is to minimize the number of misses

 Average memory access t ime (AMAT) can be estimated:

 Consider TM = 100 ns, TD = 10ms

 Consider Phit = .9 (90%), Pmiss = .1

 Consider Phit = .999 (99.9%), Pmiss = .001
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CACHE MANAGEMENT

𝐴𝑀𝐴𝑇 = 𝑃𝐻𝑖𝑡 ∗ 𝑇𝑀 + (𝑃𝑀𝑖𝑠𝑠 ∗ 𝑇𝐷)

Argument Meaning

𝑇𝑀 The cost of accessing memory (time)

𝑇𝐷 The cost of accessing disk (time)

𝑃𝐻𝑖𝑡 The probability of finding the data item in the cache(a hit)

𝑃𝑀𝑖𝑠𝑠 The probability of not finding the data in the cache(a miss)

 What if :

▪ We could predict the future (… with a magical oracle)

▪ All future page accesses are known

▪ Always replace the page in the cache used farthest in the future 

 Used for a comparison

 Provides a “best case” replacement policy

 Consider a 3-element empty cache with the following page 

accesses:

0  1  2  0  1  3  0  3  1  2  1
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OPTIMAL REPLACEMENT POLICY

What is the hit/miss ratio?What is the hit/miss ratio?

6 hits6 hits

91 92

93 94

95 96



TCSS 422 A – Spring 2024
School of Engineering and Technology

5/28/2024

L17.17Slides by Wes J. Lloyd

 Queue based

 Always replace the oldest element at the back of cache

 Simple to implement

 Doesn’t consider importance… just arrival ordering

 Consider a 3-element empty cache with the following 

page accesses:

0  1  2  0  1  3  0  3  1  2  1

 What is the hit/miss ratio?

 How is FIFO different than LRU?

May 23, 2024
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FIFO REPLACEMENT

4 hits4 hits

LRU incorporates historyLRU incorporates history

 Pick a page at random to replace

 Simple and fast implementation

 Performance depends on luck of random choices

0  1  2  0  1  3  0  3  1  2  1
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RANDOM REPLACEMENT

 LRU: Least recently used

 Always replace page with oldest access time (front)

 Always move end of cache when element is read again

 LRU requires constant reorganization of the cache

 Considers temporal locality (when pg was last accessed )

0  1  2  0  1  3  0  3  1  2  1

 LFU: Least frequently used

 Always replace page with the fewest # of accesses (front)

 Incorporates frequency of use - must track pg accesses

 Consider frequency of page accesses

0  1  2  0  1  3  0  3  1  2  1
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HISTORY-BASED POLICIES

What is the hit/miss ratio?What is the hit/miss ratio?

6 hits6 hits

Hit/miss ratio is=6 hitsHit/miss ratio is=6 hits
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 No-Locality (Random Access) Workload

▪ Perform 10,000 random page accesses 

▪ Across set of 100 memory pages

May 23, 2024
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WORKLOAD EXAMPLES: NO-LOCALITY

When the cache is
 large enough to fit 
the entire workload, 
 it doesn’t matter 

which policy you use.
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 80/20 Workload

▪ Perform 10,000 page accesses, against set of 100 pages

▪ 80% of accesses are to 20% of pages (hot pages)

▪ 20% of accesses are to 80% of pages (cold pages)
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WORKLOAD EXAMPLES: 80/20

LRU is more likely
to hold onto
hot pages

(recalls history)

 Looping sequential workload

▪ Refer to 50 pages in sequence: 0, 1, …, 49

▪ Repeat loop
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WORKLOAD EXAMPLES: SEQUENTIAL

Random performs 
better than FIFO and 

LRU for 
cache sizes < 50

Algorithms should provide
“scan resistance”

May 23, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington  -  Tacoma

L17.1
05

 Implementing last recently used (LRU) requires tracking 

access time for all system memory pages

 Times can be tracked with a list

 For cache eviction, we must scan an entire list

 Consider: 4GB memory system (232),

  with 4KB pages (212)

 This requires 220 comparisons  !!!

 Simplification is needed

▪ Consider how to approximate the oldest page access
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IMPLEMENTING LRU

Harness the Page Table Entry (PTE) Use Bit

HW sets to 1 when page is used

OS sets to 0

Clock algorithm (approximate LRU)

▪Refer to pages in a circular list

▪Clock hand points to current page

▪Loops around

▪ IF USE_BIT=1 set to USE_BIT = 0

▪ IF USE_BIT=0 replace page
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IMPLEMENTING LRU - 2

 Not as efficient as LRU, but better than other 

replacement algorithms that do not consider history
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CLOCK ALGORITHM
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Consider dirty pages in cache

 If DIRTY (modified) bit is FALSE

▪No cost to evict page from cache

 If DIRTY (modified) bit is TRUE

▪Cache eviction requires updating memory

▪Contents have changed

Clock algorithm should favor no cost eviction
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CLOCK ALGORITHM - 2

 On demand →  demand paging

 Prefetching

▪ Preload pages based on anticipated demand

▪ Prediction based on locality

▪ Access page P, suggest page P+1 may be used

 What other techniques might help anticipate required 
memory pages?   

▪ Prediction models, historical analysis 

▪ In general: accuracy vs. effort tradeoff

▪ High analysis techniques struggle to respond in real time
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WHEN TO LOAD PAGES

Page swaps / writes

▪Group/cluster pages together

▪Collect pending writes, perform as batch

▪Grouping disk writes helps amortize latency costs

 Thrashing

▪Occurs when system runs many memory intensive 

processes and is low in memory

▪Everything is constantly swapped to-and-from disk
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OTHER SWAPPING POLICIES

Working sets

▪Groups of related processes

▪When thrashing: prevent one or more working 

set(s) from running

▪Temporarily reduces memory burden

▪Allows some processes to run, reduces thrashing
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OTHER SWAPPING POLICIES - 2

QUESTIONS
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