TCSS 422 A — Spring 2024
School of Engineering and Technology

Memory Virtualization
with Segments,
Introduction to Paging

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2024]

May 13,2024 School of Engineering and Technology, University of Washington

TCSS 422: OPERATING SYSTEMS

5/14/2024

MIDTERM REVIEW SESSION

= Make-up midterm exams are scheduled and will be completed
by the end of Friday this week

= Midterm Revlew Sesslon:

= Tuesday May 21, 6:00 pm (during office hour, from BHS106)
= Via Zoom / Live Stream / Recording

= Will discuss and review midterm exam problems and grading

TCS5422: Operating Systems [Spring 2024]
pEpl R School of Engineering and Technology, University of Washington - Tacoma L2

OBJECTIVES - 5/14

| = Questions from 5/9 |
= Assignment 2 - May 31

= Chapter 13: Address Spaces

= Chapter 14: The Memory API

= Chapter 15: Address Translation

= Chapter 16: Segmentation

= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging

= Quiz 3 - Class Activity-Synchronized Array - Thursday
= Tutorial 2 - Pthread/locks/conditions tutorial-Fri May 24

TCSS422: Operating Systems [Spring 2024]

‘ Ryl 202 School of Engineering and Technology, University of Washington - Tacoma

1143

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TC55422A > Assignments

Spring 2021

Home
Announcements
Joom * Upcoming Assignments
Syllzbus s TCSS422 - Online Daily Feedback Survey - 4/1
i ™ Avallable until Apr 5 at 11:5%pm | DueApr3 at 10pm | -/1pts
Diccuctinne Aun.r i
TCS5422: Computer Operating Systems [Spring 2024]
Mayidi2023 School of Engineering and Technology, University of Washington - Tacoma L4

TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions

Question 1 05 pes

On.a scale of 110 10, please classify your perspective on material covered in today's
el

1 2 3 4 5 s 7T 8 3 1
manly. et sty
i 10 e ol nevie o

Question 2 05pes

Piease rate the pace of today's class:

TCSS422: Computer Operating Systems [Spring 2024]

[aplsia02s School of Engineering and Technology, University of Washington - Tacoma

L145

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (25 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.68 (T - previous 6.58)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.28 ({ - previous 5.31)

TCS5422: Computer Operating Systems [Spring 2024] .
e chool of Engineering and Technology, University of Washington - Tacoma L

Slides by Wes J. Lloyd

L14.1

TCSS 422 A — Spring 2024
School of Engineering and Technology

5/14/2024

FEEDBACK FROM 5/9

= Is list Insertlon the only deadlock preventlon for mutual
exclusion?
= List insertion is not a deadlock prevention technique in
Chapter 32
= |n lecture 13, the “mutual exclusion” cause for deadlock is
when critical sections of code are protected with locks, and
for some reason, the lock is never available
= The solution is to remove the use of locks where possible by
replacing locks with an atomic implementation of the
CompareAndSwap CPU instruction (assembly language)
= Atomic CompareAndSwap (assembly) can be used to eliminate
the use locks as shown Chapter 32 examples:
= Increment a counter variable atomically
= Insert an item into a list

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

a7

May 14,2024

FEEDBACK - 2

= Is list Insertion the only deadlock prevention for mutual
exclusion?

= KEY TAKEHOME MESSAGE from Chapter 32:

= Protecting critical code sections with locks is the
“Mutual Exclusion” cause for deadlock in Chapter 32

= The solution is to eliminate locks to remove the requirement
for mutual exclusion in high-level program code (C)

= Locks can be replaced with atomic CPU instructions
(CompareAndSwap) or atomic data types can be used
= E.g. lock-free data structures in Java

TCS5422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

a8

‘ May 14,2024

OBJECTIVES - 5/14

= Questions from 5/9

|I Assignment 2 - May 31 |

= Quiz 3 - Activity-Synchronized Array - Thursday

= Tutorial 2 - Pthread/locks/conditions tutorial-Fri May 24
= Chapter 13: Address Spaces

= Chapter 14: The Memory API

= Chapter 15: Address Translation

= Chapter 16: Segmentation

= Chapter 17: Free Space Management

= Chapter 18: Introduction to Paging

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

1149

May 14, 2024

OBJECTIVES - 5/14

= Questions from 5/9
= Assignment 2 - May 31
|I Quiz 3 - Activity-Synchronized Array - Thursday |
= Tutorial 2 - Pthread/locks/conditions tutorial-Fri May 24
= Chapter 13: Address Spaces
= Chapter 14: The Memory API
= Chapter 15: Address Translation
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging

TCS5422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

410

‘ May 14,2024

10

OBJECTIVES - 5/14

= Questions from 5/9
= Assignment 2 - May 31
® Quiz 3 - Activity-Synchronized Array - Thursday

|- Tutorlal 2 - Pthread/locks/condIltlons tutorlal-Frl May 24|

= Chapter 13: Address Spaces

= Chapter 14: The Memory API

= Chapter 15: Address Translation

= Chapter 16: Segmentation

= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging

TCS5422: Operating Systems [Spring 2024]

LR School of Engineering and Technology, University of Washington - Tacoma

[E7EEY

OBJECTIVES - 5/14

= Questions from 5/9

= Assignment 2 - May 31

® Quiz 3 - Activity-Synchronized Array - Thursday

= Tutorial 2 - Pthread/locks/conditions tutorial-Fri May 24
| = Chapter 13: Address Spaces |

= Chapter 14: The Memory API

= Chapter 15: Address Translation

= Chapter 16: Segmentation

= Chapter 17: Free Space Management

= Chapter 18: Introduction to Paging

TC55422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

ua12

‘ May 14, 2024

11

Slides by Wes J. Lloyd

12

L14.2

TCSS 422 A — Spring 2024
School of Engineering and Technology

5/14/2024

CHAPTER 13:

ADDRESS SPACES

TCSS422: Operating Systems [Spring 2024]

ayAs202 School of Engineering and Technology, University of Washington -

EARLY MEMORY MANAGEMENT

= Load one process at a time into memory

= Poor memory utilization oks
Operating
= Ljttle abstraction . (code, data. etc.)
Current
Program
(code, data, etc.)

o
Physical Memory

TCS5422: Operating Systems [Spring 2024] La.1a
School of Engineering and Technology, University of Washington - Tacoma

‘ May 14,2024

13

14

MULTIPROGRAMMING

WITH SHARED MEMORY

processes e
= Swap out processes during I/0 waits to
increase system utilization and efficiency 12848
= Swap entire memory of a process to disk 19268
for context switch
. 256KB
= Too slow, especially for large processes
320KB
= Solution>
. 384KE
= Leave processes in memory
A48KE

= Need to protect from errant memory
accesses in a multiprocessing environment

512KB

= Later machines supported running multiple oks

Process C
lcode, data, etc)
Process
feode, data, s1c)

Free

Process A
fcode, data, stc)

Free

Free

Physical Memory

‘ T TCS5422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma M

ADDRESS SPACE

= Easy-to-use abstraction of physical
memory for a process

Program Code

Heap

KB l

= Main elements:

=Program code (iree)
=Stack
*Hea T
P 15K8

Stack

16K8 4 5
Address

=Example: 16 KB address space pace
\ May 14,2024 St o egemye an st Unhrsiyof Washingion Tacona g

15

= Code
. (¢
Program code Program Code
%8
Heap
= Stack %8
= Program counter (PC) l
= Local variables
fr
= Parameter variables e
= Return values (for functions) T
15K8
= Heap Stack
i 16K8
= Dynamic storage ‘Address Space
= Malloc() new()
TCSS422: Operating Syste [Spring 2024]
LEpESET BT AT o iy Ot s T L

17

Slides by Wes J. Lloyd

16

= Program code
= Static size e e
%8
Heap
= Heap and stack %8
= Dynamic size l
= Grow and shrink during program execution
= Placed at opposite ends s
= Addresses are virtual T
K
= They must be physically mapped by the 0S 158 Stack
16K8
Address Space
TCSS422: Operating Syste [Spring 2024]
v Zoz T T TR e O T G M E D L1418

18

L14.3

TCSS 422 A — Spring 2024
School of Engineering and Technology

VIRTUAL ADDRESSING

= Every address is virtual
=0S translates virtual to physical addresses

#include <stdio.h>
#include <stdlib.h>

£ main(int arge, r rargvil} |
printf("location of code : ip\n", (*) main)y
printf(“location of heap : 3p\n®, { *) mallocil));
printf("location of stack : $p\n®, {void *) &x);

n Xt

=EXAMPLE: virtual.c

TCSS422: Operating Systems [Spring 2024]
‘ LAERALL by School of Engineering and Technology, University of Washington - Tacoma L1

19

GOALS OF

0S MEMORY VIRTUALIZATION

= Transparency
= Memory shouldn’t appear virtualized to the program

= 0S multiplexes memory among different jobs behind the
scenes

= Protection
= |solation among processes
= 0S itself must be isolated

= One program should not be able to affect another
(or the 0S)

‘ May 14, 2024

TCSS422: Operating Systems [Spring 2024] a1
School of Engineering and Technology, University of Washington - Tacoma

21

OBJECTIVES - 5/14

= Questions from 5/9
= Assignment 2 - May 31
® Quiz 3 - Activity-Synchronized Array - Thursday
= Tutorial 2 - Pthread/locks/conditions tutorial-Fri May 24
= Chapter 13: Address Spaces
| = Chapter 14: The Memory API |
= Chapter 15: Address Translation
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging

TCS5422: Operating Systems [Spring 2024]
‘ LR School of Engineering and Technology, University of Washington - Tacoma L2

VIRTUAL ADDRESSING - 2
Address Space
= Qutput from 64-bit Linux: (400000 Code
0nd01000 ()
location of code: 0x400686 Data
location of heap: 0x1129420 0ccf2000 Heap
location of stack: 0x7ffe040d77e4 13000
heap
(free)
stack
Ox7Hff9ea2B8000
OxTHca43000 L
‘ pEpl R gz:lzi;gnpgeir:eﬂe’:?n?:‘rled";'sec[i?l’(::fg:ulzj:gvers‘\tv of Washington - Tacoma .20

20

GOALS -2

= Efficiency
=Time
Performance: virtualization must be fast

=Space
Virtualization must not waste space
Consider data structures for organizing memory
Hardware support TLB: Translation Lookaside Buffer

= Goals considered when evaluating memory
virtualization schemes

TCS5422: Operating Systems [Spring 2024]
‘ May 14, 2024 School of Engineering and Technology, University of Washington - Tacoma .22

22

CHAPTER 14: THE
MEMORY API

TCSS422: Operating Systems [Spring 2024]
aylid 2028 School of Engineering and Technology, University of Washington -

23

Slides by Wes J. Lloyd

24

5/14/2024

L14.4

TCSS 422 A — Spring 2024
School of Engineering and Technology

OBJECTIVES - 5/18

= Chapter 13: Introductlon to memory virtuallzation
= The address space
= Goals of 0S memory virtualization

= Chapter 14: Memory API
= Common memory errors

MALLOC

#include <stdlib.h>
malloc(t size)
= Allocates memory on the heap
= size_t unsigned integer (must be +)
= size size of memory allocation in bytes

= Returns
= SUCCESS: A void * to a memory address
= FAIL: NULL

= sizeof() often used to ask the system how large a given
datatype or struct is

TCS5422: Operating Systems [Spring 2024] TCS5422: Operating Systems (Spring 2024]
‘ LAERALL by School of Engineering and Technology, University of Washington - Tacoma L1425 pEpl R School of Engineering and Technology, University of Washington - Tacoma 1426

= Not safe to assume |
data type sizes using

different compilers, | q
systems

(x))

= Dynamic array of 10 ints/{
P
|

= Static array of 10 ints

TCSS422: Operating Systems [Spring 2024]

‘ Ryl 202 School of Engineering and Technology, University of Washington - Tacoma.

1427

#include <stdlib.h>

free(* ptr)

= Free memory allocated with malloc()
= Provide: (void *) ptr to malloc’d memory

= Returns: nothing

TCS5422: Operating Systems [Spring 2024]
‘ Mayidi2023 School of Engineering and Technology, University of Washington - Tacoma .28

27

#include<stdio.h>

int * set_magic_number_a()

int a =53247;
return &a;

void set_magic_number_b()

int b = 11111;

int main()

int * x = NULL;

x = set_magic_number_a();

printf("The magic number is=%d\n“,*x);
set_magic_number_b();

printf(“The magic number is=%d\n“,*x);
return 0;

What will this code do?

#include<stdio.h>

What will this code do?

int * set_magic_number_a()

int a =53247;
return &a; put:
$./pointer_error
.) The magic number is=53247
‘émd set_magic_number_b() UK magic number is=11111

int b = 11111;

We have not changed *x but

int main(Q) the value has changed!!

int * x = NULL; Why?
X = set_magic_number_a()?}
printf("The magic number is=%d\n“,*x);
set_magic_number_b();

printf("The magic number is=%d\n“,*x);
return 0;

29 30

Slides by Wes J. Lloyd L14.5

TCSS 422 A — Spring 2024
School of Engineering and Technology

5/14/2024

DANGLING POINTER (1/2)

= Dangling pointers arise when a variable referred (a) goes
“out of scope”, and it’'s memory is destroyed/overwritten
(by b) without modifying the value of the pointer (*x).

= The pointer still points to the original memory location
of the deallocated memory (a),
which has now been reclaimed for (b).

TCSS422: Operating Systems [Spring 2024]
LAERALL by School of Engineering and Technology, University of Washington - Tacoma L3

DANGLING POINTER (2/2)

=Fortunately in the case, a compiler warning
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int*
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local
variable ‘a’ returned [enabled by default]

EThis is a common mistake - - -
accidentally referring to addresses that have
gone “out of scope”

TCS5422: Operating Systems [Spring 2024] 1432
School of Engineering and Technology, University of Washington - Tacoma

‘ May 14,2024

31

32

CALLOC()

#include <stdlib.h>

*calloc(© num, size)

= Allocate “C”lear memory on the heap

= Calloc wipes memory in advance of use...

" size_t num : number of blocks to allocate
" size_t size:size of each block(in bytes)

= Calloc() prevents...

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=@©F

REALLOC()

#include <stdlib.h>»

*realloc(void *ptr, size)

= Resize an existing memory allocation

= Returned pointer may be same address, or a new address
= New if memory allocation must move

® void *ptr: Pointer to memory block allocated with malloc,
calloc, or realloc
" size_t size: New size for the memory block(in bytes)

= EXAMPLE: realloc.c
= EXAMPLE: nom.c

TCS5422: Operating Systems [Spring 2024] L1434
School of Engineering and Technology, University of Washington - Tacoma

‘ May 14,2024

TCSS422: Operating Systems [Spring 2024]
‘ Mavidi2a2g School of Engineering and Technology, University of Washington - Tacoma L
£ *x = (int *)malloc((int)): t
free(x):
fres(x);

= Can’t deallocate twice
= Second call core dumps

KB 2KB

allocated

Heap

L Heap | 1
v i free(x) I rree(x)
(free) P (free) |

A
Stack T Stack

268 = 16KB 2KB(inwalid) [.
Address Space

freed ey

16K8
Address Space

TCS5422: Operating Systems [Spring 2024]
LR School of Engineering and Technology, University of Washington - Tacoma L3s

35

Slides by Wes J. Lloyd

34

SYSTEM CALLS

= brk(), sbrk()

= Used to change data segment size (the end of the heap)
= Don’t use these

= Mmap(), munmap()

= Can be used to create an extra independent “heap” of memory
for a user program

= See man page

7CS5422: Operating Systems [Spring 2024] %
e School of Engineering and Technology, University of Washington - Tacoma L

36

TCSS 422 A — Spring 2024 5/14/2024
School of Engineering and Technology

OBJECTIVES - 5/14

= Questions from 5/9
= Assignment 2 - May 31
= Quiz 3 - Activity-Synchronized Array - Thursday
= Tutorial 2 - Pthread/locks/conditions tutorial-Fri May 24
= Chapter 13: Address Spaces
= Chapter 14: The Memory API
| = Chapter 15: Address Translation |
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging

WE WILL RETURN AT

5:07PM

TCSS422: Operating Systems [Spring 2024]

TCS5422: Operating Systems [Spring 2024]
ayAs202 School of Engineering and Technology, University of Washington - l e School of Engineering and Technology, University of Washington - Tacoma 18

37 38

OBJECTIVES - 5/18

= Chapter 15: Address translation
= Base and bounds
=HW and OS Support

CHAPTER 15: ADDRESS
TRANSLATION

TCSS422: Operating Systems [Spring 2024] TCSS422: Operating Systems [Spring 2024]
May 14,2024 School of Engineering and Technology, University of Washington - S School of Engineering and Technology, University of Washington - Tacoma e

39 40

: -
= 64KB OKB. . oK8 = Dynamic relocation
Address space ProgiamCode | . Operating Syste
s . S = Two registers base & bounds: on the CPU

example . 15

Heap .. = 0S places program in memory

= Translation: - _
mapping e Code] = Sets base register
i Heap g
virtual to heap ! 1 l o .]
. (allocated b physical address = virtual address + base
physical (Free) but not in use) b
3 .
stack 256 Stk 2 = Bounds register
I - = Stores size of program address space (16KB)
o [not in use) = OS verifies that every address:
Stack
* - Py [0 < virtual address < bounds }
16KE - i
Address Space Physical Memory
TCS5422: Operating Systems [Spring 2024] TCS$422: Operating Systems [Spring 2024]
l WEERbERL) School of Engineering and Technology, University of Washington - Tacoma L1441 l v Zoz School of Engineering and Technology, University of Washington - Tacoma L1442

41 42

Slides by Wes J. Lloyd L14.7

TCSS 422 A — Spring 2024

5/14/2024
School of Engineering and Technology

INSTRUCTION EXAMPLE MEMORY MANAGEMENT UNIT
128 : movl 0x0(%ebx), %eax | = MMU
= Base = 32768 e Program Code = Portion of the CPU dedicated to address translation
= Bounds =16384 e teas = Contains base & bounds registers
= Fetch instruction at 128 (virt addr) 1 KB ‘17 = Base & Bounds Example:
- [y LD & Ui ekl & e g = Consider address translation
- SPERID S Aok o S (i) o = 4 KB (4096 bytes) address space, loaded at 16 KB physical location
= Execute instruction g
= Load from address (var x is @ 15kb=15360)
= 48128 = 15360 + 32768 (base) - found x... stack 0 16384
= Bounds register: terminate process if 1024 17408
_C ACCESS VIOLATION: Virtual addre%s > bounds reg i:i: B 3000 19384
| physical address = virtual address + base L " sk FAULT 4400 20784 (out of bounds)
‘ LAERALL by S ‘E):;r::e’:\gnzy:‘rled"}seg\z::i\iulzl:!versilv of Washington - Tacoma L1443 ‘ pEpl R Cn g:gei’:eﬂe’:ignzv:‘ned";'sec[i:::fg\iom!versmy of Washington - Tacoma Lia.ae

43 44

= Hardware requirements: = For base and bounds OS support required
Requirements | Hwsuppot | = When process starts running
Privileged mode CPU modes: kernel, user Allocate address space in physical memory
Base / bounds registers Registers to support address translation
Translate virtual addr; check if in Translation circuitry, check limits = When a process is terminated
bounds Reclaiming memory for use
Privileged instruction(s) to Instructions for modifying base/bound .
update base / bounds regs registers = When context switch occurs
Privileged instruction(s) Set code pointers to 0S code to handle faults SevlifE @G SRl e FRSEHEEUies (27
to register exception handlers
Ability to raise exceptions For out-of-bounds memory access, or " Exceptllon har\dlers .
attempts to access privileged instr. Function pointers set at OS boot time
[wavieaon St o oghst e ot Uy of Washigton Tacoma tiess [wavieaom St o egem an st Uiy of Washingion Tacona ass

45 46

= OS searches for free space for new process = 0S places memory back on the free list
= Free list: data structure that tracks available memory slots
[R — KB Free list o
l Operating System Operating System
Operating System
The OF leskup the free list 16¢8 1648
L 1668 16K8 .
Free list {not in use) (not in use)
(not in use) l - * 3268
1668 32KB i 5 Process A 32K (not in use)
48KB agKp ek {not in use) (not in use)
64KE 48K Ly
(net in use) Physical Memaory Physical Memory
BAKE
Physical Memory
TCS5422: Operating Systems [Spring 2024] TCS$422: Operating Systems [Spring 2024]
‘ Ryl 2028 School of Engineering and Technology, University of Washington - Tacoma 11447 ‘ v Zoz School of Engineering and Technology, University of Washington - Tacoma L1448

47 48

Slides by Wes J. Lloyd L14.8

TCSS 422 A — Spring 2024 5/14/2024
School of Engineering and Technology

= 0S must save base and bounds registers = 0S can move process data when not running
= Saved to the Process Control Block PCB (task_struct in Linux)
Process A PCB 1. 0S un-schedules process from scheduler
2. 0S copies address space from current to new location
o Context Switching 08) 3. 0S updates PCB (base and bounds registers)
Operating System —_— Operating System
4. 0OS reschedules process
5@ 16k
{not in use) base (not in use) base
s - 21 = When process runs new base register is restored to CPU
Q.w“ "m“ bounds Process A bounds
s 48K - rLseke ’ !
. s = Process doesn’t know It was even moved!
Process B c Running
(-2 L1 I 64KB
Physical Memory Physical Memory
TCSS422: Oy ating Syste [Spring 2024] TCSS422: Oy ting Syst [Spring 2024]
LAERALL by School of z:;:ee’fngy:neﬂsem:n:fw University of Washington - Tacoma L1449 pEpl R School of Enpgeir:ee’:?ngy:ned":echfmlrfgy, University of Washington - Tacoma Liaso

.'Consider a 64KB computer the loads a program. The'.
BASE register is set to 32768, and the BOUNDS
register is set to 4096. What is the physical memory = Questions from 5,9

address translation for a virtual address of 6000 ? = Assignment 2 - May 31
= Quiz 3 - Activity-Synchronized Array - Thursday

OBJECTIVES - 5/14

34768 = Tutorial 2 - Pthread/locks/conditions tutorial-Fri May 24
= Chapter 13: Address Spaces

38768 = Chapter 14: The Memory API
= Chapter 15: Address Translation

32769 | = Chapter 16: Segmentation |
= Chapter 17: Free Space Management

36864 = Chapter 18: Introduction to Paging

Out of bounds
-~ : . [o [omne e b2 asigen o e
51 52

BASE AND BOUNDS INEFFICIENCIES

oKB

= Address space 168 | Program Code
. . ge %8B
= Contains significant unused memory x8
g " 48
Is relatively large s Heso
= Preallocates space to handle stack/heap growth &® l

CHAPTER 16:

= Large address spaces

SEGMENTATION

= Hard to fit in memory (free)
= How can these issues be addressed? T
14K8
158 Stack
16K8
TCSS422: Operating Systems [Spring 2024] TCSS422: Operating Systems [Spring 2024]
Ly hEs School of Engineering and Technology, University of Washington - ‘ May 14, 2024 Sehoo! o Begmeeng and echileay University of Washington - Tacoma asa

53 54

Slides by Wes J. Lloyd L14.9

TCSS 422 A — Spring 2024 5/14/2024
School of Engineering and Technology

MULTIPLE SEGMENTS SEGMENTS IN MEMORY

= Memory segmentation = Consider 3 segments:
OKB [

o
16K8 | ‘

= Manage the address space as (3) separate segments

= Each is a contiguous address space ot in use)
= Provides logically separate segments for: code, stack, heap i | %
12K8 [““'i;"c:“’ Heap 34K 2K
S - T ——) Stack 2BK 2K
= Each segment can placed separately
| (oot in use)

= Track base and bounds for each segment (registers)

g b
Physical Memory

TCS5422: Operating Systems [Spring 2024] TCS5422: Operating Systems (Spring 2024]
‘ LAERALL by School of Engineering and Technology, University of Washington - Tacoma L1455 pEpl R School of Engineering and Technology, University of Washington - Tacoma L1456

55 56

ADDRESS TRANSLATION: HEAP

ADDRESS TRANSLATION: CODE SEGMENT

| physical address = of fset + base ‘ Virtual address + base is not the correct physical address.

= Heap starts at virtual address 4096
= The data is at 4200
= Offset= 4200 - 4096 = 104 (virt addr - virt heap start)

= Code segment - physically starts at 32KB (base)
= Starts at “0” in virtual address space

nt _Base Size = Physical address = 104 + 34816 (offset + heap base)
ement sase siss
Bounds check: S S
. q {notin usel
Is virtual address within 2KB
address space? vl tose
g -
Heas
Y :
(ot in use) Address Space ot in Use)
Virtual Address Space Physical Address Space Physical Mamory
TCSS422: Operating Systems [Spring 2024] TCSS422: Operating Systems [Spring 2024]
‘ May 14, 2024 School of Engineering and Technology, University of Washington - Tacoma a7 ‘ WyERbEE School of Engineering and Technology, University of Washington - Tacoma Las8

57 58

SEGMENTATION FAULT SEGMENT REGISTERS

= Access beyond the address space = Used to dereference memory during translation
= Heap starts at virtual address: 4096 1312 11 10 5 8 7 6 5 4 3 2 1 0
= Data pointer is to 7KB (7168) ‘ ; |
= |s data pointer valid? cagment D"‘m
= First two bits identify segment type
= Heap starts at 4096 + 2 KB seg size = 6144
= Off pt— 2168 > 4096 + 2048 §144 axs = Remaining bits identify memory offset
S () Heap = Example: virtual heap address 4200 (01000001101000)
BKE
TKE .L 13 12 11 10 9 8 7 & 5 4 3 2 1 0 Segment bits
axs [T ey [or 00 0 001 1 01 00 0] Code 00
;] Heap 01
T L T stack 10
Address Space Segment Offset - 11
May 20 e Techoog. Unersty of Washingion Tscoma a0 a2 e i Techolon. Unersty of Washingon Tacoma e

59 60

Slides by Wes J. Lloyd L14.10

TCSS 422 A — Spring 2024 5/14/2024
School of Engineering and Technology

SEGMENTATION DEREFERENCE STACK SEGMENT

= Stack grows backwards (FILO)
= Requires hardware support:

segment = (virtualaddress

SK) >> SEG_SHIFT

Offset = VirtualAd
(offset >= Bounds

FFSET_MASK
tl)

: RaiseEsception! Pty = Direction bit: tracks direction segment grows

g guent] + Offset | | 1

9 ssMemory (FhysAddr)

(not in use)

= VIRTUAL ADDRESS = 01000001101000 (on heap) wole 00 Segment Register(with Negative-Growth Support)
= SEG_MASK = 0x3000 (11000000000000) - Stack cecment Base Size Grows Positiver
= SEG_SHIFT = 01 > heap (mask gives us segment code) - a Coda 32K 2K 1
= OFFSET_MASK = OXFFF (00111111111111) S e e 2% .

= OFFSET = 000001101000 = 104 (isolates segment offset)
= OFFSET < BOUNDS : 104 < 2048

TCS5422: Operating Systems [Spring 2024] TCS5422: Operating Systems (Spring 2024]
‘ LAERALL by School of Engineering and Technology, University of Washington - Tacoma L1461 pEpl R School of Engineering and Technology, University of Washington - Tacoma a6z

Physical Memary

61 62

[| |
"Consider a program with 2KB of code, a1 KB stack,'

and a 2 KB heap. This program runs on a 64 KB
computer that manages memory with 4 kb

SHARED CODE SEGMENTS

= Code sharing: enabled with HW support

= Supports storing shared libraries in memory only once segments. If the comPUter Is empty and segments
® DLL: dynamic linked library were allocated as: code, stack, heap, how large can
= .so (linux): shared object in Linux (under /usr/lib) heh -
= Many programs can access them the eap grow to?
= Protection bits: track permissions to segment
32KB
Segment Register Values(with Protection) 56 KB
s t B 54 G Positive? Protecti
o 24K8
Heap 34K 2K 1 Read-Write
stack 28K 2K [Read-Write 4KB
0KB
[wwvieamn [rmm o sman oot wesingon mwoms e -~ == _ " .
63 64

SEGMENTATION GRANULARITY SEGMENTATION GRANULARITY - 2

= Coarse-grained = Fine-grained

= Manage memory as list of segments
= Manage memory as large purpose

= Code, heap, stack segments composed
based segments:

of multiple smaller segments
= Segment table
= On early systems
= Stored in memory
= Tracked large number of segments

=Code segment
=Heap segment
=Stack segment

‘ May 14, 2024

TCS5422: Operating Systems [Spring 2024] L1465 ey TCS3422: Operating Systems [Spring 2024] L1466
School of Engineering and Technology, University of Washington - Tacoma SRS School of Engineering and Technology, University of Washington - Tacoma

65 66

Slides by Wes J. Lloyd L14.11

TCSS 422 A — Spring 2024
School of Engineering and Technology

5/14/2024

= Consider how much free space? Not compacted
= We'll say about 24 KB ke
8KB | Opsrating System
= Request arrives to allocate a 20 KB heap 1648
segment {not in use)
2468
Allocated
= Can we fulfil the request for 20 KB of 3K R
contiguous memory? 40KB Allocated
BB ot inuse)
S6KE
Allocated
648
TCSS422: Operating Systems [Spring 2024]
‘ LAERALL by School of Engineering and Technology, University of Washington - Tacoma L1467

COMPACTION

= Supports rearranging memory Compacted
o8
= Can we fulfil the request for 20 KB of 8K8 | Operating System
contiguous memory?
16K8
= Drawback: Compaction is slow .
= Rearranging memory is time consuming Allocated
= 64KB is fast K8
= 4GB+ ... slow 40KB
= Algorithms: aaxa
. . (not in use)
= Best fit: keep list of free spaces, allocate the S6KB
most snug segment for the request
64K8

= Others: worst fit, first fit... (in future chapters)

TCS5422: Operating Systems [Spring 2024]

e School of Engineering and Technology, University of Washington - Tacoma

L1468

67

OBJECTIVES - 5/14

= Questions from 5/9
= Assignment 2 - May 31
= Quiz 3 - Activity-Synchronized Array - Thursday

= Tutorial 2 - Pthread/locks/conditions tutorial-Fri May 24

= Chapter 13
= Chapter 14
= Chapter 15
= Chapter 16

: Address Spaces

: The Memory API

: Address Translation
: Segmentation

| = Chapter 17

: Free Space Management

= Chapter 18

: Introduction to Paging

TCSS422: Operating Systems [Spring 2024]

‘ Ryl 202 School of Engineering and Technology, University of Washington - Tacoma

L1469

69

OBJECTIVES - 5/18

= Chapter 17: Free Space Management
= Fr ation, Splitting, lesci
= The Free List
= Memory Allocation Strategies

TCS5422: Operating Systems [Spring 2024]

LR School of Engineering and Technology, University of Washington

- Tacoma

[E7R2Y

71

Slides by Wes J. Lloyd

68

CHAPTER 17: FREE
SPACE MANAGEMENT

TCSS422: Operating Systems [Spring 2024]

evjtt 2028 School of Engineering and Technology, University of Washington -

L14.70

FREE SPACE MANAGEMENT

= How should free space be managed, when satisfying
variable-sized requests?

= What strategies can be used to minimize fragmentation?

= What are the time and space overheads of alternate
approaches?

TC55422: Operating Systems [Spring 2024]

e School of Engineering and Technology, University of Washington - Tacoma

1472

72

L14.12

TCSS 422 A — Spring 2024
School of Engineering and Technology

FREE SPACE MANAGEMENT

= Management of memory using

= Only fixed-sized units
= Easy: keep a list
= Memory request - return first free entry
Simple search

= With variable sized units
= More challenging
= Results from variable sized malloc requests
= Leads to fragmentation

TCSS422: Operating Systems [Spring 2024]
‘ LAERALL by School of Engineering and Technology, University of Washington - Tacoma L7

5/14/2024

FRAGMENTATION

= Consider a 30-byte heap
30-byte heap: [free [[lused | free
0 10 20 3

= Request for 15-bytes

" addr:0 addr:20
free list head —>{gnigo ™| lemsz0 — > NULL

= Free space: 20 bytes

= No available contiguous chunk - return NULL

TCS5422: Operating Systems [Spring 2024]

‘ e School of Engineering and Technology, University of Washington - Tacoma

L1474

73

FRAGMENTATION - 2

= External: OS can compact
= Example: Client asks for 100 bytes: malloc(100)

= 0S: No 100 byte contiguous chunk is available:
returns NULL

= Memory is externally fragmented - - Compaction can fix!

= Internal: /ost space - OS can’t compact
= 0S returns memory units that are too large
= Example: Client asks for 100 bytes: malloc(100)
= 0S: Returns 125 byte chunk
= Fragmentation is *in* the allocated chunk
= Memory is lost, and unaccounted for - can’t compact

TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma La7s

‘ May 14, 2024

74

ALLOCATION STRATEGY: SPLITTING

= Request for 1 byte of memory: malloc(1)

30-byte heap: [free [Tlsed | free
0 10 20 30

. addr:0 addr:20
free list [head —* S..tip —* emsao —* NULL

= 0S locates a free chunk to satisfy request
= Splits chunk into two, returns first chunk

30-byte heap: free [used [T free
o 3

10 20 21 0

addr:0 addr:21

free list head —» jo0.99 —> jen:o

— NULL

TCS5422: Operating Systems [Spring 2024]

‘ {May 14,2024 School of Engineering and Technology, University of Washington - Tacoma

11476

75

ALLOCATION STRATEGY: COALESCING

= Consider 30-byte heap
= Free() frees all 10 bytes segments (list of 3-free 10-byte chunks)

addr:10 addr:0 addr:20

head — jani1g Lenz10 len:10 * NULL

= Request arrives: malloc(30)
= SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!
= Coalescing regroups chunks into contiguous chunk

addr:0

head —* o0

—* NULL

= Allocation can now proceed
= Coalescing is defragmentation of the free space list

TCS5422: Operating Systems [Spring 2024] a7
School of Engineering and Technology, University of Washington - Tacoma

‘ May 14, 2024

76

MEMORY HEADERS

= free(void *ptr): Does not require a size parameter
= How does the OS know how much memory to free?
= Header block

= Small descriptive block of memory at start of chunk

j|> The header used by malloc library

pr —>

} The 20 bytes returned to caller

An Allocated Region Plus Header

TC55422: Operating Systems [Spring 2024]

‘ e School of Engineering and Technology, University of Washington - Tacoma

11478

77

Slides by Wes J. Lloyd

78

L14.13

TCSS 422 A — Spring 2024
School of Engineering and Technology

5/14/2024

MEMORY HEADERS - 2

hptr —>
pir size: 20
magic: 1234567

ptr —» | size;
magics
The 20 bytes | header_tz
returned to caller
A Simple Header

Specific Contents Of The Header

= Contains size
= Pointers: for faster memory access
= Magic number: integrity checking

header_t {

TCSS422: Operating Systems [Spring 2024]

‘ oavEea2t School of Engineering and Technology, University of Washington - Tacoma

1479

MEMORY HEADERS - 3

= Size of memory chunk is:
= Header size + user malloc size
= N bytes + sizeof(header)

= Easy to determine address of header

id fres(void *ptr) (
header_t *hptr = (“ptr - (header_t):
)
TCS5422: Operating Systems [Spring 2024]
‘ pEpl R School of Engineering and Technology, University of Washington - Tacoma L1a.80

79

THE FREE LIST

= Simple free list struct

__node_t *next;
} nodet_t;

= Use mmap to create free list
= 4kb heap, 4 byte header, one contiguous free chunk

node_t *head = mmap (NULL,

head->size
head->next = M

TCSS422: Operating Systems [Spring 2024]

‘ Ryl 202 School of Engineering and Technology, University of Washington - Tacoma.

1481

81

FREE LIST: MALLOC() CALL

= Consider a request for a 100 bytes: malloc(100)
= Header block requires 8 bytes

= 4 bytes for size, 4 bytes for magic number
= Split the heap - header goes with each block

A 4KB Hesp With One Free Chunk A Heap - After One Allacaticn
ross —> e m])
size: 4088 = £
magic. 1234567
-
the rest of
the 4KE chunk |

pir

)

the 100 bytes now allocsted

the free 3980 byte chunk

TCS5422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

‘ May 14, 2024

11483

83

Slides by Wes J. Lloyd

80

FREE LIST - 2

= Create and initialize free-list “heap”

node_t *head = mmap(NULL, 4096, PROT_READ|PROT WRITE,
MA] R ATE,

= Heap layout:

[virtual address: 16K8]

- header: size field
size: 4088
head —»| next 0 | header: next field(NULL is 0}
b the rest of the 4KB chunk
TCS5422: Operating Systems [Spring 2024]
‘ Mayidi2023 School of Engineering and Technology, University of Washington - Tacoma .82

82

FREE LIST: FREE() CALL

= Addresses of chunks

100 bytes still allocated

Ivirtusl address: 16K]
8 bytes haader {

= Start=16384
+ 108 (end of 15t chunk) size: 100
+ 108 (end of 2" chunk) spty — e L0 ||
100 bytes still allocated
+ 108 (end of 3" chunk) {but about o be freed)
= 16708
100 bytes still allocated
hesd =i wved
next:]
The free 3764-byte chunk
Free Space With Three Chunks Allocated
TCS$422: Operating Systems [Spring 2024]
‘ (EESELD School of Engineering and Technology, University of Washington - Tacoma s

84

L14.14

TCSS 422 A — Spring 2024
School of Engineering and Technology

FREE LIST:

FREE() CHUNK #2

= Free(sptr)
® Qur 3 chunks start at 16 KB
(@ 16,384 bytes)

magic: 1234567

" Free chunk #2 - sptr
= Sptr = 16500
= addr - sizeof(node_t)

Now Free

= Actual start of chunk #2 sz 6
* 16492 b8

[virtual address: 16K8]

100 bytes still allocated

(now a free chunk of

memory)

100 bytes still allocated

The free 3763-byte chunk

‘ ooy 1412028 TCS5422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma

L1485

85

GROWING THE HEAP

= Start with small sized heap
= Request more memory when full
= sbrk(), brk()

Segmented heap

{not in use) (not in use)

Heap Heap Heap

l break
(not in use)
{not in use)
Address Space Address Space Heap
Physical Memory
TCSS422: Operating Systems [Spring 2024]
‘ [Nayiti202y School of Engineering and Technology, University of Washington - Tacoma L487

87

EXAMPLES

= Allocation request for 15 bytes

= Result of Best Fit

head —» 10 —> 30 —s 5

= Result of Worst Fit

head —>» 10 —» 30 —> 20 —> NULL

— NULL

head —> 10 —> 15 — 20 —> NULL

‘ P TCS5422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma

L1489

5/14/2024

FREE LIST- FREE ALL CHUNKS

Now free remaining chunks: virtual address: 16K8]

[size 100 |«
next 16432

(now free)
size: 100

Walk back 8 bytes for actual next. 16708
start of chunk

_— 5

Free(16392)
Free(16608)

(now free)

= External fragmentation ::;t 15;‘3
= Free chunk pointers
out of order (now free)
size: 3764
= Coalescing of next i u

pointers is needed The free 3764-byte chunk

L1486

TCS5422: Operating Systems [Spring 2024]

‘ e School of Engineering and Technology, University of Washington - Tacoma

86

MEMORY ALLOCATION STRATEGIES

= Best fit
= Traverse free list
= Identify all candidate free chunks
= Note which is smallest (has best fit)

= When splitting, “leftover” pieces are small
(and potentially less useful -- fragmented)

= Worst fit
= Traverse free list
= |dentify largest free chunk
= Split largest free chunk, leaving a still large free chunk

L1488

TCS5422: Operating Systems [Spring 2024]

‘ {May 14,2024 School of Engineering and Technology, University of Washington - Tacoma

88

MEMORY ALLOCATION STRATEGIES - 2

= Flrst fit
= Start search at beginning of free list
= Find first chunk large enough for request
= Split chunk, returning a “fit” chunk, saving the remainder
= Avoids full free list traversal of best and worst fit

= Next flt
= Similar to first fit, but start search at last search location
= Maintain a pointer that “cycles” through the list
= Helps balance chunk distribution vs. first fit
= Find first chunk, that is large enough for the request, and split
= Avoids full free list traversal

TC55422: Operating Systems [Spring 2024]

‘ e School of Engineering and Technology, University of Washington - Tacoma

11490

89

Slides by Wes J. Lloyd

90

L14.15

TCSS 422 A — Spring 2024 5/14/2024
School of Engineering and Technology

[| |
“Which memory allocation strategy is more likely to"

distribute free chunks closer together which could
help when coalescing the free space list?

SEGREGATED LISTS

= For popular sized requests
e.g. for kernel objects such as locks, inodes, etc.

Best Fit = Manage as segregated free lists
= Provide object caches: stores pre-initialized objects
Worst Fit = How much memory should be dedicated for specialized
requests (object caches)?
First Fit

= If a given cache is low in memory, can request “slabs” of
None of the above memory from the general allocator for caches.
= General allocator will reclaim slabs when not used

All of the above

TCS5422: Operating Systems [Spring 2024]
o p— s el -. ‘ pEpl R School of Engineering and Technology, University of Washington - Tacoma L1492

91 92

BUDDY ALLOCATION - 2

BUDDY ALLOCATION

= Binary buddy allocation = Buddy allocation: suffers from internal fragmentation

= Divides free space by two to find a block that is big enough to
accommodate the request; the next split is too small...

= Consider a 7KB request = Allocated fragments, typically too large

‘ = Coalescing is simple
= Two adjacent blocks are promoted up

64KE free space for 7KB request

\ May 14,2024 e o beging s e ioterslyof Washington < Tacoma 1493 \ May 14,2024 Lo e s TeHoonoes nterstyof Wasington Tacom uase
93 94
- . I. .I - . - -.
A computer system manages program memory using Arequest is made to store 1 byte. For this scenario,
three separate segments for code, stack, and the which memory allocation strategy will always locate
heap. The codesize of a program is 1KB but the memory the fastest?
minimal segment available is 16KB. This is an
example of: Best fit
External fragmentation Worst fit
Binary buddy allocation Next fit
Internal fragmentation
& None of the above
Coalescing
splitting All of the above
.. fove comtent. hels fove comtent. X hels ..
95 96

Slides by Wes J. Lloyd L14.16

TCSS 422 A — Spring 2024
School of Engineering and Technology

OBJECTIVES - 5/14

= Questions from 5/9

= Assignment 2 - May 31

= Quiz 3 - Activity-Synchronized Array - Thursday

= Tutorial 2 - Pthread/locks/conditions tutorial-Fri May 24
= Chapter 13: Address Spaces

= Chapter 14: The Memory API

= Chapter 15: Address Translation

= Chapter 16: Segmentation

= Chapter 17: Free Space Management

| = Chapter 18: Introductlon to Paging |
[wevsea [T Om e Syt - s

= Split up address space of process into fixed sized pieces
called pages

= Alternative to variable sized pieces (Segmentation) which
suffers from significant fragmentation

= Physical memory is split up into an array of fixed-size slots
called page frames.

= Each process has a page table which translates virtual
addresses to physical addresses

TCSS422: Operating Systems [Spring 2024]
‘ [Nayiti202y School of Engineering and Technology, University of Washington - Tacoma L1409

99

P: Table:
PAGING: EXAMPLE 2B

VP1 > PF7

VP2 > PF5

= Consider a 128 byte (27) address space VP3 > PF2
with 16-byte (24) pages 0

page frame 0 of
physical memory

= Consider a 64-byte (2°) (unused) | page frame 1
program address space 8

|reserved for OF

page 3 of AS | page frame 2

page D of AS | page frame 3

(page 0 of {unused) page frame 4
16| the address space) 0 -

(page 1) page 2 of AS | page frame 5
22 =

(page 2) (unused) | page frame &
ar N 2 -
o (page 3) page 1of AS | page frame7

128
64-Byte Address Space Placed In Physical Memory

TCS5422: Operating Systems [Spring 2024]
‘ LR School of Engineering and Technology, University of Washington - Tacoma Lo

A Simple 64-byte Address Space

CHAPTER 18:
INTRODUCTION TO

PAGING

TCSS422: Operating Systems [Spring 2024]
aypLsi2020 School of Engineering and Technology, University of Washington -

98

ADVANTAGES OF PAGING

= Flexibility
= Abstracts the process address space into pages
= No need to track direction of HEAP / STACK growth
Just add more pages...
= No need to store unused space
As with segments...

= Simplicity
= Pages and page frames are the same size
= Easy to allocate and keep a free list of pages

TCS5422: Operating Systems [Spring 2024]
‘ Maviblzzy School of Engineering and Technology, University of Washington - Tacoma L14.100

100

PAGING: ADDRESS TRANSLATION

= PAGE: Has two address components
= VPN: Virtual Page Number (serves as the page ID)
= Offset: Offset within a Page (indexes any byte in the page)
VBN offset
\ ; .

VaS | Vad Va3 | Va2 | Vsl | Va0
= Example:

Page Size: 16-bytes (2%),
Program Address Space: 64-bytes (2°)
VPN offset

101

Slides by Wes J. Lloyd

Here program can have
Just four pages...
o1 o101
7CS5422: Operating Systems [Spring 2024]
‘ e ‘ School of Engineering and Technology, University of Washington - Tacoma L0z

102

TCSS 422 A — Spring 2024
School of Engineering and Technology

EXAMPLE:

PAGING ADDRESS TRANSLATION

= Consider a 64-byte (2°) program address space (4 pages—>22)
= Stored in 128-byte (27) physical memory (8 frames—>23)

. BN :
= Offset is preserved v offset
1
= 4 bits indexes any byte Virtual
T 4 address | 0 |10t et
= Page size is 16 bytes (24) . _ - - -
= Page table translates a Vo
Virtual Page Number (VPN) to Address
a Physical Frame Number (PFN) Translation
Page Table: [l
VPO > PF3 Physical [T N
VP1-> PF7 Adess | 1|11 fo 1o
VP2 > PF5 [— .)
VP3 > PF2 o offsct
‘ oavEea2t S ‘E):;r::e’:\gnzy:‘rled"}seg\z::i\iulzl:!versilv of Washington - Tacoma L1103

103

(1) WHERE ARE PAGE TABLES STORED?

= Example:
= Consider a 32-bit process address space (4GB=232 pytes)
= With 4 KB pages (4KB=212 pytes)
= 20 bits for VPN (22° pages)
= 12 bits for the page offset (212 unique bytes in a page)

= Page tables for each process are stored in RAM

= Support potential storage of 22° translations
= 1,048,576 pages per process

= Each page has a page table entry size of 4 bytes

TCSS422: Operating Systems [Spring 2024]
‘ [Nayiti202y School of Engineering and Technology, University of Washington - Tacoma L4105

105

NOW FOR AN ENTIRE 0S

= |f 4 MB is required to store one process

= Consider how much memory is required for an entire 0S?
= With for example 100 processes...

= Page table memory requirement is now 4MB x 100 = 400MB

= |f computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

400 MB / 4000 GB

= |s this efficlent?

‘ May 14, 2024

TCS5422: Operating Systems [Spring 2024] a107
School of Engineering and Technology, University of Washington - Tacoma

5/14/2024

PAGING DESIGN QUESTIONS

® (1) Where are page tables stored?
= (2) What are the typical contents of the page table?
= (3) How big are page tables?

= (4) Does paging make the system too slow?

TCS5422: Operating Systems [Spring 2024]
‘ pavELjeet School of Engineering and Technology, University of Washington - Tacoma L1104

104

PAGE TABLE EXAMPLE

= With 220 slots in our page table for a single process

= Each slot (i.e. entry) dereferences a VPN

VPN,
= Each entry provides a physical frame number VPN,
. . VPN,

= Each entry requires 4 bytes (32 bits) 2

= 20 for the PFN on a 4GB system with 4KB pages

= 12 for the offset which is preserved

= (note we have no status bits, so this is

unrealistically small) VPNio48576

= How much memory is required to store the page table
for 1 process?

= Hint: # of entries x space per entry
= 4,194,304 bytes (or 4MB) to index one process

TCS5422: Operating Systems [Spring 2024] 114.106
School of Engineering and Technology, University of Washington - Tacoma

‘ May 14,2024

106

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

= Page table is data structure used to map virtual page
numbers (VPN) to the physical address (Physical Frame
Number PFN)

= Linear page table - simple array

= Page-table entry
= 32 bits for capturing state

NND BT BZNBRADPBUHIS VB RU0I B 7654321
PFN o|2[ol<|3| 5|53
An %86 Page Table Entry(PTE)
TCS5422: Operating Systems [Spring 2024]
‘ e School of Engineering and Technology, University of Washington - Tacoma {08

107

Slides by Wes J. Lloyd

108

L14.18

TCSS 422 A — Spring 2024
School of Engineering and Technology

PAGE TABLE ENTRY

o P: present

o R/W: read/write bit

o U/S: supervisor

o A: accessed bit

o D: dirty bit

o PFN: the page frame number

NNABABEMNBRADPV WY BB UBRUINI ST 6543210

o
| PFN 1 n‘q

[PCD |
FwT

An x86 Page Table Entry(PTE)

TCSS422: Operating Systems [Spring 2024]

‘ oavEea2t School of Engineering and Technology, University of Washington - Tacoma

114,109

109

(3) HOW BIG ARE PAGE TABLES?

= Page tables are too big to store on the CPU

= Page tables are stored using physical memory

address space

= Reduced memory requirement
Compared to base and bounds, and segments

= Paging supports efficiently storing a sparsely populated

TCSS422: Operating Systems [Spring 2024]

‘ Ryl 202 School of Engineering and Technology, University of Washington - Tacoma.

14111

5/14/2024

PAGE TABLE ENTRY - 2

= Common flags:

= Valid Bit: Indicating whether the particular translation is valid.

= Protection Bit: Indicating whether the page could be read
from, written to, or executed from

= Present Bit: Indicating whether this page is in physical
memory or on disk(swapped out)

= Dirty BIt: Indicating whether the page has been modified since
it was brought into memory

= Reference Blt(Accessed BIt): Indicating that a page has been

accessed
14110

TCS5422: Operating Systems [Spring 2024]

‘ e School of Engineering and Technology, University of Washington - Tacoma

110

(4) DOES PAGING MAKE
THE SYSTEM TOO SLOW?

= Translation

= |ssue #1: Starting location of the page table is
needed

=HW Support: Page-table base register Page Table:

stores active process VPO > PF3

- , VP1 > PF7
Facilitates translation

Stored in RAM > VP2 > PF5

VP3 > PF2

= Issue #2: Each memory address translation for paging
requires an extra memory reference

=HW Support: TLBs (Chapter 19)

TCS5422: Operating Systems [Spring 2024]

‘ {May 14,2024 School of Engineering and Technology, University of Washington - Tacoma

L8112

111

PAGING MEMORY ACCESS

1 // Extract the VPN from the virtual address

2 VPN = (VirtualAddress & VPN_MASK) >> SHIFT

3

4. // Form the address of the page-table entry (PTE)
Se PTEAddr = PTBR + (VPN * sizeof(PTE))

6.

7a // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

9.

10. // check 1f process can access the page

11. if (PTE.valid == False)

12. RaiseException(SEGMENTATION_FAULT)

13. else if (canAccess(PTE.ProtectBits) == False)

14. RaiseException(PROTECTION_FAULT)

15. else

16. // Access is ok: form physical address and fetch it
17. offset = virtualAddress & OFFSET_MASK

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset
19. Register = AccessMemory(PhysAddr)

TCS5422: Operating Systems [Spring 2024]

‘ LR School of Engineering and Technology, University of Washington - Tacoma

114113

112

COUNTING MEMORY ACCESSES

= Example: Use this Array initialization Code

array [1000]#

(L= 07 i< 1000; i++)
arraylil = 0z

= Assembly equivalent:

0x1024 movl $0x0, (3edi, teax, 4)
o 1 teax

$0x03e8, teax
0x1024

TC55422: Operating Systems [Spring 2024]

‘ e School of Engineering and Technology, University of Washington - Tacoma

14114

Slides by Wes J. Lloyd

114

L14.19

TCSS 422 A — Spring 2024
School of Engineering and Technology

VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS
= Locations: o "\':w -
= Page table o o o o a
= Array Page Tablls)]
= Code "“-‘_“ o B
= 50 accesses g o o
for 5 loop e s0s0 | *
iterations * oo s » U
g . am
g :: T LT LI T L L I'.}> 2096
o 10 0 30 40 50
Memory Access
‘ LAERALL by S ‘E):;r:eﬁe’:\gnzy:‘rled"}seg\:r;:fg\iulzl:!versilv of Washington - Tacoma L5
115
"a s o
For the 4GB computer example, how many bits are
required for the VPN?

24 VPN bits (indexes
2°24 locations)

16 VPN bits (indexes
2716 locations)

20 VPN bits (indexes
2720 locations)

12 VPN bits (indexes
2712 locations)

None of the above

u May 14, 2024 TCSS422: Operating Systems [Spring 2024] L4
u . g R 17 W
[| |

" Forthe 4GB computer, how much space does this "
page table require? (number of page table entries x
size of page table entry)

2A20 entries x4b=4 MB
2712 entries x 4b = 16 KB
2716 entries x 4b =256 KB
2/24 entries x 4b =64 MB

None of the above

- My 142034 TCS$422: Operating Systems [Spring 2024 » Ll
u ! Y R 19 W

Consider a 4GB Computer with 4KB (4096 byte)

pages. How many pages would fit into physical
memory?

2432 /2A20 = 2712 pages

2/32 [2A12 = 2720 pages

2/32 /2716 = 2716 pages

2A32 /278 =224 pages

None of the above

] p— hel |
™ o comten, . 1

116

[| |
"For the 4GB computer example, how many bits are”

available for page status bits?

32-12VPN bits
=20 status bits

32-24 VPN bits
= 8 status bits

32-16 VPN bits
=16 status bits

32-20VPN bits
=12 status bits

None of the
above
.. fove comtent. ..
118
n

|
* For the 4GB computer, how many page tables (for "
user processes) would fill the entire 4GB of memory?

4GB/ 16 KB=65,536
4GB/64MB=256
4GB/ 256 KB = 16,384
4GB/ 4MB=1,024

None of the above

119

Slides by Wes J. Lloyd

120

5/14/2024

L14.20

TCSS 422 A — Spring 2024
School of Engineering and Technology

PAGING SYSTEM EXAMPLE

= Consider a 4GB Computer:
= With a 4096-byte page size (4KB)
= How many pages would fit in physical memory?

= Now consider a page table:
VPN?

how many bits are available for status bits?
= How much space does this page table require?
of page table entries x size of page table entry
= How many page tables (for user processes)
would fill the entire 4GB of memory?

= For the page table entry, how many bits are required for the

= |f we assume the use of 4-byte (32 bit) page table entries,

TCSS422: Operating Systems [Spring 2024]

l oavEea2t School of Engineering and Technology, University of Washington - Tacoma

L8121

5/14/2024

QUESTIONS

121

Slides by Wes J. Lloyd

122

L14.21

	Slide 1: TCSS 422: Operating Systems
	Slide 2: Midterm review session
	Slide 3: OBJECTIVES – 5/14
	Slide 4: Online daily feedback survey
	Slide 5
	Slide 6: Material / pace
	Slide 7: Feedback from 5/9
	Slide 8: Feedback - 2
	Slide 9: OBJECTIVES – 5/14
	Slide 10: OBJECTIVES – 5/14
	Slide 11: OBJECTIVES – 5/14
	Slide 12: OBJECTIVES – 5/14
	Slide 13: Chapter 13: ADDRESS SPACES
	Slide 14: Early memory management
	Slide 15: Multiprogramming with shared memory
	Slide 16: Address space
	Slide 17: Address space - 2
	Slide 18: Address space - 3
	Slide 19: Virtual addressing
	Slide 20: Virtual addressing - 2
	Slide 21: Goals of OS memory virtualization
	Slide 22: Goals - 2
	Slide 23: OBJECTIVES – 5/14
	Slide 24: Chapter 14: The memory API
	Slide 25: OBJECTIVES – 5/18
	Slide 26: malloc
	Slide 27: Sizeof()
	Slide 28: Free()
	Slide 29
	Slide 30
	Slide 31: Dangling Pointer (1/2)
	Slide 32: Dangling Pointer (2/2)
	Slide 33: Calloc()
	Slide 34: Realloc()
	Slide 35: Double free
	Slide 36: System calls
	Slide 37: We will return at 5:07pm
	Slide 38: OBJECTIVES – 5/14
	Slide 39: Chapter 15: Address translation
	Slide 40: OBJECTIVES – 5/18
	Slide 41: Address translation
	Slide 42: Base and bounds
	Slide 43: Instruction example
	Slide 44: Memory management unit
	Slide 45: Dynamic relocation of programs
	Slide 46: OS support for memory virtualization
	Slide 47: OS: When process starts running
	Slide 48: OS: when process is terminated
	Slide 49: Os: when context switch occurs
	Slide 50: Dynamic relocation
	Slide 51
	Slide 52: OBJECTIVES – 5/14
	Slide 53: Chapter 16: segmentation
	Slide 54: Base and bounds inefficiencies
	Slide 55: MULTIPLE SEGMENTS
	Slide 56: Segments in memory
	Slide 57: Address translation: code segment
	Slide 58: Address translation: heap
	Slide 59: Segmentation fault
	Slide 60: Segment registers
	Slide 61: Segmentation dereference
	Slide 62: Stack segment
	Slide 63: Shared CODE segments
	Slide 64
	Slide 65: Segmentation granularity
	Slide 66: Segmentation granularity - 2
	Slide 67: Memory fragmentation
	Slide 68: Compaction
	Slide 69: OBJECTIVES – 5/14
	Slide 70: Chapter 17: free space management
	Slide 71: OBJECTIVES – 5/18
	Slide 72: Free space management
	Slide 73: Free space management
	Slide 74: fragmentation
	Slide 75: Fragmentation - 2
	Slide 76: Allocation strategy: Splitting
	Slide 77: Allocation strategy: coalescing
	Slide 78: Memory headers
	Slide 79: Memory headers - 2
	Slide 80: Memory headers - 3
	Slide 81: The free list
	Slide 82: Free list - 2
	Slide 83: Free list: malloc() call
	Slide 84: Free list: free() call
	Slide 85: Free list: free() chunk #2
	Slide 86: Free list- free all chunks
	Slide 87: Growing the heap
	Slide 88: Memory allocation strategies
	Slide 89: examples
	Slide 90: Memory allocation strategies - 2
	Slide 91
	Slide 92: Segregated lists
	Slide 93: Buddy allocation
	Slide 94: Buddy allocation - 2
	Slide 95
	Slide 96
	Slide 97: OBJECTIVES – 5/14
	Slide 98: Chapter 18: Introduction to paging
	Slide 99: paging
	Slide 100: Advantages of paging
	Slide 101: Paging: example
	Slide 102: Paging: Address translation
	Slide 103: Example: paging address translation
	Slide 104: Paging design questions
	Slide 105: (1) Where are page tables stored?
	Slide 106: Page table example
	Slide 107: Now for an entire OS
	Slide 108: (2) What’s actually in the page table
	Slide 109: Page table entry
	Slide 110: Page table entry - 2
	Slide 111: (3) How big are page tables?
	Slide 112: (4) Does paging make the system too slow?
	Slide 113: Paging memory access
	Slide 114: Counting memory accesses
	Slide 115: Visualizing Memory accesses: For the first 5 loop iterations
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121: Paging system example
	Slide 122: Questions

