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TCSS 422: OPERATING SYSTEMS

 Make-up midterm exams are scheduled and will be completed 

by the end of Friday this week

 Midterm Review Session:

 Tuesday May 21, 6:00 pm (during office hour,  from BHS106)

 Via Zoom / Live Stream / Recording

 Will discuss and review midterm exam problems and grading
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ZOOM RECORDING ANALYTICS

 Spring Fever?  Stay tuned, many new concepts post -midterm 

 Questions from 5/14

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 24

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 16, 2024
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OBJECTIVES – 5/16
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 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class (26 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average –  5.96  (  -  previous 6.68) 

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average –  5.42 (  -  previous 5.28)
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MATERIAL / PACE
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FEEDBACK FROM 5/14
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 Questions from 5/14

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 24

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
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OBJECTIVES – 5/16

 Questions from 5/14

 Assignment 2 - May 31

 Quiz 3 –  Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 24

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
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 Questions from 5/14

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 –  Pthread, locks, conditions tutorial -Fri May 24

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
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OBJECTIVES – 5/16

 Questions from 5/14

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 24

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
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CHAPTER 15: ADDRESS

TRANSLATION
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 Chapter 15: Address translation

▪ Base and bounds

▪ HW and OS Support
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OBJECTIVES – 5/18
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 64KB 

Address space

example

 Translation:

mapping 

virtual to

physical
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ADDRESS TRANSLATION

Virtual mapping

Address Space

 Dynamic relocation

 Two registers base & bounds: on the CPU

 OS places program in memory

 Sets base register

 Bounds register

▪ Stores size of program address space (16KB)

 OS verifies that every address:

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
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BASE AND BOUNDS

0 ≤  𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 < 𝑏𝑜𝑢𝑛𝑑𝑠
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 Base = 32768

 Bounds =16384

  Fetch instruction at 128 (virt addr) ↑

▪ Phy addr = virt addr + base reg

▪ 32896 = 128 + 32768 (base)

 Execute instruction

▪ Load from address (var x is @ 15kb=15360)

▪ 48128 = 15360 + 32768 (base)  -- found x…

 Bounds register: terminate process if

▪ ACCESS VIOLATION: Virtual address > bounds reg

  

May 16, 2024
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School of Engineering and Technology, University of Washington - Tacoma

L15.17

INSTRUCTION EXAMPLE

Int x

 MMU

▪ Portion of the CPU dedicated to address translation

▪ Contains base & bounds registers 

 Base & Bounds Example:

▪ Consider address translation

▪ 4 KB (4096 bytes) address space, loaded at 16 KB physical location

May 16, 2024
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MEMORY MANAGEMENT UNIT

Virtual Address Physical Address

0 16384

1024 17408

3000 19384

4400 20784 (out of bounds)FAULT
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DYNAMIC RELOCATION OF PROGRAMS

 Hardware requirements:

Requirements HW support

Privileged mode CPU modes: kernel, user

Base / bounds registers Registers to support address translation

Translate virtual addr; check if in 

bounds

Translation circuitry, check limits

Privileged instruction(s) to

 update base / bounds regs

Instructions for modifying base/bound 

registers

Privileged instruction(s) 

to register exception handlers

Set code pointers to OS code to handle faults

Ability to  raise exceptions For out-of-bounds memory access, or 

attempts to access privileged instr.

 For base and bounds OS support required

▪When process starts running

▪ Allocate address space in physical memory

▪When a process is terminated

▪ Reclaiming memory for use

▪When context switch occurs

▪ Saving and storing the base-bounds pair

▪ Exception handlers

▪ Function pointers set at OS boot time

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.20

OS SUPPORT FOR MEMORY 

VIRTUALIZATION
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 OS searches for free space for new process

▪ Free list: data structure that tracks available memory slots
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OS: WHEN PROCESS STARTS RUNNING

 OS places memory back on the free list
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OS: WHEN PROCESS IS TERMINATED
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 OS must save base and bounds registers

▪ Saved to the Process Control Block PCB (task_struct in Linux)

May 16, 2024
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OS: WHEN CONTEXT SWITCH OCCURS

 OS can move process data when not running

1. OS un-schedules process from scheduler

2. OS copies address space from current to new location

3. OS updates PCB (base and bounds registers)

4. OS reschedules process

 When process runs new base register is restored to CPU

 Process doesn’t know it was even moved!

May 16, 2024
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DYNAMIC RELOCATION
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 Questions from 5/14

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 24

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
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OBJECTIVES – 5/16
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CHAPTER 16: 

SEGMENTATION

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
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 Address space 

▪ Contains significant unused memory

▪ Is relatively large

▪ Preallocates space to handle stack/heap growth

 Large address spaces 

▪ Hard to fit in memory

 How can these issues be addressed?

May 16, 2024
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BASE AND BOUNDS INEFFICIENCIES
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 Memory segmentation

 Manage the address space as (3) separate segments

▪ Each is a contiguous address space 

▪ Provides logically separate segments for: code, stack, heap

 Each segment can placed separately

 Track base and bounds for each segment (registers)

May 16, 2024
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MULTIPLE SEGMENTS

 Consider 3 segments:

May 16, 2024
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SEGMENTS IN MEMORY

Much smaller
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Virtual Address Space  Physical Address Space

 Code segment - physically starts at 32KB (base)

 Starts at “0” in virtual address space

May 16, 2024
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ADDRESS TRANSLATION: CODE SEGMENT

Bounds check:
Is virtual address within 2KB 

address space?

 Heap starts at vir tual address 4096

 The data is at 4200

 Offset= 4200 –  4096 = 104   (vir t addr –  vir t heap start)

 Physical address = 104 + 34816  (of fset + heap base)

May 16, 2024
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ADDRESS TRANSLATION: HEAP

𝑽𝒊𝒓𝒕𝒖𝒂𝒍 𝒂𝒅𝒅𝒓𝒆𝒔𝒔 + 𝒃𝒂𝒔𝒆 is not the correct physical address.
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 Access beyond the address space

 Heap starts at virtual address: 4096

 Data pointer is to 7KB (7168)

 Is data pointer valid?

 Heap starts at 4096 + 2 KB seg size = 6144

 Offset= 7168 > 4096 + 2048 (6144)

May 16, 2024
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SEGMENTATION FAULT

 Used to dereference memory during translation

 First two bits identify segment type

 Remaining bits identify memory offset 

 Example: virtual heap address 4200 (01000001101000)

May 16, 2024
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SEGMENT REGISTERS
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 VIRTUAL ADDRESS = 01000001101000                     (on heap)

 SEG_MASK = 0x3000 (11000000000000)

 SEG_SHIFT = 01 → heap            (mask gives us segment code)

 OFFSET_MASK = 0xFFF (00111111111111)

 OFFSET = 000001101000 = 104        (isolates segment offset)

 OFFSET < BOUNDS :  104 < 2048

May 16, 2024
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SEGMENTATION DEREFERENCE

Stack grows backwards (FILO)

Requires hardware support:

Direction bit: tracks direction segment grows

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.36

STACK SEGMENT
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 Code sharing: enabled with HW support

 Supports storing shared libraries in memory only once

 DLL: dynamic linked library 

 .so (linux): shared object in Linux (under /usr/lib)

 Many programs can access them

 Protection bits: track permissions to segment

May 16, 2024
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SHARED CODE SEGMENTS
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Coarse-grained

Manage memory as large purpose

based segments:

▪Code segment

▪Heap segment

▪Stack segment

May 16, 2024
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SEGMENTATION GRANULARITY

 Fine-grained

 Manage memory as list of segments

 Code, heap, stack segments composed

of multiple smaller segments

 Segment table

▪ On early systems

▪ Stored in memory

▪ Tracked large number of segments

May 16, 2024
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SEGMENTATION GRANULARITY - 2
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 Consider how much free space?

 We’ll say about 24 KB

 Request arrives to allocate a 20 KB heap

segment

 Can we fulfil the request for 20 KB of

contiguous memory?

May 16, 2024
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MEMORY FRAGMENTATION

 Supports rearranging memory

 Can we fulfil the request for 20 KB of 

contiguous memory?

 Drawback: Compaction is slow

▪ Rearranging memory is time consuming

▪ 64KB is fast

▪ 4GB+ … slow

 Algorithms: 

▪ Best fit: keep list of free spaces, allocate the

most snug segment for the request

▪ Others: worst fit, first fit… (in future chapters)

May 16, 2024
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COMPACTION
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 Questions from 5/14

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 24

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 16, 2024
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OBJECTIVES – 5/16

CHAPTER 17: FREE 

SPACE MANAGEMENT

May 16, 2024
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 Chapter 17: Free Space Management

▪ Fragmentation, Splitting, coalescing

▪ The Free List

▪ Memory Allocation Strategies

May 16, 2024
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OBJECTIVES – 5/16

 How should free space be managed, when satisfying 

variable-sized requests?

 What strategies can be used to minimize fragmentation? 

 What are the time and space overheads of alternate 

approaches?

May 16, 2024
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FREE SPACE MANAGEMENT
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 Management of memory using

 Only fixed-sized units 

▪ Easy: keep a list

▪Memory request → return first free entry

▪ Simple search

 With variable sized units

▪More challenging

▪ Results from variable sized malloc requests

▪ Leads to fragmentation

May 16, 2024
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FREE SPACE MANAGEMENT

 Consider a 30-byte heap

 Request for 15-bytes

 Free space: 20 bytes

 No available contiguous chunk → return NULL

May 16, 2024
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FRAGMENTATION

47

48



TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.25Slides by Wes J. Lloyd

 External:   OS can compact

▪ Example: Client asks for 100 bytes:  malloc(100)

▪ OS: No 100 byte contiguous chunk is available:

 returns NULL

▪Memory is externally fragmented - - Compaction can fix!

 Internal:   lost space – OS can’t compact

▪ OS returns memory units that are too large

▪ Example:  Client asks for 100 bytes:  malloc(100)

▪ OS: Returns 125 byte chunk

▪ Fragmentation is *in* the allocated chunk

▪Memory is lost, and unaccounted for – can’t compact

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.49

FRAGMENTATION - 2

 Request for 1 byte of memory:  malloc(1)

 OS locates a free chunk to satisfy request

 Splits chunk into two, returns first chunk

May 16, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L15.50

ALLOCATION STRATEGY: SPLITTING
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 Consider 30-byte heap

 Free() frees all 10 bytes segments  ( l ist of 3-free 10-byte chunks)

 Request arrives:  malloc(30)

 SPLIT DOES NOT WORK  -  no contiguous 30-byte chunk exists!

 Coalescing regroups chunks into contiguous chunk

 Allocation can now proceed

 Coalescing is defragmentation of the free space list

May 16, 2024
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ALLOCATION STRATEGY: COALESCING

 free(void *ptr): Does not require a size parameter

 How does the OS know how much memory to free?

 Header block

▪ Small descriptive block of memory at start of chunk

May 16, 2024
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MEMORY HEADERS
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 Contains size

 Pointers: for faster memory access

 Magic number: integrity checking
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MEMORY HEADERS - 2

 Size of memory chunk is:

 Header size + user malloc size

 N bytes + sizeof(header)

 Easy to determine address of header

May 16, 2024
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MEMORY HEADERS - 3
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WE WILL RETURN AT 

4:56PM

May 16, 2024
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 Simple free list struct

 Use mmap to create free list

 4kb heap, 4 byte header, one contiguous free chunk

May 16, 2024
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THE FREE LIST
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 Create and initialize free- list “heap”

 Heap layout:

May 16, 2024
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FREE LIST - 2

 Consider a request for a 100 bytes:   malloc(100)

 Header block requires 8 bytes 

▪ 4 bytes for size, 4 bytes for magic number

 Split the heap – header goes with each block

May 16, 2024
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FREE LIST:  MALLOC() CALL

First block
is used
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 Addresses of chunks

 Start=16384 

+ 108 (end of 1st chunk)

+ 108 (end of 2nd chunk)

+ 108 (end of 3 rd chunk)

= 16708

May 16, 2024
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FREE LIST: FREE() CALL

Free this
block

 Free(sptr)

 Our 3 chunks start at 16 KB

(@ 16,384 bytes)

 Free chunk #2 - sptr

 Sptr = 16500

▪ addr – sizeof(node_t)

 Actual start of chunk #2

▪ 16492

May 16, 2024
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FREE LIST: 

FREE() CHUNK #2

Block
Now Free
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 Now free remaining chunks:

 Free(16392)

 Free(16608)

 Walk back 8 bytes for actual 
start of chunk

 External fragmentation

 Free chunk pointers 
out of order

 Coalescing of next 
pointers is needed

May 16, 2024
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FREE LIST- FREE ALL CHUNKS

 Start with small sized heap

 Request more memory when full

 sbrk(), brk()

May 16, 2024
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GROWING THE HEAP

Segmented heapSegmented heap
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 Best fit

▪ Traverse free list

▪ Identify all candidate free chunks

▪ Note which is smallest (has best fit)

▪When splitting, “leftover” pieces are small 

(and potentially less useful  -- fragmented)

 Worst fit

▪ Traverse free list

▪ Identify largest free chunk

▪ Split largest free chunk, leaving a still large free chunk

May 16, 2024
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MEMORY ALLOCATION STRATEGIES

 Allocation request for 15 bytes

 Result of Best Fit

 Result of Worst Fit
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EXAMPLES
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 First f it

▪ Start search at beginning of free list

▪ Find first chunk large enough for request

▪ Split chunk, returning a “fit” chunk, saving the remainder

▪ Avoids full free list traversal of best and worst fit

 Next fit

▪ Similar to first fit, but start search at last search location

▪ Maintain a pointer that “cycles” through the list 

▪ Helps balance chunk distribution vs. first fit

▪ Find first chunk, that is large enough for the request, and split

▪ Avoids full free list traversal
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MEMORY ALLOCATION STRATEGIES - 2
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 For popular sized requests 

e.g. for kernel objects such as locks, inodes, etc.

 Manage as segregated free lists 

 Provide object caches: stores pre -initialized objects

 How much memory should be dedicated for specialized 

requests (object caches)?

 If a given cache is low in memory, can request “slabs” of 

memory from the general allocator for caches.

 General allocator will reclaim slabs when not used
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SEGREGATED LISTS

 Binary buddy allocation

▪ Divides free space by two to find a block that is big enough to 

accommodate the request; the next split is too small…

 Consider a 7KB request
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BUDDY ALLOCATION

67

68



TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.35Slides by Wes J. Lloyd

 Buddy allocation: suffers from internal fragmentation

 Allocated fragments, typically too large

 Coalescing is simple

▪ Two adjacent blocks are promoted up
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BUDDY ALLOCATION - 2
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 Questions from 5/14

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 24

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 16, 2024
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OBJECTIVES – 5/16
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CHAPTER 18:

INTRODUCTION TO

PAGING
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 Split up address space of process into f ixed sized pieces 

called pages

 Alternative to variable sized pieces (Segmentation) which 

suffers from significant fragmentation

 Physical memory is split up into an array of fixed -size slots 

called page frames.

 Each process has a page table which translates virtual 

addresses to physical addresses
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PAGING
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 Flexibility

▪ Abstracts the process address space into pages

▪ No need to track direction of HEAP / STACK growth

▪ Just add more pages…

▪ No need to store unused space 

▪ As with segments…

 Simplicity

▪ Pages and page frames are the same size

▪ Easy to allocate and keep a free list of pages
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ADVANTAGES OF PAGING

 Consider a 128 byte (27) address space 

with 16-byte (24) pages  

 Consider a 64-byte (26) 

program address space
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PAGING: EXAMPLE
Page Table:

VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2
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 PAGE: Has two address components

▪ VPN: Virtual Page Number   (serves as the page ID)

▪ Offset: Offset within a Page  ( indexes any byte in the page)

 Example: 

Page Size: 16-bytes (24),

Program Address Space: 64-bytes (26)
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PAGING: ADDRESS TRANSLATION

Here program can have

just four pages…

 Consider a 64-byte (26) program address space (4 pages→22)

 Stored in 128-byte (27) physical memory (8 frames→23)

 Offset is preserved

▪ 4 bits indexes any byte

▪ Page size is 16 bytes (24)

 Page table translates a

Vir tual Page Number (VPN) to 

a Physical Frame Number (PFN)
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EXAMPLE:

PAGING ADDRESS TRANSLATION 

Page Table:

VP0 → PF3
VP1 → PF7
VP2 → PF5

VP3 → PF2

77

78



TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.40Slides by Wes J. Lloyd

 (1) Where are page tables stored?

 (2) What are the typical contents of the page table?

 (3) How big are page tables?

 (4) Does paging make the system too slow?
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PAGING DESIGN QUESTIONS

 Example:

▪ Consider a 32-bit process address space (4GB=232 bytes)

▪With 4 KB pages (4KB=212 bytes)

▪ 20 bits for VPN (220 pages)

▪ 12 bits for the page offset (212 unique bytes in a page)

 Page tables for each process are stored in RAM

▪ Support potential storage of 220 translations 

= 1,048,576 pages per process

▪ Each page has a page table entry size of 4 bytes
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(1) WHERE ARE PAGE TABLES STORED?
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 With 220 slots in our page table for a single process

 Each slot (i.e. entry) dereferences a VPN

 Each entry provides a physical frame number

 Each entry requires 4 bytes (32 bits)

▪ 20 for the PFN on a 4GB system with 4KB pages

▪ 12 for the offset which is preserved

▪ (note we have no status bits, so this is 
unrealistically small)

 How much memory is required to store the page table 
for 1 process?

▪ Hint: # of entries x space per entry

▪ 4,194,304 bytes (or 4MB) to index one process
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PAGE TABLE EXAMPLE

VPN0

VPN1

VPN2

…

…

VPN1048576

 If 4 MB is required to store one process

 Consider how much memory is required for an entire OS?

▪ With for example 100 processes…

 Page table memory requirement is now 4MB x 100 = 400MB

 If computer has 4GB memory (maximum for 32 -bits), 

the page table consumes 10% of memory

400 MB / 4000 GB

 Is this efficient?
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NOW FOR AN ENTIRE OS

81

82



TCSS 422 A – Spring 2024
School of Engineering and Technology

5/16/2024

L15.42Slides by Wes J. Lloyd

 Page table is data structure used to map virtual page 

numbers (VPN) to the physical address (Physical Frame 

Number PFN)

▪ Linear page table → simple array

 Page-table entry

▪ 32 bits for capturing state
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(2) WHAT’S ACTUALLY IN THE PAGE TABLE

 P: present

 R/W: read/write bit

 U/S: supervisor

 A: accessed bit

 D: dirty bit

 PFN: the page frame number
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PAGE TABLE ENTRY
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 Common flags:

 Valid Bit:  Indicating whether the particular translation is valid.

 Protection Bit:  Indicating whether the page could be read 

from, written to, or executed from

 Present Bit:  Indicating whether this page is in physical 

memory or on disk(swapped out)

 Dirty Bit:  Indicating whether the page has been modified since 

it was brought into memory

 Reference Bit(Accessed Bit):  Indicating that a page has been 

accessed
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PAGE TABLE ENTRY - 2

 Page tables are too big to store on the CPU

 Page tables are stored using physical memory

 Paging supports efficiently storing a sparsely populated 

address space

▪ Reduced memory requirement

Compared to base and bounds, and segments
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(3) HOW BIG ARE PAGE TABLES?
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 Translation

 Issue #1:  Starting location of the page table is 
needed

▪HW Support: Page-table base register

▪ stores active process 

▪Facilitates translation

 Issue #2: Each memory address translation for paging 
requires an extra memory reference

▪HW Support: TLBs (Chapter 19)
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(4) DOES PAGING MAKE 

THE SYSTEM TOO SLOW?

Page Table:

VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2

Stored in RAM →

1.  // Extract the VPN from the virtual address 

2.  VPN = (VirtualAddress & VPN_MASK) >> SHIFT 

3.  

4.  // Form the address of the page-table entry (PTE) 

5.  PTEAddr = PTBR + (VPN * sizeof(PTE)) 

6.  

7.  // Fetch the PTE 

8.  PTE = AccessMemory(PTEAddr) 

9.  

10.  // Check if process can access the page 

11.  if (PTE.Valid == False) 

12.   RaiseException(SEGMENTATION_FAULT) 

13.  else if (CanAccess(PTE.ProtectBits) == False) 

14.   RaiseException(PROTECTION_FAULT) 

15.  else 

16.   // Access is OK: form physical address and fetch it 

17.   offset = VirtualAddress & OFFSET_MASK 

18.   PhysAddr = (PTE.PFN << PFN_SHIFT) | offset 

19.   Register = AccessMemory(PhysAddr)
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PAGING MEMORY ACCESS
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 Example: Use this Array initialization Code

 Assembly equivalent:
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COUNTING MEMORY ACCESSES

 Locations:

▪ Page table

▪ Array

▪ Code

 50 accesses

for 5 loop 

iterations
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VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS
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 Consider a 4GB Computer:

 With a 4096-byte page size (4KB)

 How many pages would fit in physical memory?

 Now consider a page table:

 For the page table entry, how many bits are required for the 

VPN?

 If we assume the use of 4-byte (32 bit) page table entries, 

how many bits are available for status bits?

 How much space does this page table require?  

# of page table entries x size of page table entry  

 How many page tables (for user processes) 

would fill the entire 4GB of memory?
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PAGING SYSTEM EXAMPLE
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 Questions from 5/14

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 24

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 16, 2024

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington  -  Tacoma

L15.97

OBJECTIVES – 5/16

CHAPTER 19:

TRANSLATION 

LOOKASIDE BUFFER 

(TLB)
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 Legacy name…

Better name, “Address Translation Cache”

 TLB is an on CPU cache of address translations

▪virtual → physical memory
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TRANSLATION LOOKASIDE BUFFER

 Goal:

Reduce access

to the page

tables

 Example:

50 RAM accesses

for first 5 for -loop 

iterations

 Move lookups

from RAM to TLB 

by caching page

table entries
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TRANSLATION LOOKASIDE BUFFER - 2
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 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache
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TRANSLATION LOOKASIDE BUFFER (TLB)

 Part of the CPU’s Memory Management Unit (MMU)

 Address translation cache
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TRANSLATION LOOKASIDE BUFFER (TLB)

The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches
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 Questions from 5/14

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 24

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 16, 2024
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OBJECTIVES – 5/16

 For: array based page table

 Hardware managed TLB
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TLB BASIC ALGORITHM

Extract the virtual page numberCheck if the TLB holds the translation for the VPNExtract page frame number from TLBGenerate the physical address to access memory
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TLB BASIC ALGORITHM - 2

If TLB miss, access the pg table (in RAM) to find address translationUpdate the TLB with the translationRetry the instruction… (requery the TLB)

Key detail:

 For a TLB miss, we first access the page table in RAM to 

populate the TLB… we then requery the TLB

 All address translations go through the TLB
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TLB – ADDRESS TRANSLATION CACHE
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 Questions from 5/14

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 24

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
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OBJECTIVES – 5/16

 Example:

 Program address space: 256-byte

▪ Addressable using 8 total bits  (28)

▪ 4 bits for the VPN (16 total pages)

 Page size: 16 bytes

▪ Offset is addressable using 4-bits

 Store an array: of (10) 4-byte integers
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TLB EXAMPLE
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 Consider the code above:

 Initially the TLB does not know where a[] is

 Consider the accesses:

 a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],

a[8], a[9]

 How many pages are accessed?

 What happens when accessing a page not 

in the TLB?
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TLB EXAMPLE - 2

 For the accesses: a[0], a[1], a[2], a[3], a[4], 

 a[5], a[6], a[7], a[8], a[9]

 How many are hits?

 How many are misses?

 What is the hit rate? (%)

▪ 70% (3 misses one for each VP, 7 hits)
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TLB EXAMPLE - 3
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 What factors affect the hit/miss rate?

▪ Page size

▪ Data/Access locality  (how is data accessed?)

▪ Sequential array access vs. random array access

▪ Temporal locality

▪ Size of the TLB cache 
(how much history can you store?)
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TLB EXAMPLE - 4

 Questions from 5/14

 Assignment 2 - May 31

 Quiz 3 – Synchronized Array - May 23

 Tutorial 2 – Pthread, locks, conditions tutorial -Fri May 24

 Assignment 3 (as a Tutorial) to be posted…

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

 Chapter 19: Translation Lookaside Buffer (TLB)

▪ TLB Algorithm, Hit-to-Miss Ratios

 Chapter 20: Paging: Smaller Tables

▪ Smaller Tables, Multi-level Page Tables, N-level Page Tables
May 16, 2024
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OBJECTIVES – 5/16
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QUESTIONS
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