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Introduction to Paging
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TCSS 422: OPERATING SYSTEMS

 Make-up midterm exams are scheduled and will be completed 

by the end of Friday this week

 Midterm Review Session:

 Tuesday May 21, 6:00 pm (during office hour,  from BHS106)

 Via Zoom / Live Stream / Recording

 Will discuss and review midterm exam problems and grading
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MIDTERM REVIEW SESSION

 Questions from 5/9

 Assignment 2 - May 31

 Quiz 3 –  Class Activity -Synchronized Array - Thursday

 Tutorial 2 –  Pthread/locks/conditions tutorial-Fri May 24

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging
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OBJECTIVES – 5/14

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class (25 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average –  6.68  (  -  previous 6.58) 

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average –  5.28 (  -  previous 5.31)
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MATERIAL / PACE
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 Is  l ist insertion the only deadlock prevention for mutual 
exclusion?

 List insertion is not a deadlock prevention technique in 
Chapter 32

 In lecture 13, the “mutual exclusion” cause for deadlock is 
when critical sections of code are protected with locks, and 
for some reason, the lock is never available

 The solution is to remove the use of locks where possible by 
replacing locks with an atomic implementation of the 
CompareAndSwap CPU instruction (assembly language )

 Atomic CompareAndSwap (assembly) can be used to eliminate 
the use locks as shown Chapter 32 examples:

▪ Increment a counter variable atomically

▪ Insert an item into a list
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FEEDBACK FROM 5/9

 Is  l ist insertion the only deadlock prevention for mutual 

exclusion?

 KEY TAKEHOME MESSAGE from Chapter 32:

 Protecting critical code sections with locks is the 

“Mutual Exclusion” cause for deadlock in Chapter 32

 The solution is to eliminate locks to remove the requirement 

for mutual exclusion in high-level program code ( C )

 Locks can be replaced with atomic CPU instructions 

(CompareAndSwap) or atomic data types can be used

▪ E.g. lock-free data structures in Java 
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FEEDBACK - 2

 Questions from 5/9

 Assignment 2 -  May 31

 Quiz 3 –  Activity -Synchronized Array - Thursday

 Tutorial 2 –  Pthread/locks/conditions tutorial-Fri May 24

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging
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OBJECTIVES – 5/14

 Questions from 5/9

 Assignment 2 - May 31

 Quiz 3 –  Activity -Synchronized Array -  Thursday

 Tutorial 2 –  Pthread/locks/conditions tutorial-Fri May 24

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging
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OBJECTIVES – 5/14

 Questions from 5/9

 Assignment 2 - May 31

 Quiz 3 –  Activity -Synchronized Array - Thursday

 Tutorial 2 –  Pthread/locks/conditions tutorial-Fri May 24

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging
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OBJECTIVES – 5/14

 Questions from 5/9

 Assignment 2 - May 31

 Quiz 3 –  Activity -Synchronized Array - Thursday

 Tutorial 2 –  Pthread/locks/conditions tutorial-Fri May 24

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging
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OBJECTIVES – 5/14
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CHAPTER 13: 

ADDRESS SPACES

May 14, 2024
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 Load one process at a time into memory

Poor memory utilization

 Little abstraction
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EARLY MEMORY MANAGEMENT

 Later machines supported running multiple 

processes

 Swap out processes during I/O waits to 

increase system utilization and efficiency

 Swap entire memory of a process to disk 

for context switch

 Too slow, especially for large processes

 Solution→

▪ Leave processes in memory

 Need to protect from errant memory 

accesses in a multiprocessing environment
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MULTIPROGRAMMING 

WITH SHARED MEMORY

Easy-to-use abstraction of physical 

memory for a process

Main elements:

▪Program code

▪Stack

▪Heap

Example: 16KB address space
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ADDRESS SPACE

 Code

▪ Program code

 Stack

▪ Program counter (PC)

▪ Local variables

▪ Parameter variables

▪ Return values (for functions)

 Heap

▪ Dynamic storage

▪ Malloc() new()
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ADDRESS SPACE - 2

 Program code

▪ Static size

 Heap and stack

▪ Dynamic size

▪ Grow and shrink during program execution

▪ Placed at opposite ends

 Addresses are vir tual

▪ They must be physically mapped by the OS
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ADDRESS SPACE - 3

13 14
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17 18



TCSS 422 A – Spring 2024
School of Engineering and Technology

5/14/2024

L14.4Slides by Wes J. Lloyd

Every address is virtual

▪OS translates virtual to physical addresses

▪EXAMPLE: virtual.c
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VIRTUAL ADDRESSING

 Output from 64-bit Linux:
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VIRTUAL ADDRESSING - 2

location of code: 0x400686

location of heap: 0x1129420
location of stack: 0x7ffe040d77e4

 Transparency

▪Memory shouldn’t appear virtualized to the program

▪ OS multiplexes memory among different jobs behind the 

scenes

 Protection

▪ Isolation among processes

▪ OS itself must be isolated

▪ One program should not be able to affect another 

(or the OS)
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GOALS OF 

OS MEMORY VIRTUALIZATION

Efficiency

▪Time

▪ Performance: virtualization must be fast

▪Space

▪ Virtualization must not waste space

▪ Consider data structures for organizing memory

▪ Hardware support TLB: Translation Lookaside Buffer

Goals considered when evaluating memory 
virtualization schemes
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GOALS - 2

 Questions from 5/9

 Assignment 2 - May 31

 Quiz 3 –  Activity -Synchronized Array - Thursday

 Tutorial 2 –  Pthread/locks/conditions tutorial-Fri May 24

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging
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OBJECTIVES – 5/14

CHAPTER 14: THE 

MEMORY API

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L14.24
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 Chapter 13:  Introduction to  memory v i r tualization

▪ The address space

▪ Goals of OS memory virtualization

 Chapter 14:  Memory API

▪ Common memory errors
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OBJECTIVES – 5/18

 Allocates memory on the heap

 size_t unsigned integer (must be +)

 size  size of memory allocation in bytes

 Returns

 SUCCESS: A void * to a memory address

 FAIL: NULL

 sizeof() of ten used to ask the system how large a given 

datatype or struct is
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MALLOC

 Not safe to assume 

data type sizes using 

dif ferent compilers, 

systems

 Dynamic array of 10 ints

 Static array of 10 ints
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SIZEOF()

 Free memory allocated with malloc()

 Provide: (void *) ptr to malloc’d  memory

 Returns: nothing
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FREE()

29

#include<stdio.h>
 

int * set_magic_number_a()
{
  int a =53247; 
  return &a;
}

void set_magic_number_b() 
{
  int b = 11111;
}

int main()
{
  int * x = NULL;
  x = set_magic_number_a();
  printf("The magic number is=%d\n“,*x);
  set_magic_number_b();
  printf(“The magic number is=%d\n“,*x);
  return 0;
}

What will this code do?

30

#include<stdio.h>
 

int * set_magic_number_a()
{
  int a =53247; 
  return &a;
}

void set_magic_number_b() 
{
  int b = 11111;
}

int main()
{
  int * x = NULL;
  x = set_magic_number_a();
  printf("The magic number is=%d\n“,*x);
  set_magic_number_b();
  printf("The magic number is=%d\n“,*x);
  return 0;
}

Output:
$ ./pointer_error 

The magic number is=53247

The magic number is=11111

What will this code do?

We have not changed *x but 
the value has changed!!

Why?

25 26

27 28
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 Dangling pointers arise when a variable referred (a) goes 

“out of scope”, and it’s memory is destroyed/overwritten

(by b) without modifying the value of the pointer (*x).

 The pointer still points to the original memory location 

of the deallocated memory (a), 

which has now been reclaimed for (b).

DANGLING POINTER (1/2)
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Fortunately in the case, a compiler warning 
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int* 
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local 
variable ‘a’ returned [enabled by default]

This is a common mistake - - - 
accidentally referring to addresses that have 
gone “out of scope”  

DANGLING POINTER (2/2)
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 Allocate “C”lear memory on the heap

 Calloc wipes memory in advance of use…

 size_t num :  number of blocks to allocate

 size_t size  :  size of each block(in bytes)

 Calloc()  prevents…
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CALLOC()

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=��F

 Resize an existing memory allocation

 Returned pointer may be same address, or a new address

▪ New if memory allocation must move

 void *ptr:  Pointer to memory block allocated with malloc, 
calloc, or realloc

 size_t size:  New size for the memory block(in bytes)

 EXAMPLE: realloc.c

 EXAMPLE: nom.c
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REALLOC()

 Can’t deallocate twice

 Second call core dumps
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DOUBLE FREE

brk(), sbrk()

 Used to change data segment size (the end of the heap)

 Don’t use these

Mmap(), munmap()

 Can be used to create an extra independent “heap” of memory 

for a user program

 See man page

May 14, 2024
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SYSTEM CALLS
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33 34
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WE WILL RETURN AT 

5:07PM

May 14, 2024
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 Questions from 5/9

 Assignment 2 - May 31

 Quiz 3 –  Activity -Synchronized Array - Thursday

 Tutorial 2 –  Pthread/locks/conditions tutorial-Fri May 24

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging
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OBJECTIVES – 5/14

CHAPTER 15: ADDRESS

TRANSLATION
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 Chapter 15: Address translation

▪ Base and bounds

▪ HW and OS Support
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OBJECTIVES – 5/18

 64KB 

Address space

example

 Translation:

mapping 

vir tual to

physical

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.41

ADDRESS TRANSLATION

Virtual mapping

Address Space

 Dynamic relocation

 Two registers base & bounds: on the CPU

 OS places program in memory

 Sets base register

 Bounds register

▪ Stores size of program address space (16KB)

 OS verifies that every address:
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BASE AND BOUNDS

0 ≤  𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 < 𝑏𝑜𝑢𝑛𝑑𝑠

37 38
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 Base = 32768

 Bounds =16384

  Fetch instruction at 128 (vir t addr )  ↑

▪ Phy addr = virt addr + base reg

▪ 32896 = 128 + 32768 (base)

 Execute instruction

▪ Load from address (var x is @ 15kb=15360)

▪ 48128 = 15360 + 32768 (base)  -- found x…

 Bounds register: terminate process if

▪ ACCESS VIOLATION: Virtual address > bounds reg

  

May 14, 2024
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INSTRUCTION EXAMPLE

Int x

 MMU

▪ Portion of the CPU dedicated to address translation

▪ Contains base & bounds registers 

 Base & Bounds Example:

▪ Consider address translation

▪ 4 KB (4096 bytes) address space, loaded at 16 KB physical location
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MEMORY MANAGEMENT UNIT

Virtual Address Physical Address

0 16384

1024 17408

3000 19384

4400 20784 (out of bounds)FAULT
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DYNAMIC RELOCATION OF PROGRAMS

 Hardware requirements:

Requirements HW support

Privileged mode CPU modes: kernel, user

Base / bounds registers Registers to support address translation

Translate virtual addr; check if in 

bounds

Translation circuitry, check limits

Privileged instruction(s) to

 update base / bounds regs

Instructions for modifying base/bound 

registers

Privileged instruction(s) 

to register exception handlers

Set code pointers to OS code to handle faults

Ability to  raise exceptions For out-of-bounds memory access, or 

attempts to access privileged instr.

 For base and bounds OS support required

▪When process starts running

▪ Allocate address space in physical memory

▪When a process is terminated

▪ Reclaiming memory for use

▪When context switch occurs

▪ Saving and storing the base-bounds pair

▪ Exception handlers

▪ Function pointers set at OS boot time

May 14, 2024
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OS SUPPORT FOR MEMORY 

VIRTUALIZATION

 OS searches for free space for new process

▪ Free list: data structure that tracks available memory slots

May 14, 2024
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OS: WHEN PROCESS STARTS RUNNING

 OS places memory back on the free list

May 14, 2024
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OS: WHEN PROCESS IS TERMINATED

43 44

45 46
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 OS must save base and bounds registers

▪ Saved to the Process Control Block PCB (task_struct in Linux)
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OS: WHEN CONTEXT SWITCH OCCURS

 OS can move process data when not running

1. OS un-schedules process from scheduler

2. OS copies address space from current to new location

3. OS updates PCB (base and bounds registers)

4. OS reschedules process

 When process runs new base register is restored to CPU

 Process doesn’t know it  was even moved!
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DYNAMIC RELOCATION

May 14, 2024
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 Questions from 5/9

 Assignment 2 - May 31

 Quiz 3 –  Activity -Synchronized Array - Thursday

 Tutorial 2 –  Pthread/locks/conditions tutorial-Fri May 24

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging
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OBJECTIVES – 5/14

CHAPTER 16: 

SEGMENTATION
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 Address space 

▪ Contains significant unused memory

▪ Is relatively large

▪ Preallocates space to handle stack/heap growth

 Large address spaces 

▪ Hard to fit in memory

 How can these issues be addressed?

May 14, 2024
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BASE AND BOUNDS INEFFICIENCIES

49 50

51 52
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 Memory segmentation

 Manage the address space as (3) separate segments

▪ Each is a contiguous address space 

▪ Provides logically separate segments for: code, stack, heap

 Each segment can placed separately

 Track base and bounds for each segment (registers)
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TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.55

MULTIPLE SEGMENTS

 Consider 3 segments:
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SEGMENTS IN MEMORY

Much smaller

Virtual Address Space  Physical Address Space

 Code segment - physically star ts at 32KB (base)

 Starts at “0” in vir tual address space
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ADDRESS TRANSLATION: CODE SEGMENT

Bounds check:
Is virtual address within 2KB 

address space?

 Heap star ts at vir tual  address 4096

 The data is at 4200

 Offset= 4200 –  4096 = 104   (vir t addr –  vir t  heap star t)

 Physical  address = 104 + 34816  (of fset + heap base)
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ADDRESS TRANSLATION: HEAP

𝑽𝒊𝒓𝒕𝒖𝒂𝒍 𝒂𝒅𝒅𝒓𝒆𝒔𝒔 + 𝒃𝒂𝒔𝒆 is not the correct physical address.

 Access beyond the address space

 Heap starts at virtual address: 4096

 Data pointer is to 7KB (7168)

 Is data pointer valid?

 Heap starts at 4096 + 2 KB seg size = 6144

 Offset= 7168 > 4096 + 2048 (6144)
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SEGMENTATION FAULT

 Used to dereference memory during translation

 First two bits identify segment type

 Remaining bits identify memory offset 

 Example: vir tual heap address 4200 (01000001101000)
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SEGMENT REGISTERS

55 56
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 VIRTUAL ADDRESS = 01000001101000                     (on heap)

 SEG_MASK = 0x3000 (11000000000000)

 SEG_SHIFT = 01 →  heap            (mask gives us segment code)

 OFFSET_MASK = 0xFFF (00111111111111)

 OFFSET = 000001101000 = 104        ( isolates segment offset)

 OFFSET < BOUNDS :  104 < 2048
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SEGMENTATION DEREFERENCE

Stack grows backwards (FILO)

Requires hardware support:

Direction bit: tracks direction segment grows
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STACK SEGMENT

 Code sharing: enabled with HW support

 Supports storing shared libraries in memory only once

 DLL: dynamic linked library 

 .so ( linux): shared object in Linux (under /usr/lib)

 Many programs can access them

 Protection bits: track permissions to segment
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SHARED CODE SEGMENTS
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4

Coarse-grained

Manage memory as large purpose

based segments:

▪Code segment

▪Heap segment

▪Stack segment
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SEGMENTATION GRANULARITY

 Fine-grained

 Manage memory as list of segments

 Code, heap, stack segments composed

of multiple smaller segments

 Segment table

▪ On early systems

▪ Stored in memory

▪ Tracked large number of segments
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SEGMENTATION GRANULARITY - 2

61 62

63 64
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 Consider how much free space?

 We’ll say about 24 KB

 Request arrives to allocate a 20 KB heap

segment

 Can we fulfil the request for 20 KB of

contiguous memory?
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MEMORY FRAGMENTATION

 Supports rearranging memory

 Can we fulfil the request for 20 KB of 

contiguous memory?

 Drawback: Compaction is slow

▪ Rearranging memory is time consuming

▪ 64KB is fast

▪ 4GB+ … slow

 Algorithms: 

▪ Best fit: keep list of free spaces, allocate the

most snug segment for the request

▪ Others: worst fit, first fit… (in future chapters)
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COMPACTION

 Questions from 5/9

 Assignment 2 - May 31

 Quiz 3 –  Activity -Synchronized Array - Thursday

 Tutorial 2 –  Pthread/locks/conditions tutorial-Fri May 24

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging
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OBJECTIVES – 5/14

CHAPTER 17: FREE 

SPACE MANAGEMENT
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 Chapter 17: Free Space Management

▪ Fragmentation, Splitting, coalescing

▪ The Free List

▪ Memory Allocation Strategies
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OBJECTIVES – 5/18

 How should free space be managed, when satisfying 

variable-sized requests?

 What strategies can be used to minimize fragmentation? 

 What are the time and space overheads of alternate 

approaches?
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FREE SPACE MANAGEMENT
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 Management of memory using

 Only fixed-sized units 

▪ Easy: keep a list

▪Memory request → return first free entry

▪ Simple search

 With variable sized units

▪More challenging

▪ Results from variable sized malloc requests

▪ Leads to fragmentation
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FREE SPACE MANAGEMENT

 Consider a 30-byte heap

 Request for 15-bytes

 Free space: 20 bytes

 No available contiguous chunk →  return NULL
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L14.74

FRAGMENTATION

 External:   OS can compact

▪ Example: Client asks for 100 bytes:  malloc(100)

▪ OS: No 100 byte contiguous chunk is available:

 returns NULL

▪Memory is externally fragmented - - Compaction can fix!

 Internal:   lost space –  OS can’t compact

▪ OS returns memory units that are too large

▪ Example:  Client asks for 100 bytes:  malloc(100)

▪ OS: Returns 125 byte chunk

▪ Fragmentation is *in* the allocated chunk

▪Memory is lost, and unaccounted for – can’t compact
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FRAGMENTATION - 2

 Request for 1 byte of memory:  malloc(1)

 OS locates a free chunk to satisfy request

 Splits chunk into two, returns first chunk
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ALLOCATION STRATEGY: SPLITTING

 Consider 30-byte heap

 Free() frees all 10 bytes segments  ( l ist  of  3-f ree 10-byte chunks)

 Request arrives:  malloc(30)

 SPLIT DOES NOT WORK  -  no contiguous 30-byte chunk exists!

 Coalescing regroups chunks into contiguous chunk

 Allocation can now proceed

 Coalescing is defragmentation of the free space list
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ALLOCATION STRATEGY: COALESCING

 free(void *ptr): Does not require a size parameter

 How does the OS know how much memory to free?

 Header block

▪ Small descriptive block of memory at start of chunk
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MEMORY HEADERS
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 Contains size

 Pointers: for faster memory access

 Magic number: integrity checking
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MEMORY HEADERS - 2

 Size of memory chunk is:

 Header size + user malloc size

 N bytes + sizeof(header)

 Easy to determine address of header
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MEMORY HEADERS - 3

 Simple free list struct

 Use mmap to create free list

 4kb heap, 4 byte header, one contiguous free chunk
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THE FREE LIST

 Create and initialize free- l ist “heap”

 Heap layout:

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.82

FREE LIST - 2

 Consider a request for a 100 bytes:   malloc(100)

 Header block requires 8 bytes 

▪ 4 bytes for size, 4 bytes for magic number

 Split the heap – header goes with each block
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FREE LIST:  MALLOC() CALL

First block
is used

 Addresses of chunks

 Start=16384 

+ 108 (end of 1st chunk)

+ 108 (end of 2nd chunk)

+ 108 (end of 3 rd chunk)

= 16708
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FREE LIST: FREE() CALL

Free this
block

79 80

81 82

83 84



TCSS 422 A – Spring 2024
School of Engineering and Technology

5/14/2024

L14.15Slides by Wes J. Lloyd

 Free(sptr)

 Our 3 chunks start at 16 KB

(@ 16,384 bytes)

 Free chunk #2 - sptr

 Sptr = 16500

▪ addr – sizeof(node_t)

 Actual start of chunk #2

▪ 16492
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FREE LIST: 

FREE() CHUNK #2

Block
Now Free

 Now free remaining chunks:

 Free(16392)

 Free(16608)

 Walk back 8 bytes for actual 
star t  of chunk

 External fragmentat ion

 Free chunk pointers 
out  of order

 Coalescing of next  
pointers is needed
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FREE LIST- FREE ALL CHUNKS

 Start with small sized heap

 Request more memory when full

 sbrk(), brk()
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GROWING THE HEAP

Segmented heapSegmented heap

 Best f it

▪ Traverse free list

▪ Identify all candidate free chunks

▪ Note which is smallest (has best fit)

▪When splitting, “leftover” pieces are small 

(and potentially less useful  -- fragmented)

 Worst f it

▪ Traverse free list

▪ Identify largest free chunk

▪ Split largest free chunk, leaving a still large free chunk
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MEMORY ALLOCATION STRATEGIES

 Allocation request for 15 bytes

 Result of Best Fit

 Result of Worst Fit
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EXAMPLES

 First f i t

▪ Start search at beginning of free list

▪ Find first chunk large enough for request

▪ Split chunk, returning a “fit” chunk, saving the remainder

▪ Avoids full free list traversal of best and worst fit

 Next f i t

▪ Similar to first fit, but start search at last search location

▪ Maintain a pointer that “cycles” through the list 

▪ Helps balance chunk distribution vs. first fit

▪ Find first chunk, that is large enough for the request, and split

▪ Avoids full free list traversal
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MEMORY ALLOCATION STRATEGIES - 2
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1

 For popular sized requests 

e.g. for kernel objects such as locks, inodes, etc.

 Manage as segregated free lists 

 Provide object caches: stores pre -initialized objects

 How much memory should be dedicated for specialized 

requests (object caches)?

 If  a given cache is low in memory, can request “ slabs” of 

memory from the general allocator for caches.

 General allocator will reclaim slabs when not used

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.92

SEGREGATED LISTS

 Binary buddy allocation

▪ Divides free space by two to find a block that is big enough to 

accommodate the request; the next split is too small…

 Consider a 7KB request
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BUDDY ALLOCATION

 Buddy allocation: suffers from internal fragmentation

 Allocated fragments, typically too large

 Coalescing is simple

▪ Two adjacent blocks are promoted up
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BUDDY ALLOCATION - 2
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 Questions from 5/9

 Assignment 2 - May 31

 Quiz 3 –  Activity -Synchronized Array - Thursday

 Tutorial 2 –  Pthread/locks/conditions tutorial-Fri May 24

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging
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OBJECTIVES – 5/14

CHAPTER 18:

INTRODUCTION TO

PAGING
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 Split up address space of process into fixed sized pieces 

called pages

 Alternative to variable sized pieces (Segmentation) which 

suffers from significant fragmentation

 Physical memory is split up into an array of fixed -size slots 

called page f rames.

 Each process has a page table which translates vir tual 

addresses to physical addresses
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PAGING

 Flexibility

▪ Abstracts the process address space into pages

▪ No need to track direction of HEAP / STACK growth

▪ Just add more pages…

▪ No need to store unused space 

▪ As with segments…

 Simplicity

▪ Pages and page frames are the same size

▪ Easy to allocate and keep a free list of pages
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ADVANTAGES OF PAGING

 Consider a 128 byte (27)  address space 

with 16-byte (24)  pages  

 Consider a 64-byte (26)  

program address space
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PAGING: EXAMPLE
Page Table:
VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2  PAGE: Has two address components

▪ VPN: Virtual Page Number   (serves as the page ID)

▪ Offset: Offset within a Page  (indexes any byte in the page)

 Example: 

Page Size: 16-bytes (24),

Program Address Space: 64-bytes (26)
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PAGING: ADDRESS TRANSLATION

Here program can have
just four pages…
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 Consider a 64-byte (26)  program address space (4 pages→22)

 Stored in 128-byte (27)  physical memory (8 frames→23)

 Offset is preserved

▪ 4 bits indexes any byte

▪ Page size is 16 bytes (24)

 Page table translates a

Vir tual  Page Number (VPN) to 

a Physical  Frame Number (PFN)
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EXAMPLE:

PAGING ADDRESS TRANSLATION 

Page Table:
VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2

 (1) Where are page tables stored?

 (2) What are the typical contents of the page table?

 (3) How big are page tables?

 (4) Does paging make the system too slow?
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PAGING DESIGN QUESTIONS

 Example:

▪ Consider a 32-bit process address space (4GB=232 bytes)

▪With 4 KB pages (4KB=212 bytes)

▪ 20 bits for VPN (220 pages)

▪ 12 bits for the page offset (212 unique bytes in a page)

 Page tables for each process are stored in RAM

▪ Support potential storage of 220 translations 

= 1,048,576 pages per process

▪ Each page has a page table entry size of 4 bytes
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(1) WHERE ARE PAGE TABLES STORED?

 With 220 slots in our page table for a single process

 Each slot ( i.e. entry) dereferences a VPN

 Each entry provides a physical frame number

 Each entry requires 4 bytes (32 bits)

▪ 20 for the PFN on a 4GB system with 4KB pages

▪ 12 for the offset which is preserved

▪ (note we have no status bits, so this is 
unrealistically small)

 How much memory is required to store the page table 
for 1 process?

▪ Hint: # of entries x space per entry

▪ 4,194,304 bytes (or 4MB) to index one process
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PAGE TABLE EXAMPLE

VPN0

VPN1

VPN2

…

…

VPN1048576

 If 4 MB is required to store one process

 Consider how much memory is required for an entire OS?

▪ With for example 100 processes…

 Page table memory requirement is now 4MB x 100 = 400MB

 If computer has 4GB memory (maximum for 32 -bits), 

the page table consumes 10% of memory

400 MB / 4000 GB

 Is  this ef f icient?
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NOW FOR AN ENTIRE OS

 Page table is data structure used to map virtual page 

numbers (VPN) to the physical address (Physical Frame 

Number PFN)

▪ Linear page table → simple array

 Page-table entry

▪ 32 bits for capturing state
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(2) WHAT’S ACTUALLY IN THE PAGE TABLE
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 P: present

 R/W: read/write bit

 U/S: supervisor

 A: accessed bit

 D: dirty bit

 PFN: the page frame number
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PAGE TABLE ENTRY

 Common flags:

 Valid Bit:  Indicating whether the particular translation is valid.

 Protection Bit:  Indicating whether the page could be read 

from, written to, or executed from

 Present Bit:  Indicating whether this page is in physical 

memory or on disk(swapped out)

 Dir ty Bit:  Indicating whether the page has been modified since 

it was brought into memory

 Reference Bit(Accessed Bit) :  Indicating that a page has been 

accessed
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PAGE TABLE ENTRY - 2

 Page tables are too big to store on the CPU

 Page tables are stored using physical memory

 Paging supports efficiently storing a sparsely populated 

address space

▪ Reduced memory requirement

Compared to base and bounds, and segments
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(3) HOW BIG ARE PAGE TABLES?

 Translation

 Issue #1:  Starting location of the page table is 
needed

▪HW Support: Page-table base register

▪ stores active process 

▪Facilitates translation

 Issue #2: Each memory address translation for paging 
requires an extra memory reference

▪HW Support: TLBs (Chapter 19)

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.112

(4) DOES PAGING MAKE 

THE SYSTEM TOO SLOW?

Page Table:
VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2

Stored in RAM →

1.  // Extract the VPN from the virtual address 

2.  VPN = (VirtualAddress & VPN_MASK) >> SHIFT 

3.  

4.  // Form the address of the page-table entry (PTE) 

5.  PTEAddr = PTBR + (VPN * sizeof(PTE)) 

6.  

7.  // Fetch the PTE 

8.  PTE = AccessMemory(PTEAddr) 

9.  

10.  // Check if process can access the page 

11.  if (PTE.Valid == False) 

12.   RaiseException(SEGMENTATION_FAULT) 

13.  else if (CanAccess(PTE.ProtectBits) == False) 

14.   RaiseException(PROTECTION_FAULT) 

15.  else 

16.   // Access is OK: form physical address and fetch it 

17.   offset = VirtualAddress & OFFSET_MASK 

18.   PhysAddr = (PTE.PFN << PFN_SHIFT) | offset 

19.   Register = AccessMemory(PhysAddr)
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PAGING MEMORY ACCESS

 Example: Use this Array initialization Code

 Assembly equivalent:
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COUNTING MEMORY ACCESSES
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 Locations:

▪ Page table

▪ Array

▪ Code

 50 accesses

for 5 loop 

iterations

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.115

VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS
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 Consider a 4GB Computer:

 With a 4096-byte page size (4KB)

 How many pages would fit in physical memory?

 Now consider a page table:

 For the page table entry, how many bits are required for the 

VPN?

 If  we assume the use of 4-byte (32 bit)  page table entries, 

how many bits are available for status bits?

 How much space does this page table require?  

# of page table entries x size of page table entry  

 How many page tables (for user processes) 

would fill the entire 4GB of memory?
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PAGING SYSTEM EXAMPLE QUESTIONS
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