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TCSS 422: OPERATING SYSTEMS

 Make-up midterm exams are completed and scores are posted

 Midterm exams are available for pick -up in class through 

May 30 (Lecture 19)

 Midterm Review Session:

 Tuesday May 21, 6:00 pm (during office hour,  in BHS106)

 Via Zoom / Live Stream / Recording

 Will discuss and review midterm exam problems and grading

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington  -  Tacoma

L16.2

MIDTERM REVIEW SESSION

 Questions from 5/16

 Assignment 2 - May 31

 Quiz 3 –  Synchronized Array - May 23

 Tutorial 2 –  Pthread, locks, conditions tutorial -May 24

 Assignment 3 (as a Tutorial)  - June 7

 Quiz 4 - Page Tables – To be posted

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
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OBJECTIVES – 5/21

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class (27 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average –  6.00  (  -  previous 5.96) 

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average –  5.19 (  -  previous 5.42)
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MATERIAL / PACE
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 What does f ine grained memory segmentation look l ike?

 Fine grained memory segments:

▪ Instead of just one segment for code, stack, heap, etc. allow system 

to chop segments into separate segments (multiple pieces)

▪ A large segment table is then used to track entire computer’s 

memory as variable sized segments

▪ Computers would need to track and manage thousands of segments

▪ This is not really used (legacy)

▪ We will not focus on fine-grained segmentation
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FEEDBACK FROM 5/16

 I t  was noted that  f ragmentation can af fect RAM and d isk s torage. 
S ince paging can avoid f ragmentation issues for  RAM, is/can 
paging a lso be used for d isk s torage?

 Tradit ional Hard Disk Drives (HDDs) stored data on tracks, 
where each track was divided into sectors 

 Sectors are typically 512 bytes

 Filesytems (e.g.  ext4) determine the smallest  blocksize  for 
reading/writ ing fi le  data

 Filesystems must sett le on a minimize size of the block

 Having a small blocksize  great ly increases the size of the fi le  
system as it  must be able to track smaller units consuming 
much more disk space!

 #check filesystem health & stats:
sudo e2fsck -n -v -f {device-file}

 sudo blockdev --getbsz {device-file} #check blocksize

 {device-fi le} wil l  be l ike /dev/sda3  (Vir tualbox)
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FEEDBACK FROM 5/18

 After buying and installing RAM it may not work as well 

10 years later. What is  it  exactly that causes the actual 

hardware to degrade over time, and is  it  related to how 

our OS decides to allocate memory?

 Memory failure may be due to small manufacturing 

imperfections, cumulative power spikes, etc.  

 Typically, when DRAM fails it is critical and the system 

will crash.
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FEEDBACK - 2

 MS Windows has a "Defragment and Optimize Drives" 
application. I  was wondering how this app moves data around 
on the Hard Disk and why the process of  creating more 
contiguous f ree space for future f i le storage causes damage 
over t ime, and if  there is  a  trade-off between permanent 
damage caused and the relative speed increase, and where it  
is  worth it  given that the application now runs in  the 
background automatically and frequently, where we used to 
have to do it  manually prior to Windows Vista.

 There hopefully is no “damage” per se.

 Fragmentation may seem like damage due to its impact on 
disk performance

 Sectors on physical disks can and do fail.

 The OS marks them as bad in the filesystem and avoids future 
use
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FEEDBACK - 3

 Questions from 5/16

 Assignment 2 -  May 31

 Quiz 3 –  Synchronized Array - May 23

 Tutorial 2 –  Pthread, locks, conditions tutorial -May 24

 Assignment 3 (as a Tutorial)  - June 7

 Quiz 4 - Page Tables - To be posted

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
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OBJECTIVES – 5/21

 Questions from 5/16

 Assignment 2 - May 31

 Quiz 3 –  Synchronized Array -  May 23

 Tutorial 2 –  Pthread, locks, conditions tutorial -May 24

 Assignment 3 (as a Tutorial)  - June 7

 Quiz 4 - Page Tables - To be posted

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
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OBJECTIVES – 5/21
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 Questions from 5/16

 Assignment 2 - May 31

 Quiz 3 –  Synchronized Array - May 23

 Tutorial 2 –  Pthread, locks, conditions tutorial -May 24

 Assignment 3 (as a Tutorial)  - June 7

 Quiz 4 - Page Tables - To be posted

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
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OBJECTIVES – 5/21

 Questions from 5/16

 Assignment 2 - May 31

 Quiz 3 –  Synchronized Array - May 23

 Tutorial 2 –  Pthread, locks, conditions tutorial -May 24

 Assignment 3 (as a Tutorial)  -  June 7

 Quiz 4 - Page Tables - To be posted

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
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OBJECTIVES – 5/21

 Questions from 5/16

 Assignment 2 - May 31

 Quiz 3 –  Synchronized Array - May 23

 Tutorial 2 –  Pthread, locks, conditions tutorial -May 24

 Assignment 3 (as a Tutorial)  - June 7

 Quiz 4 -  Page Tables -  To be posted

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
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OBJECTIVES – 5/21

 Questions from 5/16

 Assignment 2 - May 31

 Quiz 3 –  Synchronized Array - May 23

 Tutorial 2 –  Pthread, locks, conditions tutorial -May 24

 Assignment 3 (as a Tutorial)  - June 7

 Quiz 4 - Page Tables - To be posted

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
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OBJECTIVES – 5/21

CHAPTER 17: FREE 

SPACE MANAGEMENT
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 How should free space be managed, when satisfying 

variable-sized requests?

 What strategies can be used to minimize fragmentation? 

 What are the time and space overheads of alternate 

approaches?
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FREE SPACE MANAGEMENT
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 Management of memory using

 Only fixed-sized units 

▪ Easy: keep a list

▪Memory request → return first free entry

▪ Simple search

 With variable sized units

▪More challenging

▪ Results from variable sized malloc requests

▪ Leads to fragmentation

May 21, 2024
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FREE SPACE MANAGEMENT

 Consider a 30-byte heap

 Request for 15-bytes

 Free space: 20 bytes

 No available contiguous chunk →  return NULL
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FRAGMENTATION

 External:   OS can compact

▪ Example: Client asks for 100 bytes:  malloc(100)

▪ OS: No 100 byte contiguous chunk is available:

 returns NULL

▪Memory is externally fragmented - - Compaction can fix!

 Internal:   lost space –  OS can’t compact

▪ OS returns memory units that are too large

▪ Example:  Client asks for 100 bytes:  malloc(100)

▪ OS: Returns 125 byte chunk

▪ Fragmentation is *in* the allocated chunk

▪Memory is lost, and unaccounted for – can’t compact
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FRAGMENTATION - 2

 Request for 1 byte of memory:  malloc(1)

 OS locates a free chunk to satisfy request

 Splits chunk into two, returns first chunk
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ALLOCATION STRATEGY: SPLITTING

 Consider 30-byte heap

 Free() frees all 10 bytes segments  ( l ist  of  3-f ree 10-byte chunks)

 Request arrives:  malloc(30)

 SPLIT DOES NOT WORK  -  no contiguous 30-byte chunk exists!

 Coalescing regroups chunks into contiguous chunk

 Allocation can now proceed

 Coalescing is defragmentation of the free space list
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ALLOCATION STRATEGY: COALESCING

 free(void *ptr): Does not require a size parameter

 How does the OS know how much memory to free?

 Header block

▪ Small descriptive block of memory at start of chunk
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MEMORY HEADERS
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 Contains size

 Pointers: for faster memory access

 Magic number: integrity checking
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MEMORY HEADERS - 2

 Size of memory chunk is:

 Header size + user malloc size

 N bytes + sizeof(header)

 Easy to determine address of header
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MEMORY HEADERS - 3

 Simple free list struct

 Use mmap to create free list

 4kb heap, 4 byte header, one contiguous free chunk
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THE FREE LIST

 Create and initialize free- l ist “heap”

 Heap layout:
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FREE LIST - 2

 Consider a request for a 100 bytes:   malloc(100)

 Header block requires 8 bytes 

▪ 4 bytes for size, 4 bytes for magic number

 Split the heap – header goes with each block
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FREE LIST:  MALLOC() CALL

First block
is used

 Addresses of chunks

 Start=16384 

+ 108 (end of 1st chunk)

+ 108 (end of 2nd chunk)

+ 108 (end of 3 rd chunk)

= 16708
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FREE LIST: FREE() CALL

Free this
block
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 Free(sptr)

 Our 3 chunks start at 16 KB

(@ 16,384 bytes)

 Free chunk #2 - sptr

 Sptr = 16500

▪ addr – sizeof(node_t)

 Actual start of chunk #2

▪ 16492

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.31

FREE LIST: 

FREE() CHUNK #2

Block
Now Free

 Now free remaining chunks:

 Free(16392)

 Free(16608)

 Walk back 8 bytes for actual 
star t  of chunk

 External fragmentat ion

 Free chunk pointers 
out  of order

 Coalescing of next  
pointers is needed
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FREE LIST- FREE ALL CHUNKS

 Start with small sized heap

 Request more memory when full

 sbrk(), brk()
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GROWING THE HEAP

Segmented heapSegmented heap

 Best f it

▪ Traverse free list

▪ Identify all candidate free chunks

▪ Note which is smallest (has best fit)

▪When splitting, “leftover” pieces are small 

(and potentially less useful  -- fragmented)

 Worst f it

▪ Traverse free list

▪ Identify largest free chunk

▪ Split largest free chunk, leaving a still large free chunk
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MEMORY ALLOCATION STRATEGIES

 Allocation request for 15 bytes

 Result of Best Fit

 Result of Worst Fit
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EXAMPLES

 First f i t

▪ Start search at beginning of free list

▪ Find first chunk large enough for request

▪ Split chunk, returning a “fit” chunk, saving the remainder

▪ Avoids full free list traversal of best and worst fit

 Next f i t

▪ Similar to first fit, but start search at last search location

▪ Maintain a pointer that “cycles” through the list 

▪ Helps balance chunk distribution vs. first fit

▪ Find first chunk, that is large enough for the request, and split

▪ Avoids full free list traversal
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MEMORY ALLOCATION STRATEGIES - 2
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 For popular sized requests 

e.g. for kernel objects such as locks, inodes, etc.

 Manage as segregated free lists 

 Provide object caches: stores pre -initialized objects

 How much memory should be dedicated for specialized 

requests (object caches)?

 If  a given cache is low in memory, can request “ slabs” of 

memory from the general allocator for caches.

 General allocator will reclaim slabs when not used
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SEGREGATED LISTS

 Binary buddy allocation

▪ Divides free space by two to find a block that is big enough to 

accommodate the request; the next split is too small…

 Consider a 7KB request
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BUDDY ALLOCATION

 Buddy allocation: suffers from internal fragmentation

 Allocated fragments, typically too large

 Coalescing is simple

▪ Two adjacent blocks are promoted up
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BUDDY ALLOCATION - 2
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WE WILL RETURN AT 

5:05PM
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 Questions from 5/16

 Assignment 2 - May 31

 Quiz 3 –  Synchronized Array - May 23

 Tutorial 2 –  Pthread, locks, conditions tutorial -May 24

 Assignment 3 (as a Tutorial)  - June 7

 Quiz 4 - Page Tables - To be posted

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
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OBJECTIVES – 5/21

CHAPTER 18:

INTRODUCTION TO

PAGING
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 Split up address space of process into fixed sized pieces 

called pages

 Alternative to variable sized pieces (Segmentation) which 

suffers from significant fragmentation

 Physical memory is split up into an array of fixed -size slots 

called page f rames.

 Each process has a page table which translates vir tual 

addresses to physical addresses
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PAGING

 Flexibility

▪ Abstracts the process address space into pages

▪ No need to track direction of HEAP / STACK growth

▪ Just add more pages…

▪ No need to store unused space 

▪ As with segments…

 Simplicity

▪ Pages and page frames are the same size

▪ Easy to allocate and keep a free list of pages

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.47

ADVANTAGES OF PAGING

 Consider a 128 byte (27)  address space 

with 16-byte (24)  pages  

 Consider a 64-byte (26)  

program address space
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PAGING: EXAMPLE
Page Table:
VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2

43 44

45 46

47 48
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 PAGE: Has two address components

▪ VPN: Virtual Page Number   (serves as the page ID)

▪ Offset: Offset within a Page  ( indexes any byte in the page)

 Example: 

Page Size: 16-bytes (24),

Program Address Space: 64-bytes (26)
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PAGING: ADDRESS TRANSLATION

Here program can have
just four pages…

 Consider a 64-byte (26)  program address space (4 pages→22)

 Stored in 128-byte (27)  physical memory (8 frames→23)

 Offset is preserved

▪ 4 bits indexes any byte

▪ Page size is 16 bytes (24)

 Page table translates a

Vir tual  Page Number (VPN) to 

a Physical  Frame Number (PFN)
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EXAMPLE:

PAGING ADDRESS TRANSLATION 

Page Table:
VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2

 (1) Where are page tables stored?

 (2) What are the typical contents of the page table?

 (3) How big are page tables?

 (4) Does paging make the system too slow?

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L16.51

PAGING DESIGN QUESTIONS

 Example:

▪ Consider a 32-bit process address space (4GB=232 bytes)

▪With 4 KB pages (4KB=212 bytes)

▪ 20 bits for VPN (220 pages)

▪ 12 bits for the page offset (212 unique bytes in a page)

 Page tables for each process are stored in RAM

▪ Support potential storage of 220 translations 

= 1,048,576 pages per process

▪ Each page has a page table entry size of 4 bytes
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(1) WHERE ARE PAGE TABLES STORED?

 With 220 slots in our page table for a single process

 Each slot ( i.e. entry) dereferences a VPN

 Each entry provides a physical frame number

 Each entry requires 4 bytes (32 bits)

▪ 20 for the PFN on a 4GB system with 4KB pages

▪ 12 for the offset which is preserved

▪ (note we have no status bits, so this is 
unrealistically small)

 How much memory is required to store the page table 
for 1 process?

▪ Hint: # of entries x space per entry

▪ 4,194,304 bytes (or 4MB) to index one process
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PAGE TABLE EXAMPLE

VPN0

VPN1

VPN2

…

…

VPN1048576

 If 4 MB is required to store one process

 Consider how much memory is required for an entire OS?

▪ With for example 100 processes…

 Page table memory requirement is now 4MB x 100 = 400MB

 If computer has 4GB memory (maximum for 32 -bits), 

the page table consumes 10% of memory

400 MB / 4000 GB

 Is  this ef f icient?
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NOW FOR AN ENTIRE OS
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 Page table is data structure used to map virtual page 

numbers (VPN) to the physical address (Physical Frame 

Number PFN)

▪ Linear page table → simple array

 Page-table entry

▪ 32 bits for capturing state
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(2) WHAT’S ACTUALLY IN THE PAGE TABLE

 P: present

 R/W: read/write bit

 U/S: supervisor

 A: accessed bit

 D: dirty bit

 PFN: the page frame number
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PAGE TABLE ENTRY

 Common flags:

 Valid Bit:  Indicating whether the particular translation is valid.

 Protection Bit:  Indicating whether the page could be read 

from, written to, or executed from

 Present Bit:  Indicating whether this page is in physical 

memory or on disk(swapped out)

 Dirty Bit:  Indicating whether the page has been modified since 

it was brought into memory

 Reference Bit(Accessed Bit) :  Indicating that a page has been 

accessed
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PAGE TABLE ENTRY - 2

 Page tables are too big to store on the CPU

 Page tables are stored using physical memory

 Paging supports efficiently storing a sparsely populated 

address space

▪ Reduced memory requirement

Compared to base and bounds, and segments
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(3) HOW BIG ARE PAGE TABLES?

 Translation

 Issue #1:  Starting location of the page table is 
needed

▪HW Support: Page-table base register

▪ stores active process 

▪Facilitates translation

 Issue #2: Each memory address translation for paging 
requires an extra memory reference

▪HW Support: TLBs (Chapter 19)
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(4) DOES PAGING MAKE 

THE SYSTEM TOO SLOW?

Page Table:
VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2

Stored in RAM →

1.  // Extract the VPN from the virtual address 

2.  VPN = (VirtualAddress & VPN_MASK) >> SHIFT 

3.  

4.  // Form the address of the page-table entry (PTE) 

5.  PTEAddr = PTBR + (VPN * sizeof(PTE)) 

6.  

7.  // Fetch the PTE 

8.  PTE = AccessMemory(PTEAddr) 

9.  

10.  // Check if process can access the page 

11.  if (PTE.Valid == False) 

12.   RaiseException(SEGMENTATION_FAULT) 

13.  else if (CanAccess(PTE.ProtectBits) == False) 

14.   RaiseException(PROTECTION_FAULT) 

15.  else 

16.   // Access is OK: form physical address and fetch it 

17.   offset = VirtualAddress & OFFSET_MASK 

18.   PhysAddr = (PTE.PFN << PFN_SHIFT) | offset 

19.   Register = AccessMemory(PhysAddr)
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PAGING MEMORY ACCESS
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 Example: Use this Array initialization Code

 Assembly equivalent:
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COUNTING MEMORY ACCESSES

 Locations:

▪ Page table

▪ Array

▪ Code

 50 accesses

for 5 loop 

iterations
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VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS
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 Consider a 4GB Computer:

 With a 4096-byte page size (4KB)

 How many pages would fit in physical memory?

 Now consider a page table:

 For the page table entry, how many bits are required for the 

VPN?

 If  we assume the use of 4-byte (32 bit)  page table entries, 

how many bits are available for status bits?

 How much space does this page table require?  

# of page table entries x size of page table entry  

 How many page tables (for user processes) 

would fill the entire 4GB of memory?
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PAGING SYSTEM EXAMPLE

 Questions from 5/16

 Assignment 2 - May 31

 Quiz 3 –  Synchronized Array - May 23

 Tutorial 2 –  Pthread, locks, conditions tutorial -May 24

 Assignment 3 (as a Tutorial)  - June 7

 Quiz 4 - Page Tables - To be posted

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
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OBJECTIVES – 5/21

CHAPTER 19:

TRANSLATION 

LOOKASIDE BUFFER 

(TLB)

May 21, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L16.70

 Legacy name…

Better name, “Address Translation Cache”

 TLB is an on CPU cache of address translations

▪virtual → physical memory
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TRANSLATION LOOKASIDE BUFFER

 Example: Use this Array initialization Code

 Assembly equivalent:
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COUNTING MEMORY ACCESSES
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 Locations:

▪ Page table

▪ Array

▪ Code

 50 accesses

for 5 loop 

iterations
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VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS

 Goal:

Reduce access

to the page

tables

 Example:

50 RAM accesses

for first 5 for - loop 

iterations

 Move lookups

from RAM to TLB 

by caching page

table entries
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TRANSLATION LOOKASIDE BUFFER - 2

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache
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TRANSLATION LOOKASIDE BUFFER (TLB)

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache
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TRANSLATION LOOKASIDE BUFFER (TLB)

The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

 Questions from 5/16

 Assignment 2 - May 31

 Quiz 3 –  Synchronized Array - May 23

 Tutorial 2 –  Pthread, locks, conditions tutorial -May 24

 Assignment 3 (as a Tutorial)  - June 7

 Quiz 4 - Page Tables - To be posted

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
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OBJECTIVES – 5/21

 For: array based page table

 Hardware managed TLB
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TLB BASIC ALGORITHM

Extract the virtual page numberCheck if the TLB holds the translation for the VPNExtract page frame number from TLBGenerate the physical address to access memory
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TLB BASIC ALGORITHM - 2

If TLB miss, access the pg table (in RAM) to find address translationUpdate the TLB with the translationRetry the instruction… (requery the TLB)

Key detail:

 For a TLB miss, we first access the page table in RAM to 

populate the TLB… we then requery the TLB

 All address translations go through the TLB
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TLB – ADDRESS TRANSLATION CACHE

 Questions from 5/16

 Assignment 2 - May 31

 Quiz 3 –  Synchronized Array - May 23

 Tutorial 2 –  Pthread, locks, conditions tutorial -May 24

 Assignment 3 (as a Tutorial)  - June 7

 Quiz 4 - Page Tables - To be posted

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
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OBJECTIVES – 5/21

 Example:

 Program address space: 256-byte

▪ Addressable using 8 total bits  (28)

▪ 4 bits for the VPN (16 total pages)

 Page size: 16 bytes

▪ Offset is addressable using 4-bits

 Store an array: of (10) 4-byte integers
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TLB EXAMPLE

 Consider the code above:

 Initially the TLB does not know where a[] is

 Consider the accesses:

 a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],

a[8], a[9]

 How many pages are accessed?

 What happens when accessing a page not 

in the TLB?
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TLB EXAMPLE - 2

 For the accesses: a[0], a[1], a[2], a[3], a[4], 

 a[5], a[6], a[7], a[8], a[9]

 How many are hits?

 How many are misses?

 What is the hit rate? (%)

▪ 70% (3 misses one for each VP, 7 hits)
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TLB EXAMPLE - 3
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 What factors affect the hit/miss rate?

▪ Page size

▪ Data/Access locality  (how is data accessed?)

▪ Sequential array access vs. random array access

▪ Temporal locality

▪ Size of the TLB cache 
(how much history can you store?)
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TLB EXAMPLE - 4

 Questions from 5/16

 Assignment 2 - May 31

 Quiz 3 –  Synchronized Array - May 23

 Tutorial 2 –  Pthread, locks, conditions tutorial -May 24

 Assignment 3 (as a Tutorial)  - June 7

 Quiz 4 - Page Tables - To be posted

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
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OBJECTIVES – 5/21

CHAPTER 20:

PAGING:

SMALLER TABLES
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Consider array -based page tables:

▪ Each process has its own page table

▪ 32-bit process address space (up to 4GB)

▪With 4 KB pages

▪ 20 bits for VPN

▪ 12 bits for the page offset
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LINEAR PAGE TABLES

 Page tables stored in RAM

 Support potential storage of 2 20 translations 

= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes

▪ Requires 400+ MB of RAM to store process information
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LINEAR PAGE TABLES - 2

 Page tables stored in RAM

 Support potential storage of 2 20 translations 

= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes

▪ Requires 400+ MB of RAM to store process information
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LINEAR PAGE TABLES - 2

Page tables are too big and 
consume too much memory.

Need Solutions …
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 Questions from 5/16

 Assignment 2 - May 31

 Quiz 3 –  Synchronized Array - May 23

 Tutorial 2 –  Pthread, locks, conditions tutorial -May 24

 Assignment 3 (as a Tutorial)  - June 7

 Quiz 4 - Page Tables - To be posted

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
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OBJECTIVES – 5/21

 Larger pages = 16KB = 214

 32-bit address space: 232

 218 = 262,144 pages

 Memory requirement cut to ¼

 However pages are huge

 Internal fragmentation results

 16KB page(s) allocated for small programs with only a 

few variables
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PAGING: USE LARGER PAGES

 Process: 16KB Address Space w/ 1KB pages
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PAGE TABLES: WASTED SPACE

Page Table

 Process: 16KB Address Space w/ 1KB pages
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PAGE TABLES: WASTED SPACE

Page Table

Most of the page table is unused 
and full of wasted space. (73%)

QUESTIONS
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