
TCSS 422 A – Spring 2024
School of Engineering and Technology

5/21/2024

L16.1Slides by Wes J. Lloyd

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

Memory Virtualization III:
Free Space Management,

Introduction to Paging,
Translation Lookaside Buffer (TLB),

Smaller Tables

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Make-up midterm exams are completed and scores are posted

 Midterm exams are available for pick -up in class through

May 30 (Lecture 19)

 Midterm Review Session:

 Tuesday May 21, 6:00 pm (during office hour, in BHS106)

 Via Zoom / Live Stream / Recording

 Will discuss and review midterm exam problems and grading

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.2

MIDTERM REVIEW SESSION

 Questions from 5/16

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -May 24

 Assignment 3 (as a Tutorial) - June 7

 Quiz 4 - Page Tables – To be posted

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 21, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.3

OBJECTIVES – 5/21

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

May 21, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.4

ONLINE DAILY FEEDBACK SURVEY

May 21, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L16.5

 Please classify your perspective on material covered in today’s

class (27 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.00 (- previous 5.96)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.19 (- previous 5.42)

May 21, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.6

MATERIAL / PACE

1 2

3 4

5 6

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/21/2024

L16.2Slides by Wes J. Lloyd

 What does f ine grained memory segmentation look l ike?

 Fine grained memory segments:

▪ Instead of just one segment for code, stack, heap, etc. allow system

to chop segments into separate segments (multiple pieces)

▪ A large segment table is then used to track entire computer’s

memory as variable sized segments

▪ Computers would need to track and manage thousands of segments

▪ This is not really used (legacy)

▪ We will not focus on fine-grained segmentation

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.7

FEEDBACK FROM 5/16

 I t was noted that f ragmentation can af fect RAM and d isk s torage.
S ince paging can avoid f ragmentation issues for RAM, is/can
paging a lso be used for d isk s torage?

 Tradit ional Hard Disk Drives (HDDs) stored data on tracks,
where each track was divided into sectors

 Sectors are typically 512 bytes

 Filesytems (e.g. ext4) determine the smallest blocksize for
reading/writ ing fi le data

 Filesystems must sett le on a minimize size of the block

 Having a small blocksize great ly increases the size of the fi le
system as it must be able to track smaller units consuming
much more disk space!

 #check filesystem health & stats:
sudo e2fsck -n -v -f {device-file}

 sudo blockdev --getbsz {device-file} #check blocksize

 {device-fi le} wil l be l ike /dev/sda3 (Vir tualbox)

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.8

FEEDBACK FROM 5/18

 After buying and installing RAM it may not work as well

10 years later. What is it exactly that causes the actual

hardware to degrade over time, and is it related to how

our OS decides to allocate memory?

 Memory failure may be due to small manufacturing

imperfections, cumulative power spikes, etc.

 Typically, when DRAM fails it is critical and the system

will crash.

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.9

FEEDBACK - 2

 MS Windows has a "Defragment and Optimize Drives"
application. I was wondering how this app moves data around
on the Hard Disk and why the process of creating more
contiguous f ree space for future f i le storage causes damage
over t ime, and if there is a trade-off between permanent
damage caused and the relative speed increase, and where it
is worth it given that the application now runs in the
background automatically and frequently, where we used to
have to do it manually prior to Windows Vista.

 There hopefully is no “damage” per se.

 Fragmentation may seem like damage due to its impact on
disk performance

 Sectors on physical disks can and do fail.

 The OS marks them as bad in the filesystem and avoids future
use

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.10

FEEDBACK - 3

 Questions from 5/16

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -May 24

 Assignment 3 (as a Tutorial) - June 7

 Quiz 4 - Page Tables - To be posted

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 21, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.11

OBJECTIVES – 5/21

 Questions from 5/16

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -May 24

 Assignment 3 (as a Tutorial) - June 7

 Quiz 4 - Page Tables - To be posted

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 21, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.12

OBJECTIVES – 5/21

7 8

9 10

11 12

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/21/2024

L16.3Slides by Wes J. Lloyd

 Questions from 5/16

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -May 24

 Assignment 3 (as a Tutorial) - June 7

 Quiz 4 - Page Tables - To be posted

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 21, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.13

OBJECTIVES – 5/21

 Questions from 5/16

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -May 24

 Assignment 3 (as a Tutorial) - June 7

 Quiz 4 - Page Tables - To be posted

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 21, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.14

OBJECTIVES – 5/21

 Questions from 5/16

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -May 24

 Assignment 3 (as a Tutorial) - June 7

 Quiz 4 - Page Tables - To be posted

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 21, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.15

OBJECTIVES – 5/21

 Questions from 5/16

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -May 24

 Assignment 3 (as a Tutorial) - June 7

 Quiz 4 - Page Tables - To be posted

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 21, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.16

OBJECTIVES – 5/21

CHAPTER 17: FREE

SPACE MANAGEMENT

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L16.17

 How should free space be managed, when satisfying

variable-sized requests?

 What strategies can be used to minimize fragmentation?

 What are the time and space overheads of alternate

approaches?

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.18

FREE SPACE MANAGEMENT

13 14

15 16

17 18

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/21/2024

L16.4Slides by Wes J. Lloyd

 Management of memory using

 Only fixed-sized units

▪ Easy: keep a list

▪Memory request → return first free entry

▪ Simple search

 With variable sized units

▪More challenging

▪ Results from variable sized malloc requests

▪ Leads to fragmentation

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.19

FREE SPACE MANAGEMENT

 Consider a 30-byte heap

 Request for 15-bytes

 Free space: 20 bytes

 No available contiguous chunk → return NULL

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.20

FRAGMENTATION

 External: OS can compact

▪ Example: Client asks for 100 bytes: malloc(100)

▪ OS: No 100 byte contiguous chunk is available:

 returns NULL

▪Memory is externally fragmented - - Compaction can fix!

 Internal: lost space – OS can’t compact

▪ OS returns memory units that are too large

▪ Example: Client asks for 100 bytes: malloc(100)

▪ OS: Returns 125 byte chunk

▪ Fragmentation is *in* the allocated chunk

▪Memory is lost, and unaccounted for – can’t compact

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.21

FRAGMENTATION - 2

 Request for 1 byte of memory: malloc(1)

 OS locates a free chunk to satisfy request

 Splits chunk into two, returns first chunk

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.22

ALLOCATION STRATEGY: SPLITTING

 Consider 30-byte heap

 Free() frees all 10 bytes segments (l ist of 3-f ree 10-byte chunks)

 Request arrives: malloc(30)

 SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!

 Coalescing regroups chunks into contiguous chunk

 Allocation can now proceed

 Coalescing is defragmentation of the free space list

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.23

ALLOCATION STRATEGY: COALESCING

 free(void *ptr): Does not require a size parameter

 How does the OS know how much memory to free?

 Header block

▪ Small descriptive block of memory at start of chunk

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.24

MEMORY HEADERS

19 20

21 22

23 24

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/21/2024

L16.5Slides by Wes J. Lloyd

 Contains size

 Pointers: for faster memory access

 Magic number: integrity checking

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.25

MEMORY HEADERS - 2

 Size of memory chunk is:

 Header size + user malloc size

 N bytes + sizeof(header)

 Easy to determine address of header

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.26

MEMORY HEADERS - 3

 Simple free list struct

 Use mmap to create free list

 4kb heap, 4 byte header, one contiguous free chunk

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.27

THE FREE LIST

 Create and initialize free- l ist “heap”

 Heap layout:

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.28

FREE LIST - 2

 Consider a request for a 100 bytes: malloc(100)

 Header block requires 8 bytes

▪ 4 bytes for size, 4 bytes for magic number

 Split the heap – header goes with each block

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.29

FREE LIST: MALLOC() CALL

First block
is used

 Addresses of chunks

 Start=16384

+ 108 (end of 1st chunk)

+ 108 (end of 2nd chunk)

+ 108 (end of 3 rd chunk)

= 16708

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.30

FREE LIST: FREE() CALL

Free this
block

25 26

27 28

29 30

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/21/2024

L16.6Slides by Wes J. Lloyd

 Free(sptr)

 Our 3 chunks start at 16 KB

(@ 16,384 bytes)

 Free chunk #2 - sptr

 Sptr = 16500

▪ addr – sizeof(node_t)

 Actual start of chunk #2

▪ 16492

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.31

FREE LIST:

FREE() CHUNK #2

Block
Now Free

 Now free remaining chunks:

 Free(16392)

 Free(16608)

 Walk back 8 bytes for actual
star t of chunk

 External fragmentat ion

 Free chunk pointers
out of order

 Coalescing of next
pointers is needed

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.32

FREE LIST- FREE ALL CHUNKS

 Start with small sized heap

 Request more memory when full

 sbrk(), brk()

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.33

GROWING THE HEAP

Segmented heapSegmented heap

 Best f it

▪ Traverse free list

▪ Identify all candidate free chunks

▪ Note which is smallest (has best fit)

▪When splitting, “leftover” pieces are small

(and potentially less useful -- fragmented)

 Worst f it

▪ Traverse free list

▪ Identify largest free chunk

▪ Split largest free chunk, leaving a still large free chunk

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.34

MEMORY ALLOCATION STRATEGIES

 Allocation request for 15 bytes

 Result of Best Fit

 Result of Worst Fit

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.35

EXAMPLES

 First f i t

▪ Start search at beginning of free list

▪ Find first chunk large enough for request

▪ Split chunk, returning a “fit” chunk, saving the remainder

▪ Avoids full free list traversal of best and worst fit

 Next f i t

▪ Similar to first fit, but start search at last search location

▪ Maintain a pointer that “cycles” through the list

▪ Helps balance chunk distribution vs. first fit

▪ Find first chunk, that is large enough for the request, and split

▪ Avoids full free list traversal

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.36

MEMORY ALLOCATION STRATEGIES - 2

31 32

33 34

35 36

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/21/2024

L16.7Slides by Wes J. Lloyd

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.3
7

 For popular sized requests

e.g. for kernel objects such as locks, inodes, etc.

 Manage as segregated free lists

 Provide object caches: stores pre -initialized objects

 How much memory should be dedicated for specialized

requests (object caches)?

 If a given cache is low in memory, can request “ slabs” of

memory from the general allocator for caches.

 General allocator will reclaim slabs when not used

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.38

SEGREGATED LISTS

 Binary buddy allocation

▪ Divides free space by two to find a block that is big enough to

accommodate the request; the next split is too small…

 Consider a 7KB request

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.39

BUDDY ALLOCATION

 Buddy allocation: suffers from internal fragmentation

 Allocated fragments, typically too large

 Coalescing is simple

▪ Two adjacent blocks are promoted up

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.40

BUDDY ALLOCATION - 2

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.4
1

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.4
2

37 38

39 40

41 42

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/21/2024

L16.8Slides by Wes J. Lloyd

WE WILL RETURN AT

5:05PM

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L16.43

 Questions from 5/16

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -May 24

 Assignment 3 (as a Tutorial) - June 7

 Quiz 4 - Page Tables - To be posted

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.44

OBJECTIVES – 5/21

CHAPTER 18:

INTRODUCTION TO

PAGING

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L16.45

 Split up address space of process into fixed sized pieces

called pages

 Alternative to variable sized pieces (Segmentation) which

suffers from significant fragmentation

 Physical memory is split up into an array of fixed -size slots

called page f rames.

 Each process has a page table which translates vir tual

addresses to physical addresses

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.46

PAGING

 Flexibility

▪ Abstracts the process address space into pages

▪ No need to track direction of HEAP / STACK growth

▪ Just add more pages…

▪ No need to store unused space

▪ As with segments…

 Simplicity

▪ Pages and page frames are the same size

▪ Easy to allocate and keep a free list of pages

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.47

ADVANTAGES OF PAGING

 Consider a 128 byte (27) address space

with 16-byte (24) pages

 Consider a 64-byte (26)

program address space

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.48

PAGING: EXAMPLE
Page Table:
VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2

43 44

45 46

47 48

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/21/2024

L16.9Slides by Wes J. Lloyd

 PAGE: Has two address components

▪ VPN: Virtual Page Number (serves as the page ID)

▪ Offset: Offset within a Page (indexes any byte in the page)

 Example:

Page Size: 16-bytes (24),

Program Address Space: 64-bytes (26)

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.49

PAGING: ADDRESS TRANSLATION

Here program can have
just four pages…

 Consider a 64-byte (26) program address space (4 pages→22)

 Stored in 128-byte (27) physical memory (8 frames→23)

 Offset is preserved

▪ 4 bits indexes any byte

▪ Page size is 16 bytes (24)

 Page table translates a

Vir tual Page Number (VPN) to

a Physical Frame Number (PFN)

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.50

EXAMPLE:

PAGING ADDRESS TRANSLATION

Page Table:
VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2

 (1) Where are page tables stored?

 (2) What are the typical contents of the page table?

 (3) How big are page tables?

 (4) Does paging make the system too slow?

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.51

PAGING DESIGN QUESTIONS

 Example:

▪ Consider a 32-bit process address space (4GB=232 bytes)

▪With 4 KB pages (4KB=212 bytes)

▪ 20 bits for VPN (220 pages)

▪ 12 bits for the page offset (212 unique bytes in a page)

 Page tables for each process are stored in RAM

▪ Support potential storage of 220 translations

= 1,048,576 pages per process

▪ Each page has a page table entry size of 4 bytes

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.52

(1) WHERE ARE PAGE TABLES STORED?

 With 220 slots in our page table for a single process

 Each slot (i.e. entry) dereferences a VPN

 Each entry provides a physical frame number

 Each entry requires 4 bytes (32 bits)

▪ 20 for the PFN on a 4GB system with 4KB pages

▪ 12 for the offset which is preserved

▪ (note we have no status bits, so this is
unrealistically small)

 How much memory is required to store the page table
for 1 process?

▪ Hint: # of entries x space per entry

▪ 4,194,304 bytes (or 4MB) to index one process

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.53

PAGE TABLE EXAMPLE

VPN0

VPN1

VPN2

…

…

VPN1048576

 If 4 MB is required to store one process

 Consider how much memory is required for an entire OS?

▪ With for example 100 processes…

 Page table memory requirement is now 4MB x 100 = 400MB

 If computer has 4GB memory (maximum for 32 -bits),

the page table consumes 10% of memory

400 MB / 4000 GB

 Is this ef f icient?

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.54

NOW FOR AN ENTIRE OS

49 50

51 52

53 54

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/21/2024

L16.10Slides by Wes J. Lloyd

 Page table is data structure used to map virtual page

numbers (VPN) to the physical address (Physical Frame

Number PFN)

▪ Linear page table → simple array

 Page-table entry

▪ 32 bits for capturing state

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.55

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

 P: present

 R/W: read/write bit

 U/S: supervisor

 A: accessed bit

 D: dirty bit

 PFN: the page frame number

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.56

PAGE TABLE ENTRY

 Common flags:

 Valid Bit: Indicating whether the particular translation is valid.

 Protection Bit: Indicating whether the page could be read

from, written to, or executed from

 Present Bit: Indicating whether this page is in physical

memory or on disk(swapped out)

 Dirty Bit: Indicating whether the page has been modified since

it was brought into memory

 Reference Bit(Accessed Bit) : Indicating that a page has been

accessed

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.57

PAGE TABLE ENTRY - 2

 Page tables are too big to store on the CPU

 Page tables are stored using physical memory

 Paging supports efficiently storing a sparsely populated

address space

▪ Reduced memory requirement

Compared to base and bounds, and segments

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.58

(3) HOW BIG ARE PAGE TABLES?

 Translation

 Issue #1: Starting location of the page table is
needed

▪HW Support: Page-table base register

▪ stores active process

▪Facilitates translation

 Issue #2: Each memory address translation for paging
requires an extra memory reference

▪HW Support: TLBs (Chapter 19)

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.59

(4) DOES PAGING MAKE

THE SYSTEM TOO SLOW?

Page Table:
VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2

Stored in RAM →

1. // Extract the VPN from the virtual address

2. VPN = (VirtualAddress & VPN_MASK) >> SHIFT

3.

4. // Form the address of the page-table entry (PTE)

5. PTEAddr = PTBR + (VPN * sizeof(PTE))

6.

7. // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

9.

10. // Check if process can access the page

11. if (PTE.Valid == False)

12. RaiseException(SEGMENTATION_FAULT)

13. else if (CanAccess(PTE.ProtectBits) == False)

14. RaiseException(PROTECTION_FAULT)

15. else

16. // Access is OK: form physical address and fetch it

17. offset = VirtualAddress & OFFSET_MASK

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset

19. Register = AccessMemory(PhysAddr)

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.60

PAGING MEMORY ACCESS

55 56

57 58

59 60

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/21/2024

L16.11Slides by Wes J. Lloyd

 Example: Use this Array initialization Code

 Assembly equivalent:

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.61

COUNTING MEMORY ACCESSES

 Locations:

▪ Page table

▪ Array

▪ Code

 50 accesses

for 5 loop

iterations

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.62

VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.6
3

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.6
5

61 62

63 64

65 66

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/21/2024

L16.12Slides by Wes J. Lloyd

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.6
7

 Consider a 4GB Computer:

 With a 4096-byte page size (4KB)

 How many pages would fit in physical memory?

 Now consider a page table:

 For the page table entry, how many bits are required for the

VPN?

 If we assume the use of 4-byte (32 bit) page table entries,

how many bits are available for status bits?

 How much space does this page table require?

of page table entries x size of page table entry

 How many page tables (for user processes)

would fill the entire 4GB of memory?

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.68

PAGING SYSTEM EXAMPLE

 Questions from 5/16

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -May 24

 Assignment 3 (as a Tutorial) - June 7

 Quiz 4 - Page Tables - To be posted

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.69

OBJECTIVES – 5/21

CHAPTER 19:

TRANSLATION

LOOKASIDE BUFFER

(TLB)

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L16.70

 Legacy name…

Better name, “Address Translation Cache”

 TLB is an on CPU cache of address translations

▪virtual → physical memory

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.71

TRANSLATION LOOKASIDE BUFFER

 Example: Use this Array initialization Code

 Assembly equivalent:

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.72

COUNTING MEMORY ACCESSES

67 68

69 70

71 72

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/21/2024

L16.13Slides by Wes J. Lloyd

 Locations:

▪ Page table

▪ Array

▪ Code

 50 accesses

for 5 loop

iterations

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.73

VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS

 Goal:

Reduce access

to the page

tables

 Example:

50 RAM accesses

for first 5 for - loop

iterations

 Move lookups

from RAM to TLB

by caching page

table entries

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.74

TRANSLATION LOOKASIDE BUFFER - 2

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.75

TRANSLATION LOOKASIDE BUFFER (TLB)

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.76

TRANSLATION LOOKASIDE BUFFER (TLB)

The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

 Questions from 5/16

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -May 24

 Assignment 3 (as a Tutorial) - June 7

 Quiz 4 - Page Tables - To be posted

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.77

OBJECTIVES – 5/21

 For: array based page table

 Hardware managed TLB

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.78

TLB BASIC ALGORITHM

Extract the virtual page numberCheck if the TLB holds the translation for the VPNExtract page frame number from TLBGenerate the physical address to access memory

73 74

75 76

77 78

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/21/2024

L16.14Slides by Wes J. Lloyd

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.79

TLB BASIC ALGORITHM - 2

If TLB miss, access the pg table (in RAM) to find address translationUpdate the TLB with the translationRetry the instruction… (requery the TLB)

Key detail:

 For a TLB miss, we first access the page table in RAM to

populate the TLB… we then requery the TLB

 All address translations go through the TLB

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.80

TLB – ADDRESS TRANSLATION CACHE

 Questions from 5/16

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -May 24

 Assignment 3 (as a Tutorial) - June 7

 Quiz 4 - Page Tables - To be posted

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.81

OBJECTIVES – 5/21

 Example:

 Program address space: 256-byte

▪ Addressable using 8 total bits (28)

▪ 4 bits for the VPN (16 total pages)

 Page size: 16 bytes

▪ Offset is addressable using 4-bits

 Store an array: of (10) 4-byte integers

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.82

TLB EXAMPLE

 Consider the code above:

 Initially the TLB does not know where a[] is

 Consider the accesses:

 a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],

a[8], a[9]

 How many pages are accessed?

 What happens when accessing a page not

in the TLB?

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.83

TLB EXAMPLE - 2

 For the accesses: a[0], a[1], a[2], a[3], a[4],

 a[5], a[6], a[7], a[8], a[9]

 How many are hits?

 How many are misses?

 What is the hit rate? (%)

▪ 70% (3 misses one for each VP, 7 hits)

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.84

TLB EXAMPLE - 3

79 80

81 82

83 84

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/21/2024

L16.15Slides by Wes J. Lloyd

 What factors affect the hit/miss rate?

▪ Page size

▪ Data/Access locality (how is data accessed?)

▪ Sequential array access vs. random array access

▪ Temporal locality

▪ Size of the TLB cache
(how much history can you store?)

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.85

TLB EXAMPLE - 4

 Questions from 5/16

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -May 24

 Assignment 3 (as a Tutorial) - June 7

 Quiz 4 - Page Tables - To be posted

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.86

OBJECTIVES – 5/21

CHAPTER 20:

PAGING:

SMALLER TABLES

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L16.87

Consider array -based page tables:

▪ Each process has its own page table

▪ 32-bit process address space (up to 4GB)

▪With 4 KB pages

▪ 20 bits for VPN

▪ 12 bits for the page offset

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.88

LINEAR PAGE TABLES

 Page tables stored in RAM

 Support potential storage of 2 20 translations

= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes

▪ Requires 400+ MB of RAM to store process information

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.89

LINEAR PAGE TABLES - 2

 Page tables stored in RAM

 Support potential storage of 2 20 translations

= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes

▪ Requires 400+ MB of RAM to store process information

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.90

LINEAR PAGE TABLES - 2

Page tables are too big and
consume too much memory.

Need Solutions …

85 86

87 88

89 90

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/21/2024

L16.16Slides by Wes J. Lloyd

 Questions from 5/16

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -May 24

 Assignment 3 (as a Tutorial) - June 7

 Quiz 4 - Page Tables - To be posted

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.91

OBJECTIVES – 5/21

 Larger pages = 16KB = 214

 32-bit address space: 232

 218 = 262,144 pages

 Memory requirement cut to ¼

 However pages are huge

 Internal fragmentation results

 16KB page(s) allocated for small programs with only a

few variables

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.92

PAGING: USE LARGER PAGES

 Process: 16KB Address Space w/ 1KB pages

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.93

PAGE TABLES: WASTED SPACE

Page Table

 Process: 16KB Address Space w/ 1KB pages

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.94

PAGE TABLES: WASTED SPACE

Page Table

Most of the page table is unused
and full of wasted space. (73%)

QUESTIONS

91 92

93 94

124

	Slide 1: TCSS 422: Operating Systems
	Slide 2: Midterm review session
	Slide 3: OBJECTIVES – 5/21
	Slide 4: Online daily feedback survey
	Slide 5
	Slide 6: Material / pace
	Slide 7: Feedback from 5/16
	Slide 8: Feedback from 5/18
	Slide 9: Feedback - 2
	Slide 10: Feedback - 3
	Slide 11: OBJECTIVES – 5/21
	Slide 12: OBJECTIVES – 5/21
	Slide 13: OBJECTIVES – 5/21
	Slide 14: OBJECTIVES – 5/21
	Slide 15: OBJECTIVES – 5/21
	Slide 16: OBJECTIVES – 5/21
	Slide 17: Chapter 17: free space management
	Slide 18: Free space management
	Slide 19: Free space management
	Slide 20: fragmentation
	Slide 21: Fragmentation - 2
	Slide 22: Allocation strategy: Splitting
	Slide 23: Allocation strategy: coalescing
	Slide 24: Memory headers
	Slide 25: Memory headers - 2
	Slide 26: Memory headers - 3
	Slide 27: The free list
	Slide 28: Free list - 2
	Slide 29: Free list: malloc() call
	Slide 30: Free list: free() call
	Slide 31: Free list: free() chunk #2
	Slide 32: Free list- free all chunks
	Slide 33: Growing the heap
	Slide 34: Memory allocation strategies
	Slide 35: examples
	Slide 36: Memory allocation strategies - 2
	Slide 37
	Slide 38: Segregated lists
	Slide 39: Buddy allocation
	Slide 40: Buddy allocation - 2
	Slide 41
	Slide 42
	Slide 43: We will return at 5:05Pm
	Slide 44: OBJECTIVES – 5/21
	Slide 45: Chapter 18: Introduction to paging
	Slide 46: paging
	Slide 47: Advantages of paging
	Slide 48: Paging: example
	Slide 49: Paging: Address translation
	Slide 50: Example: paging address translation
	Slide 51: Paging design questions
	Slide 52: (1) Where are page tables stored?
	Slide 53: Page table example
	Slide 54: Now for an entire OS
	Slide 55: (2) What’s actually in the page table
	Slide 56: Page table entry
	Slide 57: Page table entry - 2
	Slide 58: (3) How big are page tables?
	Slide 59: (4) Does paging make the system too slow?
	Slide 60: Paging memory access
	Slide 61: Counting memory accesses
	Slide 62: Visualizing Memory accesses: For the first 5 loop iterations
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68: Paging system example
	Slide 69: OBJECTIVES – 5/21
	Slide 70: Chapter 19: Translation lookaside buffer (TLB)
	Slide 71: Translation lookaside buffer
	Slide 72: Counting memory accesses
	Slide 73: Visualizing Memory accesses: For the first 5 loop iterations
	Slide 74: TRANSLATION LOOKASIDE BUFFER - 2
	Slide 75: Translation lookaside buffer (TLB)
	Slide 76: Translation lookaside buffer (TLB)
	Slide 77: OBJECTIVES – 5/21
	Slide 78: Tlb basic algorithm
	Slide 79: Tlb basic algorithm - 2
	Slide 80: TLb – address translation cache
	Slide 81: OBJECTIVES – 5/21
	Slide 82: Tlb example
	Slide 83: Tlb Example - 2
	Slide 84: Tlb Example - 3
	Slide 85: Tlb example - 4
	Slide 86: OBJECTIVES – 5/21
	Slide 87: Chapter 20: Paging: smaller tables
	Slide 88: Linear page tables
	Slide 89: Linear page tables - 2
	Slide 90: Linear page tables - 2
	Slide 91: OBJECTIVES – 5/21
	Slide 92: Paging: use larger pages
	Slide 93: Page tables: wasted space
	Slide 94: Page tables: wasted space
	Slide 124: Questions

