
TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.1Slides by Wes J. Lloyd

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

Memory Virtualization II:
Memory Segments,

Free Space Management,
Introduction to Paging,

Translation Lookaside Buffer

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Make-up midterm exams are scheduled and will be completed

by the end of Friday this week

 Midterm Review Session:

 Tuesday May 21, 6:00 pm (during office hour, from BHS106)

 Via Zoom / Live Stream / Recording

 Will discuss and review midterm exam problems and grading

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.2

MIDTERM REVIEW SESSION

1

2

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.2Slides by Wes J. Lloyd

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.3

ZOOM RECORDING ANALYTICS

 Spring Fever? Stay tuned, many new concepts post -midterm

 Questions from 5/14

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 24

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 16, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.4

OBJECTIVES – 5/16

3

4

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.3Slides by Wes J. Lloyd

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

May 16, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.5

ONLINE DAILY FEEDBACK SURVEY

May 16, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L15.6

5

6

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.4Slides by Wes J. Lloyd

 Please classify your perspective on material covered in today’s

class (26 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 5.96 (- previous 6.68)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.42 (- previous 5.28)

May 16, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.7

MATERIAL / PACE

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.8

FEEDBACK FROM 5/14

7

8

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.5Slides by Wes J. Lloyd

 Questions from 5/14

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 24

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 16, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.9

OBJECTIVES – 5/16

 Questions from 5/14

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 24

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 16, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.10

OBJECTIVES – 5/16

9

10

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.6Slides by Wes J. Lloyd

 Questions from 5/14

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 24

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 16, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.11

OBJECTIVES – 5/16

 Questions from 5/14

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 24

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 16, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.12

OBJECTIVES – 5/16

11

12

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.7Slides by Wes J. Lloyd

CHAPTER 15: ADDRESS

TRANSLATION

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L15.13

 Chapter 15: Address translation

▪ Base and bounds

▪ HW and OS Support

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.14

OBJECTIVES – 5/18

13

14

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.8Slides by Wes J. Lloyd

 64KB

Address space

example

 Translation:

mapping

virtual to

physical

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.15

ADDRESS TRANSLATION

Virtual mapping

Address Space

 Dynamic relocation

 Two registers base & bounds: on the CPU

 OS places program in memory

 Sets base register

 Bounds register

▪ Stores size of program address space (16KB)

 OS verifies that every address:

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.16

BASE AND BOUNDS

0 ≤ 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 < 𝑏𝑜𝑢𝑛𝑑𝑠

15

16

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.9Slides by Wes J. Lloyd

 Base = 32768

 Bounds =16384

 Fetch instruction at 128 (virt addr) ↑

▪ Phy addr = virt addr + base reg

▪ 32896 = 128 + 32768 (base)

 Execute instruction

▪ Load from address (var x is @ 15kb=15360)

▪ 48128 = 15360 + 32768 (base) -- found x…

 Bounds register: terminate process if

▪ ACCESS VIOLATION: Virtual address > bounds reg

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.17

INSTRUCTION EXAMPLE

Int x

 MMU

▪ Portion of the CPU dedicated to address translation

▪ Contains base & bounds registers

 Base & Bounds Example:

▪ Consider address translation

▪ 4 KB (4096 bytes) address space, loaded at 16 KB physical location

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.18

MEMORY MANAGEMENT UNIT

Virtual Address Physical Address

0 16384

1024 17408

3000 19384

4400 20784 (out of bounds)FAULT

17

18

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.10Slides by Wes J. Lloyd

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.19

DYNAMIC RELOCATION OF PROGRAMS

 Hardware requirements:

Requirements HW support

Privileged mode CPU modes: kernel, user

Base / bounds registers Registers to support address translation

Translate virtual addr; check if in

bounds

Translation circuitry, check limits

Privileged instruction(s) to

 update base / bounds regs

Instructions for modifying base/bound

registers

Privileged instruction(s)

to register exception handlers

Set code pointers to OS code to handle faults

Ability to raise exceptions For out-of-bounds memory access, or

attempts to access privileged instr.

 For base and bounds OS support required

▪When process starts running

▪ Allocate address space in physical memory

▪When a process is terminated

▪ Reclaiming memory for use

▪When context switch occurs

▪ Saving and storing the base-bounds pair

▪ Exception handlers

▪ Function pointers set at OS boot time

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.20

OS SUPPORT FOR MEMORY

VIRTUALIZATION

19

20

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.11Slides by Wes J. Lloyd

 OS searches for free space for new process

▪ Free list: data structure that tracks available memory slots

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.21

OS: WHEN PROCESS STARTS RUNNING

 OS places memory back on the free list

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.22

OS: WHEN PROCESS IS TERMINATED

21

22

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.12Slides by Wes J. Lloyd

 OS must save base and bounds registers

▪ Saved to the Process Control Block PCB (task_struct in Linux)

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.23

OS: WHEN CONTEXT SWITCH OCCURS

 OS can move process data when not running

1. OS un-schedules process from scheduler

2. OS copies address space from current to new location

3. OS updates PCB (base and bounds registers)

4. OS reschedules process

 When process runs new base register is restored to CPU

 Process doesn’t know it was even moved!

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.24

DYNAMIC RELOCATION

23

24

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.13Slides by Wes J. Lloyd

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.2
5

 Questions from 5/14

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 24

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 16, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.26

OBJECTIVES – 5/16

25

26

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.14Slides by Wes J. Lloyd

CHAPTER 16:

SEGMENTATION

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L15.27

 Address space

▪ Contains significant unused memory

▪ Is relatively large

▪ Preallocates space to handle stack/heap growth

 Large address spaces

▪ Hard to fit in memory

 How can these issues be addressed?

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.28

BASE AND BOUNDS INEFFICIENCIES

27

28

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.15Slides by Wes J. Lloyd

 Memory segmentation

 Manage the address space as (3) separate segments

▪ Each is a contiguous address space

▪ Provides logically separate segments for: code, stack, heap

 Each segment can placed separately

 Track base and bounds for each segment (registers)

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.29

MULTIPLE SEGMENTS

 Consider 3 segments:

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.30

SEGMENTS IN MEMORY

Much smaller

29

30

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.16Slides by Wes J. Lloyd

Virtual Address Space Physical Address Space

 Code segment - physically starts at 32KB (base)

 Starts at “0” in virtual address space

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.31

ADDRESS TRANSLATION: CODE SEGMENT

Bounds check:
Is virtual address within 2KB

address space?

 Heap starts at vir tual address 4096

 The data is at 4200

 Offset= 4200 – 4096 = 104 (vir t addr – vir t heap start)

 Physical address = 104 + 34816 (of fset + heap base)

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.32

ADDRESS TRANSLATION: HEAP

𝑽𝒊𝒓𝒕𝒖𝒂𝒍 𝒂𝒅𝒅𝒓𝒆𝒔𝒔 + 𝒃𝒂𝒔𝒆 is not the correct physical address.

31

32

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.17Slides by Wes J. Lloyd

 Access beyond the address space

 Heap starts at virtual address: 4096

 Data pointer is to 7KB (7168)

 Is data pointer valid?

 Heap starts at 4096 + 2 KB seg size = 6144

 Offset= 7168 > 4096 + 2048 (6144)

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.33

SEGMENTATION FAULT

 Used to dereference memory during translation

 First two bits identify segment type

 Remaining bits identify memory offset

 Example: virtual heap address 4200 (01000001101000)

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.34

SEGMENT REGISTERS

33

34

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.18Slides by Wes J. Lloyd

 VIRTUAL ADDRESS = 01000001101000 (on heap)

 SEG_MASK = 0x3000 (11000000000000)

 SEG_SHIFT = 01 → heap (mask gives us segment code)

 OFFSET_MASK = 0xFFF (00111111111111)

 OFFSET = 000001101000 = 104 (isolates segment offset)

 OFFSET < BOUNDS : 104 < 2048

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.35

SEGMENTATION DEREFERENCE

Stack grows backwards (FILO)

Requires hardware support:

Direction bit: tracks direction segment grows

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.36

STACK SEGMENT

35

36

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.19Slides by Wes J. Lloyd

 Code sharing: enabled with HW support

 Supports storing shared libraries in memory only once

 DLL: dynamic linked library

 .so (linux): shared object in Linux (under /usr/lib)

 Many programs can access them

 Protection bits: track permissions to segment

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.37

SHARED CODE SEGMENTS

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.3
8

37

38

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.20Slides by Wes J. Lloyd

Coarse-grained

Manage memory as large purpose

based segments:

▪Code segment

▪Heap segment

▪Stack segment

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.39

SEGMENTATION GRANULARITY

 Fine-grained

 Manage memory as list of segments

 Code, heap, stack segments composed

of multiple smaller segments

 Segment table

▪ On early systems

▪ Stored in memory

▪ Tracked large number of segments

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.40

SEGMENTATION GRANULARITY - 2

39

40

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.21Slides by Wes J. Lloyd

 Consider how much free space?

 We’ll say about 24 KB

 Request arrives to allocate a 20 KB heap

segment

 Can we fulfil the request for 20 KB of

contiguous memory?

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.41

MEMORY FRAGMENTATION

 Supports rearranging memory

 Can we fulfil the request for 20 KB of

contiguous memory?

 Drawback: Compaction is slow

▪ Rearranging memory is time consuming

▪ 64KB is fast

▪ 4GB+ … slow

 Algorithms:

▪ Best fit: keep list of free spaces, allocate the

most snug segment for the request

▪ Others: worst fit, first fit… (in future chapters)

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.42

COMPACTION

41

42

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.22Slides by Wes J. Lloyd

 Questions from 5/14

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 24

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 16, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.43

OBJECTIVES – 5/16

CHAPTER 17: FREE

SPACE MANAGEMENT

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L15.44

43

44

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.23Slides by Wes J. Lloyd

 Chapter 17: Free Space Management

▪ Fragmentation, Splitting, coalescing

▪ The Free List

▪ Memory Allocation Strategies

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.45

OBJECTIVES – 5/16

 How should free space be managed, when satisfying

variable-sized requests?

 What strategies can be used to minimize fragmentation?

 What are the time and space overheads of alternate

approaches?

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.46

FREE SPACE MANAGEMENT

45

46

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.24Slides by Wes J. Lloyd

 Management of memory using

 Only fixed-sized units

▪ Easy: keep a list

▪Memory request → return first free entry

▪ Simple search

 With variable sized units

▪More challenging

▪ Results from variable sized malloc requests

▪ Leads to fragmentation

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.47

FREE SPACE MANAGEMENT

 Consider a 30-byte heap

 Request for 15-bytes

 Free space: 20 bytes

 No available contiguous chunk → return NULL

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.48

FRAGMENTATION

47

48

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.25Slides by Wes J. Lloyd

 External: OS can compact

▪ Example: Client asks for 100 bytes: malloc(100)

▪ OS: No 100 byte contiguous chunk is available:

 returns NULL

▪Memory is externally fragmented - - Compaction can fix!

 Internal: lost space – OS can’t compact

▪ OS returns memory units that are too large

▪ Example: Client asks for 100 bytes: malloc(100)

▪ OS: Returns 125 byte chunk

▪ Fragmentation is *in* the allocated chunk

▪Memory is lost, and unaccounted for – can’t compact

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.49

FRAGMENTATION - 2

 Request for 1 byte of memory: malloc(1)

 OS locates a free chunk to satisfy request

 Splits chunk into two, returns first chunk

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.50

ALLOCATION STRATEGY: SPLITTING

49

50

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.26Slides by Wes J. Lloyd

 Consider 30-byte heap

 Free() frees all 10 bytes segments (l ist of 3-free 10-byte chunks)

 Request arrives: malloc(30)

 SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!

 Coalescing regroups chunks into contiguous chunk

 Allocation can now proceed

 Coalescing is defragmentation of the free space list

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.51

ALLOCATION STRATEGY: COALESCING

 free(void *ptr): Does not require a size parameter

 How does the OS know how much memory to free?

 Header block

▪ Small descriptive block of memory at start of chunk

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.52

MEMORY HEADERS

51

52

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.27Slides by Wes J. Lloyd

 Contains size

 Pointers: for faster memory access

 Magic number: integrity checking

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.53

MEMORY HEADERS - 2

 Size of memory chunk is:

 Header size + user malloc size

 N bytes + sizeof(header)

 Easy to determine address of header

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.54

MEMORY HEADERS - 3

53

54

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.28Slides by Wes J. Lloyd

WE WILL RETURN AT

4:56PM

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L15.55

 Simple free list struct

 Use mmap to create free list

 4kb heap, 4 byte header, one contiguous free chunk

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.56

THE FREE LIST

55

56

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.29Slides by Wes J. Lloyd

 Create and initialize free- list “heap”

 Heap layout:

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.57

FREE LIST - 2

 Consider a request for a 100 bytes: malloc(100)

 Header block requires 8 bytes

▪ 4 bytes for size, 4 bytes for magic number

 Split the heap – header goes with each block

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.58

FREE LIST: MALLOC() CALL

First block
is used

57

58

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.30Slides by Wes J. Lloyd

 Addresses of chunks

 Start=16384

+ 108 (end of 1st chunk)

+ 108 (end of 2nd chunk)

+ 108 (end of 3 rd chunk)

= 16708

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.59

FREE LIST: FREE() CALL

Free this
block

 Free(sptr)

 Our 3 chunks start at 16 KB

(@ 16,384 bytes)

 Free chunk #2 - sptr

 Sptr = 16500

▪ addr – sizeof(node_t)

 Actual start of chunk #2

▪ 16492

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.60

FREE LIST:

FREE() CHUNK #2

Block
Now Free

59

60

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.31Slides by Wes J. Lloyd

 Now free remaining chunks:

 Free(16392)

 Free(16608)

 Walk back 8 bytes for actual
start of chunk

 External fragmentation

 Free chunk pointers
out of order

 Coalescing of next
pointers is needed

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.61

FREE LIST- FREE ALL CHUNKS

 Start with small sized heap

 Request more memory when full

 sbrk(), brk()

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.62

GROWING THE HEAP

Segmented heapSegmented heap

61

62

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.32Slides by Wes J. Lloyd

 Best fit

▪ Traverse free list

▪ Identify all candidate free chunks

▪ Note which is smallest (has best fit)

▪When splitting, “leftover” pieces are small

(and potentially less useful -- fragmented)

 Worst fit

▪ Traverse free list

▪ Identify largest free chunk

▪ Split largest free chunk, leaving a still large free chunk

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.63

MEMORY ALLOCATION STRATEGIES

 Allocation request for 15 bytes

 Result of Best Fit

 Result of Worst Fit

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.64

EXAMPLES

63

64

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.33Slides by Wes J. Lloyd

 First f it

▪ Start search at beginning of free list

▪ Find first chunk large enough for request

▪ Split chunk, returning a “fit” chunk, saving the remainder

▪ Avoids full free list traversal of best and worst fit

 Next fit

▪ Similar to first fit, but start search at last search location

▪ Maintain a pointer that “cycles” through the list

▪ Helps balance chunk distribution vs. first fit

▪ Find first chunk, that is large enough for the request, and split

▪ Avoids full free list traversal

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.65

MEMORY ALLOCATION STRATEGIES - 2

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.6
6

65

66

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.34Slides by Wes J. Lloyd

 For popular sized requests

e.g. for kernel objects such as locks, inodes, etc.

 Manage as segregated free lists

 Provide object caches: stores pre -initialized objects

 How much memory should be dedicated for specialized

requests (object caches)?

 If a given cache is low in memory, can request “slabs” of

memory from the general allocator for caches.

 General allocator will reclaim slabs when not used

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.67

SEGREGATED LISTS

 Binary buddy allocation

▪ Divides free space by two to find a block that is big enough to

accommodate the request; the next split is too small…

 Consider a 7KB request

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.68

BUDDY ALLOCATION

67

68

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.35Slides by Wes J. Lloyd

 Buddy allocation: suffers from internal fragmentation

 Allocated fragments, typically too large

 Coalescing is simple

▪ Two adjacent blocks are promoted up

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.69

BUDDY ALLOCATION - 2

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.7
0

69

70

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.36Slides by Wes J. Lloyd

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.7
1

 Questions from 5/14

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 24

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 16, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.72

OBJECTIVES – 5/16

71

72

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.37Slides by Wes J. Lloyd

CHAPTER 18:

INTRODUCTION TO

PAGING

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L15.73

 Split up address space of process into f ixed sized pieces

called pages

 Alternative to variable sized pieces (Segmentation) which

suffers from significant fragmentation

 Physical memory is split up into an array of fixed -size slots

called page frames.

 Each process has a page table which translates virtual

addresses to physical addresses

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.74

PAGING

73

74

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.38Slides by Wes J. Lloyd

 Flexibility

▪ Abstracts the process address space into pages

▪ No need to track direction of HEAP / STACK growth

▪ Just add more pages…

▪ No need to store unused space

▪ As with segments…

 Simplicity

▪ Pages and page frames are the same size

▪ Easy to allocate and keep a free list of pages

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.75

ADVANTAGES OF PAGING

 Consider a 128 byte (27) address space

with 16-byte (24) pages

 Consider a 64-byte (26)

program address space

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.76

PAGING: EXAMPLE
Page Table:

VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2

75

76

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.39Slides by Wes J. Lloyd

 PAGE: Has two address components

▪ VPN: Virtual Page Number (serves as the page ID)

▪ Offset: Offset within a Page (indexes any byte in the page)

 Example:

Page Size: 16-bytes (24),

Program Address Space: 64-bytes (26)

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.77

PAGING: ADDRESS TRANSLATION

Here program can have

just four pages…

 Consider a 64-byte (26) program address space (4 pages→22)

 Stored in 128-byte (27) physical memory (8 frames→23)

 Offset is preserved

▪ 4 bits indexes any byte

▪ Page size is 16 bytes (24)

 Page table translates a

Vir tual Page Number (VPN) to

a Physical Frame Number (PFN)

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.78

EXAMPLE:

PAGING ADDRESS TRANSLATION

Page Table:

VP0 → PF3
VP1 → PF7
VP2 → PF5

VP3 → PF2

77

78

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.40Slides by Wes J. Lloyd

 (1) Where are page tables stored?

 (2) What are the typical contents of the page table?

 (3) How big are page tables?

 (4) Does paging make the system too slow?

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.79

PAGING DESIGN QUESTIONS

 Example:

▪ Consider a 32-bit process address space (4GB=232 bytes)

▪With 4 KB pages (4KB=212 bytes)

▪ 20 bits for VPN (220 pages)

▪ 12 bits for the page offset (212 unique bytes in a page)

 Page tables for each process are stored in RAM

▪ Support potential storage of 220 translations

= 1,048,576 pages per process

▪ Each page has a page table entry size of 4 bytes

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.80

(1) WHERE ARE PAGE TABLES STORED?

79

80

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.41Slides by Wes J. Lloyd

 With 220 slots in our page table for a single process

 Each slot (i.e. entry) dereferences a VPN

 Each entry provides a physical frame number

 Each entry requires 4 bytes (32 bits)

▪ 20 for the PFN on a 4GB system with 4KB pages

▪ 12 for the offset which is preserved

▪ (note we have no status bits, so this is
unrealistically small)

 How much memory is required to store the page table
for 1 process?

▪ Hint: # of entries x space per entry

▪ 4,194,304 bytes (or 4MB) to index one process

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.81

PAGE TABLE EXAMPLE

VPN0

VPN1

VPN2

…

…

VPN1048576

 If 4 MB is required to store one process

 Consider how much memory is required for an entire OS?

▪ With for example 100 processes…

 Page table memory requirement is now 4MB x 100 = 400MB

 If computer has 4GB memory (maximum for 32 -bits),

the page table consumes 10% of memory

400 MB / 4000 GB

 Is this efficient?

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.82

NOW FOR AN ENTIRE OS

81

82

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.42Slides by Wes J. Lloyd

 Page table is data structure used to map virtual page

numbers (VPN) to the physical address (Physical Frame

Number PFN)

▪ Linear page table → simple array

 Page-table entry

▪ 32 bits for capturing state

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.83

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

 P: present

 R/W: read/write bit

 U/S: supervisor

 A: accessed bit

 D: dirty bit

 PFN: the page frame number

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.84

PAGE TABLE ENTRY

83

84

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.43Slides by Wes J. Lloyd

 Common flags:

 Valid Bit: Indicating whether the particular translation is valid.

 Protection Bit: Indicating whether the page could be read

from, written to, or executed from

 Present Bit: Indicating whether this page is in physical

memory or on disk(swapped out)

 Dirty Bit: Indicating whether the page has been modified since

it was brought into memory

 Reference Bit(Accessed Bit): Indicating that a page has been

accessed

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.85

PAGE TABLE ENTRY - 2

 Page tables are too big to store on the CPU

 Page tables are stored using physical memory

 Paging supports efficiently storing a sparsely populated

address space

▪ Reduced memory requirement

Compared to base and bounds, and segments

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.86

(3) HOW BIG ARE PAGE TABLES?

85

86

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.44Slides by Wes J. Lloyd

 Translation

 Issue #1: Starting location of the page table is
needed

▪HW Support: Page-table base register

▪ stores active process

▪Facilitates translation

 Issue #2: Each memory address translation for paging
requires an extra memory reference

▪HW Support: TLBs (Chapter 19)

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.87

(4) DOES PAGING MAKE

THE SYSTEM TOO SLOW?

Page Table:

VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2

Stored in RAM →

1. // Extract the VPN from the virtual address

2. VPN = (VirtualAddress & VPN_MASK) >> SHIFT

3.

4. // Form the address of the page-table entry (PTE)

5. PTEAddr = PTBR + (VPN * sizeof(PTE))

6.

7. // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

9.

10. // Check if process can access the page

11. if (PTE.Valid == False)

12. RaiseException(SEGMENTATION_FAULT)

13. else if (CanAccess(PTE.ProtectBits) == False)

14. RaiseException(PROTECTION_FAULT)

15. else

16. // Access is OK: form physical address and fetch it

17. offset = VirtualAddress & OFFSET_MASK

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset

19. Register = AccessMemory(PhysAddr)

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.88

PAGING MEMORY ACCESS

87

88

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.45Slides by Wes J. Lloyd

 Example: Use this Array initialization Code

 Assembly equivalent:

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.89

COUNTING MEMORY ACCESSES

 Locations:

▪ Page table

▪ Array

▪ Code

 50 accesses

for 5 loop

iterations

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.90

VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS

89

90

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.46Slides by Wes J. Lloyd

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.9
1

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.9
2

91

92

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.47Slides by Wes J. Lloyd

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.9
3

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.9
4

93

94

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.48Slides by Wes J. Lloyd

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.9
5

 Consider a 4GB Computer:

 With a 4096-byte page size (4KB)

 How many pages would fit in physical memory?

 Now consider a page table:

 For the page table entry, how many bits are required for the

VPN?

 If we assume the use of 4-byte (32 bit) page table entries,

how many bits are available for status bits?

 How much space does this page table require?

of page table entries x size of page table entry

 How many page tables (for user processes)

would fill the entire 4GB of memory?

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.96

PAGING SYSTEM EXAMPLE

95

96

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.49Slides by Wes J. Lloyd

 Questions from 5/14

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 24

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 16, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.97

OBJECTIVES – 5/16

CHAPTER 19:

TRANSLATION

LOOKASIDE BUFFER

(TLB)

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L15.98

97

98

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.50Slides by Wes J. Lloyd

 Legacy name…

Better name, “Address Translation Cache”

 TLB is an on CPU cache of address translations

▪virtual → physical memory

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.99

TRANSLATION LOOKASIDE BUFFER

 Goal:

Reduce access

to the page

tables

 Example:

50 RAM accesses

for first 5 for -loop

iterations

 Move lookups

from RAM to TLB

by caching page

table entries

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.100

TRANSLATION LOOKASIDE BUFFER - 2

99

100

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.51Slides by Wes J. Lloyd

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.101

TRANSLATION LOOKASIDE BUFFER (TLB)

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.102

TRANSLATION LOOKASIDE BUFFER (TLB)

The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

101

102

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.52Slides by Wes J. Lloyd

 Questions from 5/14

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 24

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 16, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.103

OBJECTIVES – 5/16

 For: array based page table

 Hardware managed TLB

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.104

TLB BASIC ALGORITHM

Extract the virtual page numberCheck if the TLB holds the translation for the VPNExtract page frame number from TLBGenerate the physical address to access memory

103

104

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.53Slides by Wes J. Lloyd

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.105

TLB BASIC ALGORITHM - 2

If TLB miss, access the pg table (in RAM) to find address translationUpdate the TLB with the translationRetry the instruction… (requery the TLB)

Key detail:

 For a TLB miss, we first access the page table in RAM to

populate the TLB… we then requery the TLB

 All address translations go through the TLB

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.106

TLB – ADDRESS TRANSLATION CACHE

105

106

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.54Slides by Wes J. Lloyd

 Questions from 5/14

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 24

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 16, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.107

OBJECTIVES – 5/16

 Example:

 Program address space: 256-byte

▪ Addressable using 8 total bits (28)

▪ 4 bits for the VPN (16 total pages)

 Page size: 16 bytes

▪ Offset is addressable using 4-bits

 Store an array: of (10) 4-byte integers

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.108

TLB EXAMPLE

107

108

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.55Slides by Wes J. Lloyd

 Consider the code above:

 Initially the TLB does not know where a[] is

 Consider the accesses:

 a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],

a[8], a[9]

 How many pages are accessed?

 What happens when accessing a page not

in the TLB?

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.109

TLB EXAMPLE - 2

 For the accesses: a[0], a[1], a[2], a[3], a[4],

 a[5], a[6], a[7], a[8], a[9]

 How many are hits?

 How many are misses?

 What is the hit rate? (%)

▪ 70% (3 misses one for each VP, 7 hits)

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.110

TLB EXAMPLE - 3

109

110

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.56Slides by Wes J. Lloyd

 What factors affect the hit/miss rate?

▪ Page size

▪ Data/Access locality (how is data accessed?)

▪ Sequential array access vs. random array access

▪ Temporal locality

▪ Size of the TLB cache
(how much history can you store?)

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.111

TLB EXAMPLE - 4

 Questions from 5/14

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 24

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 16, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.112

OBJECTIVES – 5/16

111

112

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.57Slides by Wes J. Lloyd

QUESTIONS

113

	Slide 1: TCSS 422: Operating Systems
	Slide 2: Midterm review session
	Slide 3: Zoom recording analytics
	Slide 4: OBJECTIVES – 5/16
	Slide 5: Online daily feedback survey
	Slide 6
	Slide 7: Material / pace
	Slide 8: Feedback from 5/14
	Slide 9: OBJECTIVES – 5/16
	Slide 10: OBJECTIVES – 5/16
	Slide 11: OBJECTIVES – 5/16
	Slide 12: OBJECTIVES – 5/16
	Slide 13: Chapter 15: Address translation
	Slide 14: OBJECTIVES – 5/18
	Slide 15: Address translation
	Slide 16: Base and bounds
	Slide 17: Instruction example
	Slide 18: Memory management unit
	Slide 19: Dynamic relocation of programs
	Slide 20: OS support for memory virtualization
	Slide 21: OS: When process starts running
	Slide 22: OS: when process is terminated
	Slide 23: Os: when context switch occurs
	Slide 24: Dynamic relocation
	Slide 25
	Slide 26: OBJECTIVES – 5/16
	Slide 27: Chapter 16: segmentation
	Slide 28: Base and bounds inefficiencies
	Slide 29: MULTIPLE SEGMENTS
	Slide 30: Segments in memory
	Slide 31: Address translation: code segment
	Slide 32: Address translation: heap
	Slide 33: Segmentation fault
	Slide 34: Segment registers
	Slide 35: Segmentation dereference
	Slide 36: Stack segment
	Slide 37: Shared CODE segments
	Slide 38
	Slide 39: Segmentation granularity
	Slide 40: Segmentation granularity - 2
	Slide 41: Memory fragmentation
	Slide 42: Compaction
	Slide 43: OBJECTIVES – 5/16
	Slide 44: Chapter 17: free space management
	Slide 45: OBJECTIVES – 5/16
	Slide 46: Free space management
	Slide 47: Free space management
	Slide 48: fragmentation
	Slide 49: Fragmentation - 2
	Slide 50: Allocation strategy: Splitting
	Slide 51: Allocation strategy: coalescing
	Slide 52: Memory headers
	Slide 53: Memory headers - 2
	Slide 54: Memory headers - 3
	Slide 55: We will return at 4:56pm
	Slide 56: The free list
	Slide 57: Free list - 2
	Slide 58: Free list: malloc() call
	Slide 59: Free list: free() call
	Slide 60: Free list: free() chunk #2
	Slide 61: Free list- free all chunks
	Slide 62: Growing the heap
	Slide 63: Memory allocation strategies
	Slide 64: examples
	Slide 65: Memory allocation strategies - 2
	Slide 66
	Slide 67: Segregated lists
	Slide 68: Buddy allocation
	Slide 69: Buddy allocation - 2
	Slide 70
	Slide 71
	Slide 72: OBJECTIVES – 5/16
	Slide 73: Chapter 18: Introduction to paging
	Slide 74: paging
	Slide 75: Advantages of paging
	Slide 76: Paging: example
	Slide 77: Paging: Address translation
	Slide 78: Example: paging address translation
	Slide 79: Paging design questions
	Slide 80: (1) Where are page tables stored?
	Slide 81: Page table example
	Slide 82: Now for an entire OS
	Slide 83: (2) What’s actually in the page table
	Slide 84: Page table entry
	Slide 85: Page table entry - 2
	Slide 86: (3) How big are page tables?
	Slide 87: (4) Does paging make the system too slow?
	Slide 88: Paging memory access
	Slide 89: Counting memory accesses
	Slide 90: Visualizing Memory accesses: For the first 5 loop iterations
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96: Paging system example
	Slide 97: OBJECTIVES – 5/16
	Slide 98: Chapter 19: Translation lookaside buffer (TLB)
	Slide 99: Translation lookaside buffer
	Slide 100: TRANSLATION LOOKASIDE BUFFER - 2
	Slide 101: Translation lookaside buffer (TLB)
	Slide 102: Translation lookaside buffer (TLB)
	Slide 103: OBJECTIVES – 5/16
	Slide 104: Tlb basic algorithm
	Slide 105: Tlb basic algorithm - 2
	Slide 106: TLb – address translation cache
	Slide 107: OBJECTIVES – 5/16
	Slide 108: Tlb example
	Slide 109: Tlb Example - 2
	Slide 110: Tlb Example - 3
	Slide 111: Tlb example - 4
	Slide 112: OBJECTIVES – 5/16
	Slide 113: Questions

