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MIDTERM REVIEW SESSION

= Make-up midterm exams are completed and scores are posted

= Midterm exams are available for pick-up in class through
May 30 (Lecture 19)

= Midterm Review Session:

= Tuesday May 21, 6:00 pm (during office hour, in BHS106)

= Via Zoom / Live Stream / Recording

= Will discuss and review midterm exam problems and grading

TCS5422: Operating Systems [Spring 2024]
pERetpees School of Engineering and Technology, University of Washington - Tacoma L2

OBJECTIVES - 5/21

| = Questions from 5/16 |
= Assignment 2 - May 31
= Quiz 3 - Synchronized Array - May 23

= Assignment 3 (as a Tutorial) - June 7

= Quiz 4 - Page Tables - To be posted

= Chapter 17: Free Space Management

= Chapter 18: Introduction to Paging

= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios

= Chapter 20: Paging: Smaller Tables
L] n e ab M -level Page able
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= Tutorial 2 - Pthread, locks, conditions tutorial -May 24

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TC55422A > Assignments

Spring 2021

Home
Announcements
Joom * Upcoming Assignments
Syllzbus s TCSS422 - Online Daily Feedback Survey - 4/1
i ™ Avallable until Apr 5 at 11:5%pm | DueApr3 at 10pm | -/1pts
Diccuctinne Aun.r i
TCS5422: Computer Operating Systems [Spring 2024]
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TCSS 422 - Online Daily Feedback Survey - 4/1

Quiz Instructions

Question 1 05 pes

On.a scale of 110 10, please classify your perspective on material covered in today's
el

1 2 3 4 5 s 7T 8 3 1
manly. et sty
i 10 e ol nevie o

Question 2 05pes

Piease rate the pace of today's class:

TCSS422: Computer Operating Systems [Spring 2024]

[a2liates School of Engineering and Technology, University of Washington - Tacoma

L165

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (27 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - 6.00 (T - previous 5.96)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.19 ({ - previous 5.42)

TCS5422: Computer Operating Systems [Spring 2024] oo
(ERFoArs chool of Engineering and Technology, University of Washington - Tacoma u
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FEEDBACK FROM 5/16 FEEDBACK FROM 5/18

= |t was noted that fragmentation can affect RAM and disk storage.

= What does fIne gralned memory segmentation look Ilke? in In, n avold fragmentatlion I for RAM, I n
Ing al for disk ri ?
n 0 = Traditional Hard Disk Drives (HDDs) stored data on tracks,
= Fine grained memory segments:

where each track was divided into sectors
= Instead of just one segment for code, stack, heap, etc. allow system = Sectors are typically 512 bytes

to chop segments into separate segments (multiple pieces) = Filesytems (e.g. ext4) determine the smallest blocksize for
= A large segment table is then used to track entire computer’s reading/writing file data
memory as variable sized segments

= Computers would need to track and manage thousands of segments

= Filesystems must settle on a minimize size of the block

= Having a small blocksize greatly increases the size of the file
system as it must be able to track smaller units consuming
1

= This is not really used (legacy)

q q . . " §check filesystem health & stats:
= We will not focus on fine-grained segmentation

sudo e2fsck -n -v -f {device-file}
" sudo blockdev --getbsz {device-file} #check blocksize
= {device-file} will be like /dev/sda3 (Virtualbox)

TCS5422: Operating Systems [Spring 2024]
pERetpees School of Engineering and Technology, University of Washington - Tacoma e
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FEEDBACK - 2 FEEDBACK - 3

= MS Windows has a "Defragment and Optimize Drives"
= After buying and lnst?ll!ng RAM it may not work as well application. | was wondering how this app moves data around
1 rs later. What is it exactly that causes the actual on the Hard Disk and why the process of creating more
hardware to degrade over time, and Is It related to how contiguous free space for future file storage causes damage
ur ides to allocate memory? over time, and if there is a trade-off between permanent
. . damage caused and the relative speed Increase, and where It
= Memory failure may be due to small manufacturing Is worth It glven that the application now runs in the
imperfections, cumulative power spikes, etc. background automatically and frequently, where we used to
= Typically, when DRAM fails it is critical and the system have to do It manually prior to Windows Vista.
will crash. = There hopefully is no “damage” per se.
= Fragmentation may seem like damage due to its impact on
disk performance
= Sectors on physical disks can and do fail.

= The OS marks them as bad in the filesystem and avoids future
use

TCS5422: Operating Systems [(Spring 2024] TCS5422: Operating Systems (Spring 2024]
‘ RlavZLR202 School of Engineering and Technology, University of Washington - Tacoma. e May2ki2023 us.10
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OBJECTIVES - 5/21 OBJECTIVES - 5/21

= Questions from 5/16 = Questions from 5/16
|I Asslgnment 2 - May 31 | = Assignment 2 - May 31

® Quiz 3 - Synchronized Array - May 23 |I Qulz 3 - Synchronlzed Array - May 23|

= Tutorial 2 - Pthread, locks, conditions tutorial -May 24 = Tutorial 2 - Pthread, locks, conditions tutorial -May 24
= Assignment 3 (as a Tutorial) - June 7 = Assignment 3 (as a Tutorial) - June 7

= Quiz 4 - Page Tables - To be posted = Quiz 4 - Page Tables - To be posted

= Chapter 17: Free Space Management = Chapter 17: Free Space Management

= Chapter 18: Introduction to Paging = Chapter 18: Introduction to Paging

= Chapter 19: Translation Lookaside Buffer (TLB) = Chapter 19: Translation Lookaside Buffer (TLB)

= TLB Algorithm, Hit-to-Miss Ratios = TLB Algorithm, Hit-to-Miss Ratios

= Chapter 20: Pag

ing: Smaller Tables = Chapter 20: Paging: Smaller Tables
M P e P

TCSS422: Operat Systems [Spring 4]

School of Engineering and Technology, University of Washington - Tacoma
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TCS5422: Operating Systems [Spring

May 21, 2024

School of Engineering and Technology, University of Washington - Tacoma
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OBJECTIVES - 5/21

= Questions from 5/16
= Assignment 2 - May 31
= Quiz 3 - Synchronized Array - May 23
|I Tutorial 2 - Pthread, locks, conditions tutorial -May 24 |
= Assignment 3 (as a Tutorial) - June 7
= Quiz 4 - Page Tables - To be posted
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
L] malie able v -le P e
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OBJECTIVES - 5/21

= Questions from 5/16
= Assignment 2 - May 31
= Quiz 3 - Synchronized Array - May 23
= Tutorial 2 - Pthread, locks, conditions tutorial -May 24
= Assignment 3 (as a Tutorial) - June 7
| = Quiz 4 - Page Tables - To be posted |
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
L] malie able M evel Page able
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OBJECTIVES - 5/21

= Questions from 5/16
= Assignment 2 - May 31
= Quiz 3 - Synchronized Array - May 23
= Tutorial 2 - Pthread, locks, conditions tutorial -May 24
| = Assignment 3 (as a Tutorlal) - June 7 |
® Quiz 4 - Page Tables - To be posted
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tahles Multi-le P e
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OBJECTIVES - 5/21

= Questions from 5/16
= Assignment 2 - May 31
= Quiz 3 - Synchronized Array - May 23
= Tutorial 2 - Pthread, locks, conditions tutorial -May 24
= Assignment 3 (as a Tutorial) - June 7
= Quiz 4 - Page Tables - To be posted
| = Chapter 17: Free Space Management |
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables

=Sm ah M ah

TCSS422: Operating Systems [Spring 200

May 21, 2024 School of Engineering and Technology,
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CHAPTER 17: FREE

SPACE MANAGEMENT

TCSS422: Operating Systems [Spring 2024]
Ly 2 2 School of Engineering and Technology, University of Washington -

16

FREE SPACE MANAGEMENT

= How should free space be managed, when satisfying
variable-sized requests?

= What strategies can be used to minimize fragmentation?

= What are the time and space overheads of alternate
approaches?

7CS5422: Operating Systems [Spring 2024]
‘ (ERFoArs School of Engineering and Technology, University of Washington - Tacoma Les

17
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FREE SPACE MANAGEMENT

= Management of memory using

= Only fixed-sized units
= Easy: keep a list
= Memory request - return first free entry
Simple search

= With variable sized units
= More challenging
= Results from variable sized malloc requests
= Leads to fragmentation

TCSS422: Operating Systems [Spring 2024]
‘ LAERAL b School of Engineering and Technology, University of Washington - Tacoma Lie.19

5/21/2024

FRAGMENTATION

= Consider a 30-byte heap
30-byte heap: [ free [[lused | free
0 10 20 3

= Request for 15-bytes

" addr:0 addr:20
free list  head —>{gnigo ™| lemsz0 — > NULL

= Free space: 20 bytes

= No available contiguous chunk - return NULL

TCS5422: Operating Systems [Spring 2024]

‘ e School of Engineering and Technology, University of Washington - Tacoma

11620
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FRAGMENTATION - 2

= External: OS can compact
= Example: Client asks for 100 bytes: malloc(100)

= 0S: No 100 byte contiguous chunk is available:
returns NULL

= Memory is externally fragmented - - Compaction can fix!

= Internal: /ost space - OS can’t compact
= 0S returns memory units that are too large
= Example: Client asks for 100 bytes: malloc(100)
= 0S: Returns 125 byte chunk
= Fragmentation is *in* the allocated chunk
= Memory is lost, and unaccounted for - can’t compact

TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma .21

‘ May 21, 2024

20

ALLOCATION STRATEGY: SPLITTING

= Request for 1 byte of memory: malloc(1)

30-byte heap: [ free [Tlsed | free
0 10 20 30

. addr:0 addr:20
free list [head —* S..tip —* emsao —* NULL

= 0S locates a free chunk to satisfy request
= Splits chunk into two, returns first chunk

30-byte heap: free  [used [T free
o 3

10 20 21 0

addr:0 addr:21

free list head —» jo0.99 —> jen:o

— NULL

TCS5422: Operating Systems [Spring 2024]

‘ May 21,2024 School of Engineering and Technology, University of Washington - Tacoma
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ALLOCATION STRATEGY: COALESCING

= Consider 30-byte heap
= Free() frees all 10 bytes segments (list of 3-free 10-byte chunks)

addr:10 addr:0 addr:20

head — jani1g Lenz10 len:10 * NULL

= Request arrives: malloc(30)
= SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!
= Coalescing regroups chunks into contiguous chunk

addr:0

head —* o0

—* NULL

= Allocation can now proceed
= Coalescing is defragmentation of the free space list

TCS5422: Operating Systems [Spring 2024] 1623
School of Engineering and Technology, University of Washington - Tacoma

‘ May 21, 2024
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MEMORY HEADERS

= free(void *ptr): Does not require a size parameter
= How does the OS know how much memory to free?
= Header block

= Small descriptive block of memory at start of chunk

j|> The header used by malloc library

pr —>

} The 20 bytes returned to caller

An Allocated Region Plus Header

TC55422: Operating Systems [Spring 2024]

‘ (ERFoArs School of Engineering and Technology, University of Washington - Tacoma

11624
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MEMORY HEADERS - 2

hptr —>
pir size: 20
magic: 1234567

ptr —» | size;
magics
The 20 bytes | header_tz
returned to caller
A Simple Header

Specific Contents Of The Header

= Contains size
= Pointers: for faster memory access
= Magic number: integrity checking

header_t {

TCSS422: Operating Systems [Spring 2024]

‘ avainat School of Engineering and Technology, University of Washington - Tacoma

11625

MEMORY HEADERS - 3

= Size of memory chunk is:
= Header size + user malloc size
= N bytes + sizeof(header)

= Easy to determine address of header

id fres(void *ptr) (
header_t *hptr = ( “ptr - (header_t):
)
TCS5422: Operating Systems [Spring 2024]
‘ pERetpees School of Engineering and Technology, University of Washington - Tacoma 626
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THE FREE LIST

= Simple free list struct

__node_t *next;
} nodet_t;

= Use mmap to create free list
= 4kb heap, 4 byte header, one contiguous free chunk

node_t *head = mmap (NULL,

head->size
head->next = M

TCSS422: Operating Systems [Spring 2024]

‘ RlavZLR202 School of Engineering and Technology, University of Washington - Tacoma.

1627

FREE LIST - 2

= Create and initialize free-list “heap”

node_t *head = mmap(NULL, 4096, PROT_READ|PROT WRITE,
MA] R ATE,

= Heap layout:

[virtual address: 16K8]

- header: size field
size: 4088
head —»| next 0 | header: next field(NULL is 0}
b the rest of the 4KB chunk
TCS5422: Operating Systems [Spring 2024]
‘ May2ki2023 School of Engineering and Technology, University of Washington - Tacoma e.28
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FREE LIST: MALLOC() CALL

= Consider a request for a 100 bytes: malloc(100)
= Header block requires 8 bytes

= 4 bytes for size, 4 bytes for magic number
= Split the heap - header goes with each block

A 4KB Hesp With One Free Chunk A Heap - After One Allacaticn
ross —> e m] )
size: 4088 = £
magic. 1234567
-
the rest of
the 4KE chunk |

pir

)

the 100 bytes now allocsted

the free 3980 byte chunk

TCS5422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

‘ May 21, 2024
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FREE LIST: FREE() CALL

= Addresses of chunks

100 bytes still allocated

Ivirtusl address: 16K]
8 bytes haader {

= Start=16384
+ 108 (end of 15t chunk) size: 100
+ 108 (end of 2" chunk) spty — e L0 ||
100 bytes still allocated
+ 108 (end of 3" chunk) {but about o be freed)
= 16708
100 bytes still allocated
hesd =i wved
next: ]
The free 3764-byte chunk
Free Space With Three Chunks Allocated
TCS$422: Operating Systems [Spring 2024]
‘ (EELELD School of Engineering and Technology, University of Washington - Tacoma a0
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FREE LIST:

FREE() CHUNK #2

= Free(sptr)
® Qur 3 chunks start at 16 KB
(@ 16,384 bytes)

magic: 1234567

" Free chunk #2 - sptr
= Sptr = 16500
= addr - sizeof(node_t)

Now Free

= Actual start of chunk #2 sz 6
* 16492 b8

[virtual address: 16K8]

100 bytes still allocated

(now a free chunk of

memory)

100 bytes still allocated

The free 3763-byte chunk

‘ ooy 2012028 TCS5422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma

L1631
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GROWING THE HEAP

= Start with small sized heap
= Request more memory when full
= sbrk(), brk()

Segmented heap

{not in use) (not in use)

Heap Heap Heap

l break
(not in use)
{not in use)
Address Space Address Space Heap
Physical Memory
TCSS422: Operating Systems [Spring 2024]
‘ N ay2172024 School of Engineering and Technology, University of Washington - Tacoma L6.33
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EXAMPLES

= Allocation request for 15 bytes

= Result of Best Fit

head —» 10 —> 30 —s 5

= Result of Worst Fit

head —>» 10 —» 30 —> 20 —> NULL

— NULL

head —> 10 —> 15 — 20 —> NULL

‘ P TCS5422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma

L1635

5/21/2024

FREE LIST- FREE ALL CHUNKS

Now free remaining chunks: virtual address: 16K8]

[size 100 |«
next 16432

(now free)
size: 100

Walk back 8 bytes for actual next. 16708
start of chunk

_— 5

Free(16392)
Free(16608)

(now free)

= External fragmentation ::;t 15;‘3
= Free chunk pointers
out of order (now free)
size: 3764
= Coalescing of next i u

pointers is needed The free 3764-byte chunk

11632

TCS5422: Operating Systems [Spring 2024]

‘ e School of Engineering and Technology, University of Washington - Tacoma
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MEMORY ALLOCATION STRATEGIES

= Best fit
= Traverse free list
= Identify all candidate free chunks
= Note which is smallest (has best fit)

= When splitting, “leftover” pieces are small
(and potentially less useful -- fragmented)

= Worst fit
= Traverse free list
= |dentify largest free chunk
= Split largest free chunk, leaving a still large free chunk

11634

TCS5422: Operating Systems [Spring 2024]

‘ May 21,2024 School of Engineering and Technology, University of Washington - Tacoma
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MEMORY ALLOCATION STRATEGIES - 2

= Flrst fit
= Start search at beginning of free list
= Find first chunk large enough for request
= Split chunk, returning a “fit” chunk, saving the remainder
= Avoids full free list traversal of best and worst fit

= Next flt
= Similar to first fit, but start search at last search location
= Maintain a pointer that “cycles” through the list
= Helps balance chunk distribution vs. first fit
= Find first chunk, that is large enough for the request, and split
= Avoids full free list traversal

TC55422: Operating Systems [Spring 2024]

‘ (ERFoArs School of Engineering and Technology, University of Washington - Tacoma

11636
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[ | |
“Which memory allocation strategy is more likely to"

distribute free chunks closer together which could
help when coalescing the free space list?

SEGREGATED LISTS

= For popular sized requests
e.g. for kernel objects such as locks, inodes, etc.

Best Fit = Manage as segregated free lists
= Provide object caches: stores pre-initialized objects

Worst Fit

= How much memory should be dedicated for specialized
requests (object caches)?

First Fit

= If a given cache is low in memory, can request “slabs” of

None of the above memory from the general allocator for caches.

= General allocator will reclaim slabs when not used

All of the above

TCS5422: Operating Systems [Spring 2024]
.. Ep— y el n ‘ pERetpees School of Engineering and Technology, University of Washington - Tacoma L1638
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BUDDY ALLOCATION - 2

BUDDY ALLOCATION

= Binary buddy allocation = Buddy allocation: suffers from internal fragmentation

= Divides free space by two to find a block that is big enough to
accommodate the request; the next split is too small...

= Consider a 7KB request = Allocated fragments, typically too large

‘ = Coalescing is simple
= Two adjacent blocks are promoted up

64KE free space for 7KB request

\ May 21, 2024 oo of Evgneans an Ttomelagt, nbersty o Washingon “Tacoma 639 \ May21, 2024 i e usd0
39 40
B . I. .I - - - -.
A computer system manages program memory using Arequest is made to store 1 byte. For this scenario,
three separate segments for code, stack, and the which memory allocation strategy will always locate
heap. The codesize of a program is 1KB but the memory the fastest?
minimal segment available is 16KB. This is an
example of: Best fit
External fragmentation Worst fit
Binary buddy allocation Next fit
Internal fragmentation
& None of the above
Coalescing
splitting All of the above
.. fove comtent. X hels .. .. fove comtent. hels ..
41 42
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OBJECTIVES - 5/21

= Questions from 5/16
= Assignment 2 - May 31
= Quiz 3 - Synchronized Array - May 23
= Tutorial 2 - Pthread, locks, conditions tutorial -May 24
= Assignment 3 (as a Tutorial) - June 7
= Quiz 4 - Page Tables - To be posted
|- Chapter 18: Introduction to Paging |
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

WE WILL RETURN AT
5:05PM

TCSS422: Operating Systems [Spring 2024]
L 2 School of Engineering and Technology, University of Washington -

TCS5422: Operating Systems [Spring 2024]
l pERetpees School of Engineering and Technology, University of Washington - Tacoma s.aa
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PAGING

= Split up address space of process into fixed sized pieces
called pages

CHAPTER 18:
- = Alternative to variable sized pieces (Segmentation) which
I NTRODUCTI ON TO - suffers from significant fragmentation

PAGING

= Physical memory is split up into an array of fixed-size slots
called page frames.

= Each process has a page table which translates virtual
addresses to physical addresses

School of Engineering and Technology, University of Washington -

TCSS422: Operating Systems [Spring 2024] TCS5422: Operating Systems (Spring 2024]
Bav2Li2028 Mav2iizazy School of Engineering and Technology, University of Washington - Tacoma s.a6

46

Page Table:

ADVANTAGES OF PAGING PAGING: EXAMPLE VPO > PF3

VP1 > PF7
VP2 > PF5
= Flexibility = Consider a 128 byte (27) address space VP3 > PF2
i - 4
= Abstracts the process address space into pages wiid e (@) prEes ¢ page frame 0 of
R . [reserved for OS( 1, -ica memory
=No need to track direction of HEAP / STACK growth 15
= Consider a 64-byte (2°) (unused) | page frame 1
= Just add more pages... 32
program address space age 3 of A5 | page frame 2
= No need to store unused space {1
= As with segments... - page 0 of 45 | page frame 3
o (page 0 of {unused) page frame 4
16| the address space) 0 “
= Simplicity " (page 1) page 2 of AS | page frames
= Pages and page frames are the same size e (page 2) . (unused) | page frame &
= Easy to allocate and keep a free list of pages o (page 3) S page 1ot as | page fame?
128

A Simple 64-byte Address Space 64-Byte Address Space Placed In Physical Memory

TCS5422: Operating Systems [Spring 2024] TCS5422: Operating Systems [Spring 2024]
l LR School of Engineering and Technology, University of Washington -Tacoma Ler (ERFoArs School of Engineering and Technology, University of Washington - Tacoma Leds

47 48
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EXAMPLE:
PAGING: ADDRESS TRANSLATION
PAGING ADDRESS TRANSLATION
= PAGE: Has two address components = Consider a 64-byte (2°) program address space (4 pages—>22)
=VPN: Virtual Page Number (serves as the page ID) = Stored in 128-byte (27) physical memory (8 frames->273)
= Offset: Offset within a Page (indexes any byte in the page) = Offset is preserved . VPlN ‘ wff‘set ‘
VBN offset = 4 bits indexes any byte Virtual 0 1 0 1 0 1
— ! i = Page size is 16 bytes (24) Address B B
Vas |Vad Va3 | Vaz |Val | va0 = Page table translates a Vo
= Example: Virtual Page Number (VPN) to Address
Page Size: 16-bytes (24), a Physical Frame Number (PFN) Translation
Program Address Space: 64-bytes (2°) Page Table: [
VPN offset VPO > PF3 X e
| . Here program can have VP1 > PF7 :’d"d‘,'::s‘ ‘ 111 ‘ 0|10 | 1
Just four pages... VP2 - PF5 [— . )
a 1 o010 1 VP3 > PF2 PFN offset
‘ avainat S ‘E):;r:eﬁe’:\gnzy:‘rled"}seg\:r;:fg\iulzl:!versilv of Washington - Tacoma L6 ‘ pERetpees Cn (E):ge\’r:eﬂe’:\’gn?:‘rved";'sec[i:::fg‘iolzj:!vers\ty of Washington - Tacoma s.s0
49 50

PAGING DESIGN QUESTIONS (1) WHERE ARE PAGE TABLES STORED?

= (1) Where are page tables stored? = Example:

= Consider a 32-bit process address space (4GB=232 pytes)
= With 4 KB pages (4KB=212 pytes)

= 20 bits for VPN (22° pages)

= 12 bits for the page offset (212 unique bytes in a page)

= (2) What are the typical contents of the page table?
= (3) How big are page tables?

. = Page tables for each process are stored in RAM
= (4) Does paging make the system too slow? . .
= Support potential storage of 22° translations
= 1,048,576 pages per process
= Each page has a page table entry size of 4 bytes

TCS5422: Operating Systems [Spring 2024 TCS5422: Operating Systems (Spring 2024]
‘ N ay2172024 School of Engineering and Technology, University of Washington - Tacoma test May2ki2023 School of Engineering and Technology, University of Washington - Tacoma He.s2

= With 220 slots in our page table for a single process = If 4 MB is required to store one process
= Each slot (i.e. entry) dereferences a VPN 0 n . q
( v) VPN, = Consider how much memory is required for an entire 0S?
= Each entry provides a physical frame number VPN = With for example 100 processes...
. . VPN
= Each entry requires 4 bytes (32 bits) 2 = Page table memory requirement is now 4MB x 100 = 400MB
= 20 for the PFN on a 4GB system with 4KB pages
= 12 for the offset which is preserved = |f computer has 4GB memory (maximum for 32-bits),
= (note we have no status bits, so this is o
e el VPNaoraos the page table consumes 10% of memory
= How much memory is required to store the page table 400 MB / 4000 GB
)
ol 1 ICILRE c = |s this efficlent?
= Hint: # of entries x space per entry
= 4,194,304 bytes (or 4MB) to index one process
IEEE uess IEEEEE ese
53 54
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(2) WHAT’S ACTUALLY IN THE PAGE TABLE

= Page table is data structure used to map virtual page
numbers (VPN) to the physical address (Physical Frame
Number PFN)

= Linear page table - simple array

= Page-table entry
= 32 bits for capturing state

NVNBYBXEMNBRADPBUBBUB LU0 8 7 6543210
| PFN |50 <|2|F|5[E]
An %86 Page Table Entry(PTE)
TCSS422: Operating Systems [Spring 2024]
‘ LAERAL b School of Engineering and Technology, University of Washington - Tacoma Liess

PAGE TABLE ENTRY

o P: present

o R/W: read/write bit

o U/S: supervisor

o A: accessed bit

o D: dirty bit

o PFN: the page frame number

NNABABEMNBRADPV WY BB UBRUINI ST 6543210

[l
PFN 0|5|a|<|B

An x86 Page Table Entry(PTE)

May 21, 2024

TCS5422: Operating Systems [Spring 2024] 11656
School of Engineering and Technology, University of Washington - Tacoma

55

56

PAGE TABLE ENTRY - 2

= Common flags:

= Valid Bit: Indicating whether the particular translation is valid.

= Protection Bit: Indicating whether the page could be read
from, written to, or executed from

= Present BIt: Indicating whether this page is in physical
memory or on disk(swapped out)

= Dirty Bit: Indicating whether the page has been modified since
it was brought into memory

= Reference Bit(Accessed Bit): Indicating that a page has been

accessed

TCSS422: Operating Systems [Spring 2024]
‘ N ay2172024 School of Engineering and Technology, University of Washington - Tacoma 67

(3) HOW BIG ARE PAGE TABLES?

= Page tables are too big to store on the CPU

= Page tables are stored using physical memory

= Paging supports efficiently storing a sparsely populated
address space

= Reduced memory requirement
Compared to base and bounds, and segments

TCS5422: Operating Systems [Spring 2024]
Mav2iizazy School of Engineering and Technology, University of Washington - Tacoma Less

57

58

(4) DOES PAGING MAKE

THE SYSTEM TOO SLOW?
= Translation

= |ssue #1: Starting location of the page table is
needed

=HW Support: Page-table base register Page Table:

stores active process VPO > PF3

m . VP1 > PF7
Facilitates translation

Stored in RAM > VP2 > PF5

VP3 > PF2

= |ssue #2: Each memory address translation for paging
requires an extra memory reference

=HW Support: TLBs (Chapter 19)

TCS5422: Operating Systems [Spring 2024] L1659
School of Engineering and Technology, University of Washington - Tacoma

‘ May 21, 2024

PAGING MEMORY ACCESS

1 // eExtract the vPN from the virtual address
2 VPN = (VirtualAddress & VPN_MASK) >> SHIFT
3.
4, // Form the address of the page-table entry (PTE)
Bs PTEAddr = PTBR + (VPN * sizeof(PTE))
6.
Vo // Fetch the PTE
8. PTE = AccessMemory(PTEAddr)
9.
10. // check 1f process can access the page
11. if (PTE.valid == False)
12. RaiseException(SEGMENTATION_FAULT)
13. else if (canAccess(PTE.ProtectBits) == False)
14. RaiseException(PROTECTION_FAULT)
15. else
16. // Access is ok: form physical address and fetch it
17. offset = virtualAddress & OFFSET_MASK
18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset
19. Register = AccessMemory(PhysAddr)
TCS5422: Operating Systems [Spring 2024]
‘ (ERFoArs School of Engineering and Technology, University of Washington - Tacoma L0
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COUNTING MEMORY ACCESSES

= Example: Use this Array initialization Code

nt array (100017

(L= 07 i< 1000; i++)
arraylil = 0z

= Assembly equivalent:

ovl $0x0, (sedi, beax, 4)
cl keax

Pl 50x03e8, teax

jne 0x1024

TCSS422: Operating Systems [Spring 2024]

‘ avainat School of Engineering and Technology, University of Washington - Tacoma

L1661

61

memory?

2732 /2720 =2712 pages
2/32 [ 2A12 = 2720 pages
2/32 /2716 = 2716 pages

2A32 /278 =224 pages

None of the above

™ o comten,

Consider a 4GB Computer with 4KB (4096 byte)
pages. How many pages would fit into physical

63

available for page status bits?

32-12VPN bits
=20 status bits

32-24 VPN bits
= 8 status bits

32-16 VPN bits
=16 status bits

32-20VPN bits
=12 status bits

None of the
above

™ o comten,

"For the 4GB computer example, how many bits are”

65
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5/21/2024

VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS
= Locations: - “\':w 1224
= Page table o o o o =} wa %
= Array Page Tablel1) u 3
- G \\“~. - . . N =
= 50 accesses g o o
for 5 loop e s0s0 | *
iterations * 4000 = n L
i: :Z: _.| e, gu®, gu®, gu®, gu®
o 10 0 30 A 50
Memory Access '
\ May21, 2024 T e uss2
62
.l . l.
For the 4GB computer example, how many bits are
required for the VPN?
24 VPN bits (indexes
2°24 locations)
16 VPN bits (indexes
2716 locations)
20 VPN bits (indexes
2720 locations)
12 VPN bits (indexes
2712 locations)
None of the above
.. fove comtent. ..
64
[ | |

" Forthe 4GB computer, how much space does this "
page table require? (number of page table entries x
size of page table entry)

2A20 entries x4b=4 MB
2712 entries x 4b = 16 KB
2716 entries x 4b =256 KB

2724 entries x 4b =64 MB

None of the above

.. ove comtent. X hely L

66
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" For the 4GB computer, how many page tables (for -

user processes) would fill the entire 4GB of memory? AIabIE SB[

= Consider a 4GB Computer:

4GB / 16 KB = 65,536 = With a 4096-byte page size (4KB)

= How many pages would fit in physical memory?

4GB/64MB=256 = Now consider a page table:

= For the page table entry, how many bits are required for the

4GB /256 KB = 16,384 VPN?

= |f we assume the use of 4-byte (32 bit) page table entries,
how many bits are available for status bits?

4GB/ 4MB = 1'024 = How much space does this page table require?
# of page table entries x size of page table entry
None of the above = How many page tables (for user processes)
would fill the entire 4GB of memory?
TCSS422: Operating Systems [Spring 2024]
.. y -. pERetpees School of Engineering and Technology, University of Washington - Tacoma L1668
67 68

OBJECTIVES - 5/21

= Questions from 5/16
= Assignment 2 - May 31
= Quiz 3 - Synchronized Array - May 23

= Tutorial 2 - Pthread, locks, conditions tutorial -May 24 CHAPTER 19:
= Assignment 3 (as a Tutorial) - June 7 TRANSLATION

= Quiz 4 - Page Tables - To be posted
= Chapter 18: Introduction to Paging LOOKASl DE BUFFER
| = Chapter 19: Translation Lookaside Buffer (TLB)|
= TLB Algorithm, Hit-to-Miss Ratios (TLB)
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

I

TCS5422: Operating Systems [(Spring 2024] TCSS422: Operating Systems [Spring 2024]
‘ N ay2172024 School of Engineering and Technology, University of Washington - Tacoma. L1669 evj2t2028 School of Engineering and Technology, University of Washington -

69

TRANSLATION LOOKASIDE BUFFER COUNTING MEMORY ACCESSES
mlegacy hame... = Example: Use this Array initialization Code

(i =10 i< 10007
arraylil

i+

= Better name, “Address Translation Cache”

t array (100017 ‘

=TLB is an on CPU cache of address translations

q A = Assembly equivalent:
=virtual = physical memory e

0x1024 movl $0x0, (4edi, beax, 41
0x1028 incl teax

0x102¢ cmpl $0x03e8, deax

0x1030 jne 0x1024

TCS5422: Operating Systems [Spring 2024] TCS5422: Operating Systems [Spring 2024]
‘ LR School of Engineering and Technology, University of Washington - Tacoma et (ERFoArs School of Engineering and Technology, University of Washington - Tacoma Loz

71 72
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VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS
. Page Tabk(38)
= Locations: \ 1224
= Page table o o o o a 7
= Array Page Tabkelt)
= Code N
\‘I. aooo opoo oopoo o gooo ooo 1024
= 50 accesses g o o
for 5 loop Faos o
iterations * oo ] n U
E £
Memory Access.
‘ LAERAL b S ‘E):;r::e’:\gnzy:‘ned"}seEf\::::zgg\iulzlﬁversilv of Washington - Tacoma 673

73

TRANSLATION LOOKASIDE BUFFER (TLB)

= Part of the CPU’s Memory Management Unit (MMU)

= Address translation cache

e
Logical | Leokup TL8 Hit Physical
Address TLB Address
popular v to p
e

Page Table
all v to p entries

Address Translation with MMU Physical Memory

TCSS422: Operating Systems [Spring 2024]
‘ N ay2172024 School of Engineering and Technology, University of Washington - Tacoma Le.7s

75

OBJECTIVES - 5/21

= Questions from 5/16

= Assignment 2 - May 31

® Quiz 3 - Synchronized Array - May 23

= Tutorial 2 - Pthread, locks, conditions tutorial -May 24

= Assignment 3 (as a Tutorial) - June 7

= Quiz 4 - Page Tables - To be posted

= Chapter 18: Introduction to Paging

= Chapter 19: Translation Lookaside Buffer (TLB)
Hit-to-Miss Ratios

= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

‘ May 21, 2024

TCS5422: Operating Systems [Spring 2024] 1677
School of Engineering and Technology, University of Washington - Tacoma

TRANSLATION LOOKASIDE BUFFER - 2

Page Table(39]
= Goal: \ .
Reduce access g o o a . w2
to the page Page Tablls) s 2
tables . w3
™D _OO00- 000 0p00-0o00- 0001 0
= Example:
50 RAM accesses g w0 nu
for first 5 for-loop T a0 | ° . }, -
iterations = 40000 s u L T

= Move lookups

z =
from RAM to TLB k1 3
by caching page E .
table entries
Memary Access
TCS5422: Operating Systems [Spring 2024]
‘ pERetpees School of Engineering and Technology, University of Washington - Tacoma e.74

74

TRANSLATION LOOKASIDE BUFFER (TLB)

= Part of the CPU’s Memory Management Unit (MMU)
= Address translation cache

[ 1 e T N | —
The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches
J Page 0
Page Table
Page 2

[sagen |

Physical Memory

Address Translation with MMU

TCS5422: Operating Systems [Spring 2024]
‘ May2ki2023 School of Engineering and Technology, University of Washington - Tacoma 1e.76

76

TLB BASIC ALGORITHM

= For: array based page table
= Hardware managed TLB

‘ 1: VEN = (VirtualAddress & ASK ) >> SHIFT

4 - Entry.ProtectBits) == True ){

s & OFFSET_MASK
T1bEntry.PFN << SHIFT) | Offset
{ Bhyshddr )

CTION ERROR)

| Generate the physical address to access memory |

77
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TLB BASIC ALGORITHM - 2

113 {
12: PTEAddr = PTBR + (VPN * sizeof (PTE))
131 ¢ emory (PTEAAAr)

14: () // Check for, and raise excej

161 TLB_Insert( VENW , PTE.PFN , PTE.FrotectBits)
17 RetryInstruction ()
18:
19:)
| Retry the instruction... (requery the TLB) |
TCSS422: Operating Systems [Spring 2024]
‘ LAERAL b School of Engineering and Technology, University of Washington - Tacoma L7

TLB - ADDRESS TRANSLATION CACHE

= Key detail:

= For a TLB miss, we first access the page table in RAM to
populate the TLB... we then requery the TLB

= All address translatlons go through the TLB

TCS5422: Operating Systems [Spring 2024]
‘ pERetpees School of Engineering and Technology, University of Washington - Tacoma t6.80

79

OBJECTIVES - 5/21

= Questions from 5/16
= Assignment 2 - May 31
= Quiz 3 - Synchronized Array - May 23
= Tutorial 2 - Pthread, locks, conditions tutorial -May 24
= Assignment 3 (as a Tutorial) - June 7
= Quiz 4 - Page Tables - To be posted
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm| H Miss Ratios
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Multi-level Page Tables, N-level Page Tables

80

TLB EXAMPLE

TCSS422: Oy ating Syste [Spring 2024]
‘ N ay2172024 Schon\ofE:;r:ele':\gngy:nemesezh:gEgv, University of Washington - Tacoma Lies
0 sum = 0 ; orser
o w
1 (i=0; 1<107 i++)( [
2: sum+=a[i]z VPN - 01
3 } en
" e
= Consider the code above: P
v -t o [0 [
= Initially the TLB does not know where a[] is ven -1 [ [ a | | o
= Consider the accesses: - L [t [
[
= a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], e
a[8], a[9] [
= How many pages are accessed? e
e
= What happens when accessing a page not P
In the TLB? ven -3
TCSS422: Oy ating Syste [Spring 2024]

0: sum = 0 ; OFFSET
o w e
13 ( <107 i+ | [
2: sum+=a[i]z VPN - 01
3 en
= Example: x::

v -t o [ [ o
= Program address space: 256-byte von- o (o [ [ [
= Addressable using 8 total bits (28) wens -0 [agn e [ st

= 4 bits for the VPN (16 total pages) v
e
= Page size: 16 bytes x:
= Offset is addressable using 4-bits [
o
= Store an array: of (10) 4-byte integers ven -5
TCSS422: Oy ing Sy [Spring 2024]
IEEEE e
o: sum = 0 ; oreser
o w e
13 ( <107 i+ | [
2: sum+=a[i]z VPN - 01
3 VPN - 03
e
= For the accesses: a[0], a[1], a[2], a[3], a[4], ™"
v -t o [ [ o
= a[5], a[6], a[7], a[8], a[9] v a1 o e | |
v~ [ |
[
= How many are hits? R
= How many are misses? Ve
w2
= What is the hit rate? (%) [—
= 70% (3 misses one for each VP, 7 hits) VeN - 14
e
TCSS422: Oy ing Sy ISs 2024]
IEEEEE

83
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TLB EXAMPLE - 4

5/21/2024

0: sum = 0 ; OFFSET
w o ah
1: ( i=0; i<10; i+4)| e
2: sum+=a[i]z VPN - 01
3 w0 |
-
= What factors affect the hit/miss rate? N T T
= Page size veni =07 [ | e | am | a
. e 00 [ agn | a) | st
= Data/Access locality (howis data accessed?) [

= Sequential array access vs. random array access ‘-1
q e
= Temporal locality I

= Size of the TLB cache w13
(how much history can you store?) -

N - 15

TCSS422: Operating Systems [Spring 2024]

l avainat School of Engineering and Technology, University of Washington - Tacoma

L1685

OBJECTIVES - 5/21

= Questions from 5/16
= Assignment 2 - May 31
= Quiz 3 - Synchronized Array - May 23
= Tutorial 2 - Pthread, locks, conditions tutorial -May 24
= Assignment 3 (as a Tutorial) - June 7
= Quiz 4 - Page Tables - To be posted
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios

|- Chapter 20: Paging: Smaller Tables |

= Smaller Tables, Multi-level Page Tables, N-level Page Tables

TCS5422: Operating Systems [Spring 2024]

e School of Engineering and Technology, University of Washington - Tacoma

11686
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CHAPTER 20:

PAGING:
SMALLER TABLES

TCSS422: Operating Systems [Spring 2024]

Ly b School of Engineering and Technology, University of Washington -

86

LINEAR PAGE TABLES

= Consider array-based page tables:
= Each process has its own page table
= 32-bit process address space (up to 4GB)
= With 4 KB pages
= 20 bits for VPN
= 12 bits for the page offset

87

TCS5422: Operating Systems [Spring 2024]

Mav2iizazy School of Engineering and Technology, University of Washington - Tacoma

L1688

LINEAR PAGE TABLES - 2

= Page tables stored in RAM

= Support potential storage of 22° translations
= 1,048,576 pages per process @ 4 bytes/page
= Page table size 4MB / process

32
Page table size = % + 4Byte = 4MByte

= Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

TCS5422: Operating Systems [Spring 2024]

l LR School of Engineering and Technology, University of Washington -Tacoma

L1689
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LINEAR PAGE TABLES - 2

= Page tables stored in RAM

= Support potential storage of 22° translations
= 1,048,576 pages per process @ 4 bytes/page
= Page table size 4MB / process

Page tables are too big and
consume too much memory.

Need Solutions ...

= Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

TC55422: Operating Systems [Spring 2024]

(ERFoArs School of Engineering and Technology, University of Washington - Tacoma

11690

89
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OBJECTIVES - 5/21

= Questions from 5/16
= Assignment 2 - May 31
= Quiz 3 - Synchronized Array - May 23
= Tutorial 2 - Pthread, locks, conditions tutorial -May 24
= Assignment 3 (as a Tutorial) - June 7
® Quiz 4 - Page Tables - To be posted
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios

= Chapter 20: Paging: Smaller Tables
= Smaller Tables,|Multi-level Page Tables, N-level Page Tables

TCSS422: Operating Systems [Spring 2024] L1691
School of Engineering and Technology, University of Washington - Tacoma

l May 21, 2024

91

= Process: 16KB Address Space w/ 1KB pages
Page Table Physical Memory
Virtual Address
Sl ——
code | R
scate
; PFN  valid prot present dirty
s 10 1 rx 1 [}
heap I B ] . B
s . o -
w
7 - o -
L] 15 1 w- 1 1
! . -
" 5
"
2 3 1 w- 1 1
stack 13 23 1 w 1 1
Ik
— A Page Table For 16KB Address Space
A 16KB Address Space with 1KB Pages
TCSS422: Operating Systems [Spring 2024]
l May21,2024 School of Engineering and Technology, Universiy of Washington - Tacoma L6.93
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5/21/2024

PAGING: USE LARGER PAGES

= Larger pages = 16KB = 214
= 32-bit address space: 232
= 218 = 262,144 pages

32
%* 4 = 1MB per page table

= Memory requirement cut to %
= However pages are huge
= Internal fragmentation results

= 16 KB page(s) allocated for small programs with only a
few variables

TCS5422: Operating Systems [Spring 2024]
l pERetpees School of Engineering and Technology, University of Washington - Tacoma s.02

92

PAGE TABLES: WASTED SPACE

= Process: 16 KB Address Space w/ 1KB pages
Page Table Physical Memory

Virtual Address
Space

PFN  valid prot present dirty

Most of the page table is unused
and full of wasted space. (73%)

0
3 1 - 1 1

stack

) 1 W 1 1
T
— A Page Table For 16KB Address Space
A 16KB Address Space with 1KB Pages
TCS5422: Operating Systems [Spring 2024]
l May21,2024 School of Engineering and Technology, University of Washington - Tacoma .94

QUESTIONS
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