TCSS 422 A — Spring 2024
School of Engineering and Technology

5/16/2024

TCSS 422: OPERATING SYSTEMS

Memory Virtualization II:
Memory Segments,
Free Space Management,

Introduction to Pagin
Translation Lookaside Buffer

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2024]

May 16, 2024 School of Engineering and Technology, University of Washingtor

MIDTERM REVIEW SESSION

= Make-up midterm exams are scheduled and will be completed
by the end of Friday this week

= Midterm Revlew Sesslon:

= Tuesday May 21, 6:00 pm (during office hour, from BHS106)
= Via Zoom / Live Stream / Recording

= Will discuss and review midterm exam problems and grading

TCS5422: Operating Systems [Spring 2024]

(e School of Engineering and Technology, University of Washington - Tacoma

5.2

ZOOM RECORDING ANALYTICS

= Spring Fever? Stay tuned, many new concepts post-midterm

Cumulative Views - TCSS 422 Zoom Recordings

®
©
H
£ .
25
E
S =
E
3 »
o
S oaoa PN
& &
AN O
TCSS422: Operating Systems [Spring 2024]
[N ayiiei2024 School of Engineering and Technology, University of Washington - Tacoma. us3

OBJECTIVES - 5/16

| = Questions from 5/14 |
= Assignment 2 - May 31
= Quiz 3 - Synchronized Array - May 23
= Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 24
= Assignment 3 (as a Tutorial) to be posted...
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios

= Chapter 20: Paging: Smaller Tables

ystems [Spring
iersity of Wasl

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TCS5422A > Assignments

Spring 2021

Home
Announcements
Joom * Upcoming Assignments
Syllabus s TCSS422 - Online Daily Feedback Survey - 4/1

= i I ™ Avallable until Apr 5 at 11:5%pm | DueApr3 at 10pm | -/1pts
Nizerccinne An.r e

TCS5422: Computer Operating Systems [Spring 2024]

LR School of Engineering and Technology, University of Washington -Tacoma

Lss

TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions

Question 1 05 pes

On.a scale of 110 10, please classify your perspective on material covered in today's
el

1 2 3 4 5 s 7T 8 3 1
manly. et sty
i 10 e ol nevie o

Question 2 05pes

Piease rate the pace of today's class:

TCSS422: Computer Operating Systems [Spring 2024]

MeyplS 2028 School of Engineering and Technology, University of Washington - Tacoma L156

Slides by Wes J. Lloyd

L15.1

TCSS 422 A — Spring 2024 5/16/2024
School of Engineering and Technology

MATERIAL / PACE FEEDBACK FROM 5/14

= Please classify your perspective on material covered in today’s
class (26 respondents):
= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - 5.96 (- prevlous 6.68)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.42 (T - previous 5.28)

TCS5422: Computer Operating Systems (Spring 2024] TCS5422: Operating Systems [Spring 2024]
LAEREL b us7 RERE R School of Engineering and Technology, University of Washington - Tacoma Ls8

School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 5/16 OBJECTIVES - 5/16
= Questions from 5/14 = Questions from 5/14
|I Assignment 2 - May 31 | = Assignment 2 - May 31
® Quiz 3 - Synchronized Array - May 23 |I Quiz 3 - Synchronized Array - May 21'
= Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 24 = Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 24
= Assignment 3 (as a Tutorial) to be posted... = Assignment 3 (as a Tutorial) to be posted...
= Chapter 16: Segmentation = Chapter 16: Segmentation
= Chapter 17: Free Space Management = Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging = Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB) = Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios = TLB Algorithm, Hit-to-Miss Ratios

= Chapter 20: Paging: Smaller Tables

= Sma ah M A ah
TC55422; Operating Systems [Spring 20:
[Mayilej2023 School of Engineering and Technology,

= Chapter 20: Paging: Smaller Tables

= Sma ah M age Tah
TCS5422: Operating Systems [Spring 20:
School of Engineering and Technology,

May 16, 2024

OBJECTIVES - 5/16 OBJECTIVES - 5/16
= Questions from 5/14 = Questions from 5/14
= Assignment 2 - May 31 = Assignment 2 - May 31
® Quiz 3 - Synchronized Array - May 23 ® Quiz 3 - Synchronized Array - May 23
|' Tutorlal 2 - Pthread, locks, condltlions tutorlal -Frl May 2|l = Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 24
= Assignment 3 (as a Tutorial) to be posted... | = Assignment 3 (as a Tutorial) to be posted... |
= Chapter 16: Segmentation = Chapter 16: Segmentation
= Chapter 17: Free Space Management = Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging = Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB) = Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios = TLB Algorithm, Hit-to-Miss Ratios

= Chapter 20:

Paging: Smaller Tables = Chapter 20: Paging: Smaller Tables

= Sma ahles M -level Pase Tah
TC55422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

es M -level Page Tah
TCS5422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

May 16, 2024 May 16, 2024

11 12

Slides by Wes J. Lloyd L15.2

TCSS 422 A — Spring 2024
School of Engineering and Technology

CHAPTER 15: ADDRESS

TRANSLATION

TCSS422: Operating Systems [Spring 2024]

aypiela0z School of Engineering and Technology, University of Washington -

13

ADDRESS TRANSLATION

= 64KB ok s | .
Address space Program Code Operating System
example 15
Heap
= Translation: o
. 3268 “
mapping I Coce]
. o g
virtual to heap ! 1
) (aocated 5
physical (Free) but not in use) b
3
et 48KE Stack 1
ot in use)
Stack
16KB - S |
‘Address Space hysical Memory
TCSS422: Operating Systems [Spring 2024]
‘ [N ayiiei2024 School of Engineering and Technology, University of Washington - Tacoma Lis.1s

15

INSTRUCTION EXAMPLE

128 : movl 0x0(%ebx), %eax |

= Base = 32768 e
" Bounds =16384 3B
= Fetch instruction at 128 (virt addr) 1t 4KB
= Phy addr = virt addr + base reg
= 32896 = 128 + 32768 (base)
= Execute instruction
= Load from address (var x is @ 15kb=15360)
= 48128 = 15360 + 32768 (base) -- found x...
= Bounds register: terminate process if

= ACCESS VIOLATION: Virtual address > bounds reg K8
15KB

16K8

l physical address = virtual address + base

5/16/2024

OBJECTIVES - 5/18

= Chapter 15: Address translation
= Base and bounds
= HW and OS Support

TCS5422: Operating Systems [Spring 2024]

‘ (e School of Engineering and Technology, University of Washington - Tacoma

1514

14

BASE AND BOUNDS

= Dynamic relocation
= Two registers base & bounds: on the CPU
= 0S places program in memory

= Sets base register

l physical address = virtual address + base]

= Bounds register
= Stores size of program address space (16KB)
= 0S verifies that every address:

[0 < virtual address < bounds J

TCS5422: Operating Systems [Spring 2024]

‘ Maviclzazy School of Engineering and Technology, University of Washington - Tacoma

1516

16

(free)

stack

o Int X
Stack

TCS5422: Operating Systems [Spring 2024]

‘ LR School of Engineering and Technology, University of Washington - Tacoma

1517

MEMORY MANAGEMENT UNIT

= MMU
= Portion of the CPU dedicated to address translation
= Contains base & bounds registers

= Base & Bounds Example:
= Consider address translation
= 4 KB (4096 bytes) address space, loaded at 16 KB physical location

Virtual Address Physlcal Address

(0] 16384
1024 17408
3000 19384
FAULT 4400 20784 (out of bounds)

TC55422: Operating Systems [Spring 2024]

‘ LA School of Engineering and Technology, University of Washington - Tacoma

[EERTY

17

Slides by Wes J. Lloyd

18

L15.3

TCSS 422 A — Spring 2024
School of Engineering and Technology

5/16/2024

DYNAMIC RELOCATION OF PROGRAMS

= Hardware requirements:

Requirements HW support

Privileged mode CPU modes: kernel, user
Base / bounds registers

Translate virtual addr; check if in Translation circuitry, check limits
bounds

Registers to support address translation

Privileged instruction(s) to Instructions for modifying base/bound
update base / bounds regs registers

Privileged instruction(s) Set code pointers to 0S code to handle faults
to register exception handlers
Ability to raise exceptions For out-of-bounds memory access, or
attempts to access privileged instr.

TCSS422: Operating Systems [Spring 2024]
‘ LAEREL b School of Engineering and Technology, University of Washington - Tacoma Lis.19

0S SUPPORT FOR MEMORY
VIRTUALIZATION

= For base and bounds OS support required

= When process starts running
Allocate address space in physical memory

= When a process is terminated
Reclaiming memory for use

= When context switch occurs
Saving and storing the base-bounds pair

= Exception handlers
Function pointers set at OS boot time

TCS5422: Operating Systems [Spring 2024]
‘ RERE R School of Engineering and Technology, University of Washington - Tacoma .20

19

20

0S: WHEN PROCESS STARTS RUNNING

= OS searches for free space for new process
= Free list: data structure that tracks available memory slots

0KB
Operating System
The OS lookup the free list
) 16K8
Free list
(not in use)
1exs e . ro—
e
e 48KB i
(not in use)
64KB
Physical Memory
TCSS422: Operating Systems [Spring 2024]
‘ [N ayiiei2024 School of Engineering and Technology, University of Washington - Tacoma tis.21

0S: WHEN PROCESS IS TERMINATED

= 0S places memory back on the free list

0B Free list Lo
l Operating System Operating System
1668 16%8
16K8 e .
[not in use) (not in use)
o Process A a2k8 (not in use)
363 l 4ae
(not in use) (not in use)
64K8 43KB BB porio i i)
Physical Memary Physical Memory
TCS5422: Operating Systems [Spring 2024]
‘ [Mayilej2023 School of Engineering and Technology, University of Washington - Tacoma us.22

21

0S: WHEN CONTEXT SWITCH OCCURS

= 0S must save base and bounds registers
= Saved to the Process Control Block PCB (task_struct in Linux)

Process A PCB
- base : 328
e Context Switching 0% bounds : 48KB
Operating System — Operating System -
o 16K8
{not in use) e pane

3B 32K8

Process A bounds
40K nlic

bounds

Process B &
Currently Running
(-2 L1 I 64KD |

Physical Memory

TCS5422: Operating Systems [Spring 2024]
‘ LR School of Engineering and Technology, University of Washington - Tacoma L2

Physical Memory

23

Slides by Wes J. Lloyd

22

DYNAMIC RELOCATION

= 0S can move process data when not running

0S un-schedules process from scheduler

0S copies address space from current to new location
0S updates PCB (base and bounds registers)

0S reschedules process

L o

= When process runs new base register is restored to CPU

= Process doesn’t know it was even moved!

7CS5422: Operating Systems [Spring 2024]
‘ LA School of Engineering and Technology, University of Washington - Tacoma Ls24

24

L15.4

TCSS 422 A — Spring 2024 5/16/2024
School of Engineering and Technology

.'Consider a 64KB computer the loads a program. The'.
BASE register is set to 32768, and the BOUNDS

OBJECTIVES - 5/16

register is set to 4096. What is the physical memory = Questions from 5,14
address translation for a virtual address of 6000 ? = Assignment 2 - May 31
= Quiz 3 - Synchronized Array - May 23
34768 = Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 24
= Assignment 3 (as a Tutorial) to be posted...
38768 | = Chapter 16: Segmentation |
= Chapter 17: Free Space Management
32769 = Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
36864 = TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
Out of bounds Snalles Tahles Multilevel Page Tahle
-~ 5 = May 16, 2024 St o ognemy s Tt Unhersly of Washingion - Tacoma
25 26

BASE AND BOUNDS INEFFICIENCIES

oKB

= Address space 168 | Program Code
N . ge %8B
= Contains significant unused memory x8
g . 48
Is relatively large s Heso
= Preallocates space to handle stack/heap growth & l

CHAPTER 16:
SEGMENTATION

= Large address spaces

= Hard to fit in memory (free)
= How can these issues be addressed? T
14K8
158 Stack
16K8
TCSS422: Operating Systems [Spring 2024] TCSS422: Operating Systems [Spring 2024]
R i2028 School of Engineering and Technology, University of Washington - ‘ (e School of Engineering and Technology, University of Washington - Tacoma e

28

SEGMENTS IN MEMORY

MULTIPLE SEGMENTS

= Memory segmentation = Consider 3 segments:
OKB
,
= Manage the address space as (3) separate segments Cpeiio Syl ‘
= Each is a contiguous address space bl
= Provides logically separate segments for: code, stack, heap o %
3268 ek i Heap 34K 2K

ode

Heap Stack 2BK 2K

= Each segment can placed separately

48K8 (nct in use)
= Track base and bounds for each segment (registers)
64KB .
Physical Memory
TCS$422: Operating Systems [Spring 2024] TCS5422: Operating Systems [Spring 2024]
‘ Ievaelzad School of Engineering and Technology, University of Washington - Tacoma 1829 ‘ Ve School of Engineering and Technology, University of Washington - Tacoma 11830

29 30

Slides by Wes J. Lloyd L15.5

TCSS 422 A — Spring 2024
School of Engineering and Technology

ADDRESS TRANSLATION: CODE SEGMENT

| physical address = of fset + base ‘

= Code segment - physically starts at 32KB (base)
= Starts at “0” in virtual address space

nt Base Size

Bounds check:
Is virtual address within 2KB
address space?

(not in use)

Virtual Address Space Physical Address Space

TCSS422: Operating Systems [Spring 2024]

‘ iavECa228 School of Engineering and Technology, University of Washington - Tacoma

131

31

SEGMENTATION FAULT

= Access beyond the address space

= Heap starts at virtual address: 4096
= Data pointer is to 7KB (7168)

= |s data pointer valid?

= Heap starts at 4096 + 2 KB seg size = 6144

= Offset= 7168 > 4096 + 2048 (6144) Jl —
BKE T
KB | mot in use)
8KB

Address Space

11533

TCSS422: Operating Systems [Spring 2024]

‘ [N ayiiei2024 School of Engineering and Technology, University of Washington - Tacoma

33

SEGMENTATION DEREFERENCE

1 1
2 segment = (virtualaddress MASK) >> SEG SHIFT
4 Offset = VirtualAddr

5 (offset Boun

3 RaiseException (PROT! {_FRULT)

7

8 ® eqment] + Offset

B saMenory (PhysAddr)

= VIRTUAL ADDRESS = 01000001101000
= SEG_MASK = 0x3000 (11000000000000)
= SEG_SHIFT = 01 > heap (mask gives us segment code)
= OFFSET_MASK = OxFFF (001111111114111)
= OFFSET = 000001101000 = 104 (isolates segment offset)
= OFFSET < BOUNDS : 104 < 2048

us3s

(on heap)

TCS5422: Operating Systems [Spring 2024]

‘ LR School of Engineering and Technology, University of Washington -Tacoma

5/16/2024

ADDRESS TRANSLATION: HEAP

Virtual address + base is not the correct physical address.

® Heap starts at virtual address 4096

= The data is at 4200

= Offset= 4200 - 4096 = 104 (virt addr - virt heap start)
® Physical address = 104 + 34816 (offset + heap base)

Sequent mase size
=3 ETar
inot in use)
| Cade
B ¢
-
Heso Heap
8 T
(notin use)
Address Space

Physical Memory

TCS5422: Operating Systems [Spring 2024]

‘ (e School of Engineering and Technology, University of Washington - Tacoma

1532

32

SEGMENT REGISTERS

= Used to dereference memory during translation

13 12 11 10 8 8 7 & 5 4 3 2 1 0

|
| |

T
Segment Offset

= First two bits identify segment type
= Remaining bits identify memory offset
= Example: virtual heap address 4200 (01000001101000)

13 12 11 10 9 B 7 6 5 4 3 2 1 0

Segment bits

[o01 0 0 00 01 10 1 o 0 o] Code 00
' !] Heap 01
T T stack 10
Segment Offset - 11
TCS5422: Operating Systems [Spring 2024]
‘ [Mayilej2023 School of Engineering and Technology, University of Washington - Tacoma s34

34

STACK SEGMENT

= Stack grows backwards (FILO)
=Requires hardware support:
= Direction bit: tracks direction segment grows

(not in use)
2668 # Segment Register(with Negative-Growth Support)
Stack
28K8 Se: mt Base Size Grows Positive?
‘ i 5 Coda 32K 2K
inot in use)
Heap 34K 2K 1
Stack 28K 2K a

Physical Memary

TC55422: Operating Systems [Spring 2024]

‘ LA School of Engineering and Technology, University of Washington - Tacoma

1536

35

Slides by Wes J. Lloyd

36

L15.6

TCSS 422 A — Spring 2024
School of Engineering and Technology

5/16/2024

SHARED CODE SEGMENTS

= Code sharing: enabled with HW support

= DLL: dynamic linked library

= .so (linux): shared object in Linux (under /usr/lib)
= Many programs can access them

= Protection bits: track permissions to segment

Segment Register Values(with Protection)

Segment Base Size Grows Positive? Protection

Code 32K 2K Read-Execute
Heap 34K 2K 1 Read-Write
Stack 28K 2K] Read-Write

= Supports storing shared libraries in memory only once

TCSS422: Operating Systems [Spring 2024]

LAEREL b School of Engineering and Technology, University of Washington - Tacoma

11537

[| |
"Consider a program with 2KB of code, a1 KB stack,'

and a 2 KB heap. This program runs on a 64 KB
computer that manages memory with 4 kb
segments. If the computer is empty and segments
were allocated as: code, stack, heap, how large can
the heap grow to?

32KB
56 KB
24 KB
4 KB
0KB

o ove comtent.

37

= Coarse-grained

= Manage memory as large purpose
based segments:

=Code segment
=Heap segment
=Stack segment

SEGMENTATION GRANULARITY

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

‘ May 16, 2024

39

MEMORY FRAGMENTATION

= Consider how much free space? Mot compacted
= We'll say about 24 KB ke
8KB | Operating System
= Request arrives to allocate a 20 KB heap 16K8
segment {not in use)
24K8
Allocated
= Can we fulfil the request for 20 KB of 3K R
contiguous memory? 40KB Allocated
48x8
(not in use)
S6KE
Allocated
B4KEB
TCS5422: Operating Systems [Spring 2024]
‘ Ievaelzad School of Engineering and Technology, University of Washington - Tacoma e

41

Slides by Wes J. Lloyd

38

SEGMENTATION GRANULARITY -2

= Fine-grained
= Manage memory as list of segments

= Code, heap, stack segments composed
of multiple smaller segments

= Segment table
= On early systems
= Stored in memory
= Tracked large number of segments

TCS5422: Operating Systems [Spring 2024]
‘ [Mayilej2023 School of Engineening and Techaology, Universiy of Washington - Tacoma .40
= Supports rearranging memory Compacted
o8
= Can we fulfil the request for 20 KB of 83 | Operating System
contiguous memory?
16K8
= Drawback: Compaction is slow .
= Rearranging memory is time consuming Aliocated
= 64KB is fast 318
= 4GB+ ... slow 40KB
= Algorithms: a8
) . (not in use}
= Best fit: keep list of free spaces, allocate the 56KB
most snug segment for the request
= Others: worst fit, first fit... (in future chapters) Bace
TCS5422: Operating Systems [Spring 2024]
‘ (ERETD School of Engineering and Technology, University of Washington - Tacoma L2

42

L15.7

TCSS 422 A — Spring 2024
School of Engineering and Technology

OBJECTIVES - 5/16

= Questions from 5/14
= Assignment 2 - May 31
= Quiz 3 - Synchronized Array - May 23

= Assignment 3 (as a Tutorial) to be posted...
= Chapter 16: Segmentation

| = Chapter 17: Free Space Management |

= Chapter 18: Introduction to Paging

= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios

= Chapter 20: Paging: Smaller Tables
L] malie able v -le P e

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

= Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 24

43

OBJECTIVES - 5/16

= Chapter 17: Free Space Management
= Fragmentation, Splitting, coalescing
= The Free List
= Memory Allocation Strategies

TCSS422: Operating Systems [Spring 2024]

‘ Rlavie2ozy School of Engineering and Technology, University of Washington - Tacoma

L1545

45

FREE SPACE MANAGEMENT

= Management of memory using

= Only fixed-sized units
= Easy: keep a list
= Memory request - return first free entry
Simple search

= With variable sized units
= More challenging
= Results from variable sized malloc requests
= Leads to fragmentation

TCS5422: Operating Systems [Spring 2024]

‘ LR School of Engineering and Technology, University of Washington - Tacoma

L1547

47

Slides by Wes J. Lloyd

5/16/2024

CHAPTER 17: FREE

SPACE MANAGEMENT

TCSS422: Operating Systems [Spring 2024]

ayjei2020 School of Engineering and Technology, University of Washington -

44

FREE SPACE MANAGEMENT

= How should free space be managed, when satisfying
variable-sized requests?

= What strategies can be used to minimize fragmentation?

= What are the time and space overheads of alternate
approaches?

TCS5422: Operating Systems [Spring 2024]
‘ [Mayilej2023 School of Engineering and Technology, University of Washington - Tacoma .46

46

FRAGMENTATION

= Consider a 30-byte heap
30-byte heap: [free [[lused | free
0 10 20 3

= Request for 15-bytes

addr: 0 addr:20
free list head —»fon;gp —™ lemszg > NULL

= Free space: 20 bytes

= No available contiguous chunk - return NULL

TCS3422: Operating Systems [Spring 2024] L1548
School of Engineering and Technology, University of Washington - Tacoma

‘ May 16, 2024

48

L15.8

TCSS 422 A — Spring 2024 5/16/2024
School of Engineering and Technology

FRAGMENTATION - 2 ALLOCATION STRATEGY: SPLITTING

= External: OS can compact = Request for 1 byte of memory: malloc(1)
= Example: Client asks for 100 bytes: malloc(100) 30-byte heap: | free [LUsedl] free
0 10 20

= 0S: No 100 byte contiguous chunk is available:
returns NULL

) . . free list | head —% sonin S e UL
= Memory is externally fragmented - - Compaction can fix!
= Internal: lost space - OS can’t compact = 0S locates a free chunk to satisfy request
= 0S returns memory units that are too large = Splits chunk into two, returns first chunk
= Example: Client asks for 100 bytes: malloc(100) 30-byte heap: [free TSRINIGY free |
= 0S: Returns 125 byte chunk
= Fragmentation is *in* the allocated chunk free list head — poarit — S s UL

= Memory is lost, and unaccounted for - can't compact

TCS5422: Operating Systems [Spring 2024] TCS5422: Operating Systems (Spring 2024]
‘ iavECa228 School of Engineering and Technology, University of Washington - Tacoma Lis.49 RERE R ts.50

School of Engineering and Technology, University of Washington - Tacoma

49 50

ALLOCATION STRATEGY: COALESCING MEMORY HEADERS

= Consider 30-byte heap

= free(void *ptr): Does not require a size parameter
= Free() frees all 10 bytes segments (list of 3-free 10-byte chunks)

e — T = How does the OS know how much memory to free?
head —> ihe —* femio lensio > NULL
= Request arrives: malloc(30) = Header block
= SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists! = Small descriptive block of memory at start of chunk
= Coalescing regroups chunks into contiguous chunk } e heacer used by matLoc lsrary
head —» So0a0 —» NULL pr —*

The 20 bytes returned to caller
= Allocation can now proceed

= Coalescing is defragmentation of the free space list An Allocated Region Plus Header
TCSS422: Operating Systems [Spring 2024] TCSS422: Operating Systems [Spring 2024]
‘ (e School of Engineering and Technology, University of Washington - Tacoma st e School of Engineering and Technology, University of Washington - Tacoma e

51 52

hptr = o = Size of memory chunk is:
N [magic: 1234567 | ot _header ¢ (= Header size + user malloc size
il magies = N bytes + sizeof(header)
The 20 bytes } header_t;
returned to caller
S E—— A Simple Header = Easy to determine address of header
Specific Contents Of The Header
i fres(void *ptr) {
= Contains size header_t *hptr = (*)ptr - (header_t):
N 1
= Pointers: for faster memory access
= Magic number: integrity checking
TCSS422: Oy ating Syste [Spring 2024] TCSS422: Operating Syste ISs 2024]
N e T . s [wwtemn | o ey rwenirgn o st

Slides by Wes J. Lloyd L15.9

TCSS 422 A — Spring 2024

5/16/2024
School of Engineering and Technology

THE FREE LIST

= Simple free list struct

_node_t {
t size
__node_t "next;
} nodet_t;

WE WILL RETURN AT
4:56PM

= Use mmap to create free list
= 4kb heap, 4 byte header, one contiguous free chunk

node_t *head = mmap (NULL,

, PROT_READ|PROT_WRITE,
MAP_ANOR|MAP_PRIVATE, -1, 0);
head->size = 4096 (node t);
head->next =
TCSS422: Operating Systems [Spring 2024] TCS5422: Operating Systems [Spring 2024]
aypiela0z School of Engineering and Technology, University of Washington - (e School of Engineering and Technology, University of Washington - Tacoma oo

55 56

FREE LIST - 2 FREE LIST: MALLOC() CALL

= Create and initialize free-list “heap” = Consider a request for a 100 bytes: malloc(100)

= Header block requires 8 bytes
= 4 pbytes for size, 4 bytes for magic number
= Split the heap - header goes with each block

_HEAD| PROT_WRT
MAP_ANON |MAP_PRIVATE,
(nods £):

head
head:

= Heap layout: A 4KB Heap With One Free Chunk A Heap - After One Allocation
oz —)
virtual sddress: 16€3] = size 4088 j
header: size field magic: 1234567
size: 4088 | next 0 otr =
. the rest of I F'{:!dls?'e‘:"’k the 100 bytes now allocated
head —» next 0 | header: next field(NULL is 0} the 3K chunk |
head —>
size: 3880
b the rest of the 4KB chunk
the free 3980 byte chunk
TCS5422: Operating Systems [(Spring 2024] TCS5422: Operating Systems (Spring 2024]
‘ [N ayiiei2024 School of Engineering and Technology, University of Washington - Tacoma Ls.s7 ‘ May 16,2024 School of Engineering and Technology, University of Washington - Tacoma Ls.s8

57 58

FREE LIST: FREE() CALL FREE LIST:

FREE() CHUNK #2

: | 3
= Addresses of chunks & bytes header { virtual address: 16K8) = Free(sptr) [virtual address: 16KB]

190 bytes et alocated = Our 3 chunks start at 16 KB
< still allocat
HIGIEIE LR (@ 16,384 bytes) 100 bytes stil llocated
+ 108 (end of 1t chunk) size: 100
= 1234567
20963 ((ore] Clf 27 Gl " . 100 bytes still allocated F hunk #2 t
s still allocats = Free chun - sptr
+ 108 (end of 3" chunk) {but about o be freed) p (new 3 ree chunk of
= 16708 [sze 100 = Sptr = 16500 memory)
gic: 1234567)
= addr - sizeof(node_t)
100 bytes still allocated
head —»| o EyL) 100 bytes still allocated
next: 0 = Actual start of chunk #2 e TE -
The free 3764-byte chunk = 16492 h 0
The free 3763-byte chunk
Free Space With Three Chunks Allocated
TCSS422: Oy ating Syste [Spring 2024] TCSS422: Operating Syste [Spring 2024]
‘ May 15, 2024 BT AT S Ay Ot s T usso \ May 16, 2024 o2z opene s ey v N 560

59 60

Slides by Wes J. Lloyd L15.10

TCSS 422 A — Spring 2024 5/16/2024
School of Engineering and Technology

= Now free remaining chunks: virtusl address: 16KB] = Start with small sized heap
_ 5y [1. | = Request more memory when full
= Free(16392) N
= Free(16608) (now free) sbrk(), brk()
size: 100
= Walk back 8 bytes for actual next. 16708 Segmented heap
start of chunk
- (now free) {not in use) I | {not in use)
R P 1
= External fragmentation 2
gm next 16384 Heap Heap Heap Heap
= Free chunk pointers break sbri(),
out of order (row fres) l bresk 4 (not in use)
size: 3764 (not in use) .
= Coalescing of next iy 2 Address Space Address Space | Heap
pointers is needed The free 3764-byte chunk
Physical Memory
TCSS422: Operating Systems [Spring 2024] TCSS422: Operating Systems [Spring 2024]
‘ (L7,) Schol of Engineering and Technology, University of Washington - Tacoma U6t ‘ May 16, 2024 School of Engineering and Technology, University of Washington - Tacoma e

61 62

MEMORY ALLOCATION STRATEGIES EXAMPLES

= Best fit = Allocation request for 15 bytes

= Traverse free list
= Identify all candidate free chunks

head —> 10 —» 30 —> 20 —> NULL

= Note which is smallest (has best fit)

= When splitting, “leftover” pieces are small
(and potentially less useful -- fragmented)

= Result of Best Fit

head —» 10 —> 30 —s 5 —> NULL

= Worst fit = Result of Worst Fit
= Traverse free list

= |dentify largest free chunk
= Split largest free chunk, leaving a still large free chunk

TCSS422: Operating Systems [Spring 2024] TCSS422: Operating Systems [Spring 2024]
‘ (e School of Engineering and Technology, University of Washington - Tacoma L8 e School of Engineering and Technology, University of Washington - Tacoma e

head —> 10 —> 15 — 20 —> NULL

63 64

[| |
“Which memory allocation strategy is more likely to"

distribute free chunks closer together which could
help when coalescing the free space list?

MEMORY ALLOCATION STRATEGIES - 2

= Flrst fit
= Start search at beginning of free list
= Find first chunk large enough for request Best Fit
= Split chunk, returning a “fit” chunk, saving the remainder
= Avoids full free list traversal of best and worst fit i
Worst Fit
= Next flt
= Similar to first fit, but start search at last search location First Fit
= Maintain a pointer that “cycles” through the list
= Helps balance chunk distribution vs. first fit NOnE Of the above
= Find first chunk, that is large enough for the request, and split
= Avoids full free list traversal
All of the above
[v | omoemesnen e e e wse - - , . .

65 66

Slides by Wes J. Lloyd L15.11

TCSS 422 A — Spring 2024 5/16/2024
School of Engineering and Technology

SEGREGATED LISTS BUDDY ALLOCATION
= For popular sized requests = Binary buddy allocation
e.g. for kernel objects such as locks, inodes, etc. = Divides free space by two to find a block that is big enough to
= Manage as segregated free lists accommodate the request; the next split is too small...
= Provide object caches: stores pre-initialized objects = Consider a 7KB request

= How much memory should be dedicated for specialized
requests (object caches)?

= If a given cache is low in memory, can request “slabs” of
memory from the general allocator for caches.

= General allocator will reclaim slabs when not used

64KE free space for 7KB request

TCS5422: Operating Systems [Spring 2024] 568
School of Engineering and Technology, University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2024]
‘ LAEREL b School of Engineering and Technology, University of Washington - Tacoma L1567 RERE R

67 68

[| |
A computer system manages program memory using

three separate segments for code, stack, and the
heap. The codesize of a program is 1KB but the
minimal segment available is 16KB. This is an
= Allocated fragments, typically too large example of:

BUDDY ALLOCATION - 2

= Buddy allocation: suffers from internal fragmentation

® Coalescing Is simple External fragmentation
=Two adjacent blocks are promoted up

Binary buddy allocation

Internal fragmentation

Coalescing
Splitting
‘ oy) TCss422; peraing Sytes (prng 2024]) 160 n n
chool of Engineering and Technology, University of Washington - Tacoma ™) vt comtent . hel]
69 70
- -
A request is made to store 1 byte. For this scenario, OBJECTIVES - 5/16
which memory allocation strategy will always locate
?
memory the fastest? = Questions from 5/14
= Assignment 2 - May 31
Best fit ® Quiz 3 - Synchronized Array - May 23
= Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 24
Worst fit = Assignment 3 (as a Tutorial) to be posted...
= Chapter 16: Segmentation
Next fit = Chapter 17: Free Space Management
| = Chapter 18: Introduction to Paging |
None of the above = Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
All of the above = Chapter 20: Paging: Smaller Tables
= Smaller Tahles M i-level Page Tahle
-~ ~om , = = May 16,2024 St o egnetre s Tetsoasa Uty of Washington Tacoma
71 72

Slides by Wes J. Lloyd L15.12

TCSS 422 A — Spring 2024
School of Engineering and Technology

CHAPTER 18:
INTRODUCTION TO
PAGING

TCSS422: Operating Systems [Spring 2024]
aypiela0z School of Engineering and Technology, University of Washington -

ADVANTAGES OF PAGING

= Flexibility
= Abstracts the process address space into pages
=No need to track direction of HEAP / STACK growth
Just add more pages...
= No need to store unused space
As with segments...

= Simplicity
= Pages and page frames are the same size
= Easy to allocate and keep a free list of pages

TCSS422: Operating Systems [Spring 2024]

‘ Rlavie2ozy School of Engineering and Technology, University of Washington - Tacoma.

us.75

75

PAGING: ADDRESS TRANSLATION

= PAGE: Has two address components
= VPN: Virtual Page Number (serves as the page ID)

VBN offset
' L
i

VaS | Vad Va3 | Va2 | Vsl | Va0
= Example:

Page Size: 16-bytes (2%),
Program Address Space: 64-bytes (2°)

VPN offset

= Offset: Offset within a Page (indexes any byte in the page)

Here program can have
Just four pages...

TCS5422: Operating Systems [Spring 2024]

‘ LR School of Engineering and Technology, University of Washington - Tacoma

1577

PAGING

= Split up address space of process into fixed sized pieces
called pages

= Alternative to variable sized pieces (Segmentation) which
suffers from significant fragmentation

= Physical memory is split up into an array of fixed-size slots
called page frames.

= Each process has a page table which translates virtual
addresses to physical addresses

TCS5422: Operating Systems [Spring 2024]
‘ RERE R School of Engineering and Technology, University of Washington - Tacoma s.74

74

Page Table:
VPO - PF3
VP1 > PF7
VP2 > PF5
VP3 > PF2

PAGING: EXAMPLE

= Consider a 128 byte (27) address space
with 16-byte (24) pages

page frame 0 of
physical memory

= Consider a 64-byte (2°) (unused) | page frame 1
program address space

|reserved for OF

page 3 of AS | page frame 2

page D of AS | page frame 3
[]

(page 0 of {unused) page frame 4
16| the address space) w0 -

(page 1) page 2 of AS | page frame 5
1 =

(page 2) (unused) | page frame &
ar N 2 -
o (page 3) page 1of AS | page frame7

128
64-Byte Address Space Placed In Physical Memory

TCS5422: Operating Systems [Spring 2024] 1576
School of Engineering and Technology, University of Washington - Tacoma

A Simple 64-byte Address Space

‘ May 16, 2024

76

EXAMPLE:
PAGING ADDRESS TRANSLATION

= Consider a 64-byte (2°) program address space (4 pages—>22?)
= Stored in 128-byte (27) physical memory (8 frames—>23)

. VPN offset
= Offset is preserved

77

Slides by Wes J. Lloyd

= 4 bits indexes any byte Virtual
o . s [0 x o[o]
= Page size is 16 bytes (24)
= Page table translates a v
Virtual Page Number (VPN) to Address
a Physical Frame Number (PFN) Translation
PageTable: 1 l l
VPO -> PF3 Phaysical
VP1 > PF7 Address ‘1 E ‘B ‘1 “|L‘
VP2 > PF5 T ;)
VP3 > PF2 PFN offset
TCSS422: Oy ing Sy [Spring 2024]
[wovisaonn |10 oot s o 2020 gt s s

78

5/16/2024

L15.13

TCSS 422 A — Spring 2024
School of Engineering and Technology

PAGING DESIGN QUESTIONS

® (1) Where are page tables stored?
® (2) What are the typical contents of the page table?
= (3) How big are page tables?

= (4) Does paging make the system too slow?

TCSS422: Operating Systems [Spring 2024]
‘ LAEREL b School of Engineering and Technology, University of Washington - Tacoma Ls.79

79

PAGE TABLE EXAMPLE

= With 220 slots in our page table for a single process

= Each slot (i.e. entry) dereferences a VPN VPN,
= Each entry provides a physical frame number VPN
. . VPN,

= Each entry requires 4 bytes (32 bits) 2

= 20 for the PFN on a 4GB system with 4KB pages

= 12 for the offset which is preserved

= (note we have no status bits, so this is

unrealistically small) VPNq4g576

= How much memory is required to store the page table
for 1 process?

= Hint: # of entries x space per entry
= 4,194,304 bytes (or 4MB) to index one process

TCSS422: Operating Systems [Spring 2024] Ls.81
School of Engineering and Technology, University of Washington - Tacoma

‘ May 16, 2024

81

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

= Page table is data structure used to map virtual page
numbers (VPN) to the physical address (Physical Frame
Number PFN)

= Linear page table - simple array

= Page-table entry
= 32 bits for capturing state

NVNBYBXEMNBRADPBUBBUB LU0 8 7 6543210
| PFN -g’gn‘<§§£§a
An %86 Page Table Entry(PTE)
TCS5422: Operating Systems [Spring 2024]
‘ LR School of Engineering and Technology, University of Washington - Tacoma .

83

Slides by Wes J. Lloyd

(1) WHERE ARE PAGE TABLES STORED?

= Example:
= Consider a 32-bit process address space (4GB=232 pbytes)
= With 4 KB pages (4KB=212 bytes)
= 20 bits for VPN (22° pages)
= 12 bits for the page offset (212 unique bytes in a page)

= Page tables for each process are stored in RAM
= Support potential storage of 22° translations
= 1,048,576 pages per process
= Each page has a page table entry size of 4 bytes

TCS5422: Operating Systems [Spring 2024]
‘ RERE R School of Engineering and Technology, University of Washington - Tacoma L1s.80

80

NOW FOR AN ENTIRE 0OS

= |f 4 MB is required to store one process

= Consider how much memory is required for an entire 0S?
= With for example 100 processes...

= Page table memory requirement is now 4MB x 100 = 400MB

= |f computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

400 MB / 4000 GB

= |s this efficlent?

TCS5422: Operating Systems [Spring 2024]
‘ Maviclzazy School of Engineering and Technology, University of Washington - Tacoma s

82

PAGE TABLE ENTRY

o P: present

o R/W: read/write bit

o U/S: supervisor

o A: accessed bit

o D: dirty bit

o PFN: the page frame number

NNABABEMNBRADPV WY BB UBRUINI ST 6543210

PFN o|g|o g',,

ol
<|5

An x86 Page Table Entry(PTE)

‘ May 16, 2024

TCS3422: Operating Systems [Spring 2024] 584
School of Engineering and Technology, University of Washington - Tacoma

84

5/16/2024

L15.14

TCSS 422 A — Spring 2024 5/16/2024
School of Engineering and Technology

PAGE TABLE ENTRY - 2 (3) HOW BIG ARE PAGE TABLES?

= Common flags: = Page tables are too big to store on the CPU

= Valid Bit: Indicating whether the particular translation is valid.
= Page tables are stored using physical memory
= Protection Bit: Indicating whether the page could be read
from, written to, or executed from
= Paging supports efficiently storing a sparsely populated
= Present Bit: Indicating whether this page is in physical address space
memory or on disk(swapped out)
= Reduced memory requirement
= Dirty BIt: Indicating whether the page has been modified since Compared to base and bounds, and segments
it was brought into memory

= Reference Blt(Accessed BIt): Indicating that a page has been

accessed

TCS5422: Operating Systems [Spring 2024] TCS5422: Operating Systems (Spring 2024]
‘ LAEREL b School of Engineering and Technology, University of Washington - Tacoma Lis8s RERE R School of Engineering and Technology, University of Washington - Tacoma L1586

85 86

(4) DOES PAGING MAKE

THE SYSTEM TOO SLOW? PAGING MEMORY ACCESS

= Translation 1 // Extract the VPN from the virtual address
2 VPN = (VirtualAddress & VPN_MASK) >> SHIFT
Elo
. . . 4. // Form the address of the page-table entry (PTE)
= |ssue #1: Starting location of the page table is 5. PTEAddr = PTBR + (VAN * =izcof(PTE))
needed 6.
. 7. // Fetch the PTE
=HW Support: Page-table base register Page Table: 8. PTE = AccessMemory (PTEAdr)
: VPO - PF3 9.
stores active process VP1 > PF7 10. // check if process can access the page
Facilitates translation VP2 > PF5 Al F @R = Fay
Stored in RAM > 12. RaiseException(SEGMENTATION_FAULT)
VP3 = PF2 13. else if (canAccess(PTE.ProtectBits) == False)
i T 14, RaiseE i PROTECTION_FAULT.
= |ssue #2: Each memory address translation for paging oo g CCHECETODI >
requires an extra memory reference 16. // Access 1s ok: form physical address and fetch it
17. offset = virtualAddress & OFFSET_MASK
=HW Support: TLBs (Chapter 19) 18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset
19. Register = AccessMemory(PhysAddr)
[oo S ofEvgani and eletogy sy of Washingon Tcoma il [o S fEnane and Teletogy: ey of Washingion Tocoma usm

87 88

COUNTING MEMORY ACCESSES VISUALIZING MEMORY ACCESSES:

FOR THE FIRST 5 LOOP ITERATIONS

Page Tabke(35)

= Example: Use this Array initialization Code = Locations: N 1224
. = Page table o 5] o] o 5! s z
array (10001 7 -
= Array Page Tablef1] u2 3
(L= 07 i< 10007 i++) ~ e
arraylil = 0; = Code . 014

_ 00000 0000-DoL0— 00000001 102

= 50 accesses

2
for 5 loop 050 - = 7282
= Assembly equivalent: . . - n [} . oy T
iterations 0 =
0x1024 movl $0x0, (sedi, beax, 4)
o teax
010 1 50x03e8, teax am o
021030 jne 0x1024 P
_ aan®, gu®, gu® -
0 30 40 50
Memory Access
TCS3422: Operating Systems [Spring 2024] TCS5422: Operating Systems [Spring 2024]
‘ LR School of Engineering and Technology, University of Washington - Tacoma . (ERETD School of Engineering and Technology, University of Washington - Tacoma Lss0

89 90

Slides by Wes J. Lloyd L15.15

TCSS 422 A — Spring 2024
School of Engineering and Technology

Consider a 4GB Computer with 4KB (4096 byte)

pages. How many pages would fit into physical
memory?

2432 /2A20 = 2712 pages

2/32 [2A12 = 2720 pages

2/32 /2716 = 2716 pages

2A32 /278 =224 pages

None of the above

") ove comtent. X hely L

91

[| |
"For the 4GB computer example, how many bits are”

available for page status bits?

32-12VPN bits
=20 status bits

32-24 VPN bits
= 8 status bits

32-16 VPN bits
=16 status bits

32-20VPN bits
=12 status bits

None of the
above
.. fove comtent. ..
93
n

|
* For the 4GB computer, how many page tables (for "
user processes) would fill the entire 4GB of memory?

4GB/ 16 KB=65,536
4GB/64MB=256
4GB/ 256 KB = 16,384
4GB/ 4MB=1,024

None of the above

5/16/2024

[| |
"For the 4GB computer example, how many bits are”

required for the VPN?

24 VPN bits (indexes
2°24 locations)

16 VPN bits (indexes
2716 locations)

20 VPN bits (indexes
2720 locations)

12 VPN bits (indexes
2712 locations)

None of the above

o May 16, 2024,

TCSS422: Operating Systems [Spring 2024]
u T g 2

L15H
2 |

92

[| |
" Forthe 4GB computer, how much space does this "

page table require? (number of page table entries x
size of page table entry)

2A20 entries x4b=4 MB

2712 entries x 4b = 16 KB

2716 entries x 4b =256 KB

2724 entries x 4b =64 MB

None of the above

o May 16, 2034,
u

TCSS422: Operating Systems [Spring 2024] L158
iy o Pi |

94

PAGING SYSTEM EXAMPLE

= Consider a 4GB Computer:
= With a 4096-byte page size (4KB)
= How many pages would fit in physical memory?

= Now consider a page table:

= For the page table entry, how many bits are required for the
VPN?

= |f we assume the use of 4-byte (32 bit) page table entries,
how many bits are available for status bits?

= How much space does this page table require?
of page table entries x size of page table entry

= How many page tables (for user processes)
would fill the entire 4GB of memory?

TCS3422: Operating Systems [Spring 2024] L1596
School of Engineering and Technology, University of Washington - Tacoma

‘ May 16, 2024

95

Slides by Wes J. Lloyd

96

L15.16

TCSS 422 A — Spring 2024
School of Engineering and Technology

OBJECTIVES - 5/16

= Questions from 5/14
= Assignment 2 - May 31
= Quiz 3 - Synchronized Array - May 23
= Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 24
= Assignment 3 (as a Tutorial) to be posted...
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
|- Chapter 19: Translatlon Lookaslde Buffer (TLB)|
= TLB Algorithm, Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables
L] malie able v -le P e

el Page Tah
TCSS422: Operating Systems [Spring 2024]
LAEREL b School of Engineering and Technology, University of Washington - Tacoma

97

TRANSLATION LOOKASIDE BUFFER

Elegacy hame...

= Better name, “Address Translation Cache”

=TLB is an on CPU cache of address translations
=virtual > physical memory

‘ May 16, 2024

TCSS422: Operating Systems [Spring 2024] L15.99
School of Engineering and Technology, University of Washington - Tacoma

99

TRANSLATION LOOKASIDE BUFFER (TLB)

= Part of the CPU’s Memory Management Unit (MMU)

T8 Hit Physical
| Address

= Address translation cache

Logical
Address

Page Table
all v o p entries

Address Translation with MMU Physical Memory

TCS5422: Operating Systems [Spring 2024]
‘ LR School of Engineering and Technology, University of Washington - Tacoma Lot

5/16/2024

L'kl
CHAPTER 19:

TRANSLATION
LOOKASIDE BUFFER
(TLB)

TCSS422: Operating Systems [Spring 2024]

ayjei2020 School of Engineering and Technology, University of Washington -

98

TRANSLATION LOOKASIDE BUFFER - 2

Page Tabk(38)
= Goal: A 1224
Reduce access o a o o a Jien
to the page Page Tablel] 1

Page TableiPA)

tables \ 1074

00000 0000 D000 0000 0081

= Example:
50 RAM accesses g oo z
for first 5 for-loop ¥ “ws ¥
iterations * a0 B
= Move lookups z 1 2
from RAM to TLB 5 1 E
by caching page LT E
table entries
Memory Access
IEEEE e [s |

100

TRANSLATION LOOKASIDE BUFFER (TLB)

= Part of the CPU’s Memory Management Unit (MMU)
= Address translation cache

——— ns . | —
The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

Page 0

Page Table ‘ 0%
all v to p entries Page L
Page 2

[sagen |

Physical Memory

Address Translation with MMU

7CS5422: Operating Systems [Spring 2024]
‘ LA ‘ School of Engineering and Technology, University of Washington - Tacoma Ls02

101

Slides by Wes J. Lloyd

102

L15.17

TCSS 422 A — Spring 2024 5/16/2024
School of Engineering and Technology

OBJECTIVES - 5/16 TLB BASIC ALGORITHM

= Questions from 5/14
= Assignment 2 - May 31
= Quiz 3 - Synchronized Array - May 23

= For: array based page table
= Hardware managed TLB

= Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 24 ‘ 1: VRN = (virtualaddress & > SHIFT
= Assignment 3 (as a Tutorial) to be posted... *
= Chapter 16: Segmentation 4 == True }{
= Chapter 17: Free Space Management o .
. . . 61 »I'.lblht:yr?ﬁ\' | offset
= Chapter 18: Introduction to Paging 7 AccessMemory (BhysAddr)
= Chapter 19: Translation Lookaside Buffer (TLB) g) RaiseException{PROTECTION ERROR)
Hit-to-Miss Ratios
= Chapter 20: Paging: Smaller Tables | Generate the physical address to access memory |
= Smaller Tahles M i-level Page Tahle eve
e e e oo e e [o |

103 104

TLB BASIC ALGORITHM - 2 TLB - ADDRESS TRANSLATION CACHE

= Key detail:

11: [

12: PTEAddr = PTER + (VPN * sizeof(PTE))
s - S — = For a TLB miss, we first access the page table in RAM to
141 [ck for, and raise exceptions.. populate the TLB... we then requery the TLB
15:
16: THE_INsert(VEW , FIE.PRN , FTE.Frotectaits)
- : N - = All address translatlons go through the TLB
RetryInstruction ()
18:
19:)
| Retry the instruction... (requery the TLB) |
TCSS422: Oy ating Syste [Spring 2024] TCSS422: Oy iting Syst [Spring 2024]
[wavisan [1um o sman oo wesingon mwoms [wevisaonn |1 oo s b 2020 st s

OBJECTIVES - 5/16 TLB EXAMPLE
= Questions from 5/14 0 sum = 0 ; aFrsET
= Assignment 2 - May 31 1 { 4m0r 1107 14410 o
= Quiz 3 - Synchronized Array - May 23 j sum=atils o
= Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 24 - ven -1
= Example: VN - 05
= Assignment 3 (as a Tutorial) to be posted... i
= Chapter 16: Segmentation * Program address space: 256-byte e -7 [: : :
= Addressable using 8 total bits (28) ven -0 [| al |)
0 .
Chapter 17: Free Space Management « 4 bits for the VPN (16 total pages) -
= Chapter 18: Introduction to Paging Rabl]
. e
= Chapter 19: Translation Lookaside Buffer (TLB) = Page size: 16 bytes e
= TLB Algorithm | Hit-to-Miss Ratios = Offset is addressable using 4-bits [
= Chapter 20: Paging: Smaller Tables = Store an array: of (10) 4-byte integers vm:n
. o Multi-level Page - o
S f Engreern and Teiomeg, on may 16,2024 S ! Ergeeri and Teketegy, Uity of Woshingon Tocoma

107 108

Slides by Wes J. Lloyd L15.18

TCSS 422 A — Spring 2024
School of Engineering and Technology

5/16/2024

TLB EXAMPLE - 2

0 sum = O ; OFFSET
o e n
1 (i=0; 1<10; i++){ [E—
2: sum+=a[i]z VPN - 01
3 } ven-m |
. e
= Consider the code above: I
VPH - 08 0] an
= |nitially the TLB does not know where a[] is ven -1 [[a | | o
= Consider the accesses: v o [l
wnem

= a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], -

School of Engineering and Technology, University of Washington - Tacoma

a[8], a[9] [
= How many pages are accessed? x]",
= What happens when accessing a page not P
In the TLB? e[
‘ ooy 1612028 TCS$422: Operating Systems (Spring 2024] 115100

TLB EXAMPLE - 3

0 sum = 0 ; OFFSET
1 (=05 1<105 i++){ m_m-w R
2: sum+=a[i]z VPN - 01
3 ven oo |
-
= For the accesses: a[0], a[1], a[2], a[3], a[4], ™"
VPH - 08 a0 | alll | stn)
= a[5], a[6], a[7], a[8], a[9] w01 [| |
e o o [atel | oot
-
= How many are hits? J—
= How many are misses? e e
= What is the hit rate? (%) -
= 70% (3 misses one for each VP, 7 hits) Ve - 14
-

TCS5422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

115,110

‘ May 16, 2024

109

110

TLB EXAMPLE - 4

sum = O ;
(i=0; 1<107 i+)([—

sum+=a (1] e - 01

N - 03
VPN - 02

ven - 05

OFFSET
“ @ on

= What factors affect the hit/miss rate?

VPN - 06

veni= 07 [

= Page size

L]

v [

= Data/Access locality (howis data accessed?) [P—
Sequential array access vs. random array access ‘vm-1io

| e~

= Temporal locality -

= Size of the TLB cache w13
(how much history can you store?) -

N - 15

TCSS422: Operating Systems [Spring 2024]

‘ Rlavie2ozy School of Engineering and Technology, University of Washington - Tacoma.

L15.111

OBJECTIVES - 5/16

= Questions from 5/14
= Assignment 2 - May 31
= Quiz 3 - Synchronized Array - May 23
= Tutorial 2 - Pthread, locks, conditions tutorial -Fri May 24
= Assignment 3 (as a Tutorial) to be posted...
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Hit-to-Miss Ratios
| = Chapter 20: Paging: Smaller Tables |

=Sm ables M -| 2 ah

TC55422: Operating Systems [Spring 21
School of Engineering and Technology, University of Washington - Tacoma

L5112

May 16, 2024

QUESTIONS

113

Slides by Wes J. Lloyd

112

L15.19

	Slide 1: TCSS 422: Operating Systems
	Slide 2: Midterm review session
	Slide 3: Zoom recording analytics
	Slide 4: OBJECTIVES – 5/16
	Slide 5: Online daily feedback survey
	Slide 6
	Slide 7: Material / pace
	Slide 8: Feedback from 5/14
	Slide 9: OBJECTIVES – 5/16
	Slide 10: OBJECTIVES – 5/16
	Slide 11: OBJECTIVES – 5/16
	Slide 12: OBJECTIVES – 5/16
	Slide 13: Chapter 15: Address translation
	Slide 14: OBJECTIVES – 5/18
	Slide 15: Address translation
	Slide 16: Base and bounds
	Slide 17: Instruction example
	Slide 18: Memory management unit
	Slide 19: Dynamic relocation of programs
	Slide 20: OS support for memory virtualization
	Slide 21: OS: When process starts running
	Slide 22: OS: when process is terminated
	Slide 23: Os: when context switch occurs
	Slide 24: Dynamic relocation
	Slide 25
	Slide 26: OBJECTIVES – 5/16
	Slide 27: Chapter 16: segmentation
	Slide 28: Base and bounds inefficiencies
	Slide 29: MULTIPLE SEGMENTS
	Slide 30: Segments in memory
	Slide 31: Address translation: code segment
	Slide 32: Address translation: heap
	Slide 33: Segmentation fault
	Slide 34: Segment registers
	Slide 35: Segmentation dereference
	Slide 36: Stack segment
	Slide 37: Shared CODE segments
	Slide 38
	Slide 39: Segmentation granularity
	Slide 40: Segmentation granularity - 2
	Slide 41: Memory fragmentation
	Slide 42: Compaction
	Slide 43: OBJECTIVES – 5/16
	Slide 44: Chapter 17: free space management
	Slide 45: OBJECTIVES – 5/16
	Slide 46: Free space management
	Slide 47: Free space management
	Slide 48: fragmentation
	Slide 49: Fragmentation - 2
	Slide 50: Allocation strategy: Splitting
	Slide 51: Allocation strategy: coalescing
	Slide 52: Memory headers
	Slide 53: Memory headers - 2
	Slide 54: Memory headers - 3
	Slide 55: We will return at 4:56pm
	Slide 56: The free list
	Slide 57: Free list - 2
	Slide 58: Free list: malloc() call
	Slide 59: Free list: free() call
	Slide 60: Free list: free() chunk #2
	Slide 61: Free list- free all chunks
	Slide 62: Growing the heap
	Slide 63: Memory allocation strategies
	Slide 64: examples
	Slide 65: Memory allocation strategies - 2
	Slide 66
	Slide 67: Segregated lists
	Slide 68: Buddy allocation
	Slide 69: Buddy allocation - 2
	Slide 70
	Slide 71
	Slide 72: OBJECTIVES – 5/16
	Slide 73: Chapter 18: Introduction to paging
	Slide 74: paging
	Slide 75: Advantages of paging
	Slide 76: Paging: example
	Slide 77: Paging: Address translation
	Slide 78: Example: paging address translation
	Slide 79: Paging design questions
	Slide 80: (1) Where are page tables stored?
	Slide 81: Page table example
	Slide 82: Now for an entire OS
	Slide 83: (2) What’s actually in the page table
	Slide 84: Page table entry
	Slide 85: Page table entry - 2
	Slide 86: (3) How big are page tables?
	Slide 87: (4) Does paging make the system too slow?
	Slide 88: Paging memory access
	Slide 89: Counting memory accesses
	Slide 90: Visualizing Memory accesses: For the first 5 loop iterations
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96: Paging system example
	Slide 97: OBJECTIVES – 5/16
	Slide 98: Chapter 19: Translation lookaside buffer (TLB)
	Slide 99: Translation lookaside buffer
	Slide 100: TRANSLATION LOOKASIDE BUFFER - 2
	Slide 101: Translation lookaside buffer (TLB)
	Slide 102: Translation lookaside buffer (TLB)
	Slide 103: OBJECTIVES – 5/16
	Slide 104: Tlb basic algorithm
	Slide 105: Tlb basic algorithm - 2
	Slide 106: TLb – address translation cache
	Slide 107: OBJECTIVES – 5/16
	Slide 108: Tlb example
	Slide 109: Tlb Example - 2
	Slide 110: Tlb Example - 3
	Slide 111: Tlb example - 4
	Slide 112: OBJECTIVES – 5/16
	Slide 113: Questions

