
TCSS 422 A – Spring 2024
School of Engineering and Technology

5/14/2024

L14.1Slides by Wes J. Lloyd

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

Memory Virtualization
with Segments,

Introduction to Paging

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Make-up midterm exams are scheduled and will be completed

by the end of Friday this week

 Midterm Review Session:

 Tuesday May 21, 6:00 pm (during office hour, from BHS106)

 Via Zoom / Live Stream / Recording

 Will discuss and review midterm exam problems and grading

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.2

MIDTERM REVIEW SESSION

 Questions from 5/9

 Assignment 2 - May 31

 Quiz 3 – Class Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 24

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.3

OBJECTIVES – 5/14

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

May 14, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.4

ONLINE DAILY FEEDBACK SURVEY

May 14, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L14.5

 Please classify your perspective on material covered in today’s

class (25 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.68 (- previous 6.58)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.28 (- previous 5.31)

May 14, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.6

MATERIAL / PACE

1 2

3 4

5 6

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/14/2024

L14.2Slides by Wes J. Lloyd

 Is l ist insertion the only deadlock prevention for mutual
exclusion?

 List insertion is not a deadlock prevention technique in
Chapter 32

 In lecture 13, the “mutual exclusion” cause for deadlock is
when critical sections of code are protected with locks, and
for some reason, the lock is never available

 The solution is to remove the use of locks where possible by
replacing locks with an atomic implementation of the
CompareAndSwap CPU instruction (assembly language)

 Atomic CompareAndSwap (assembly) can be used to eliminate
the use locks as shown Chapter 32 examples:

▪ Increment a counter variable atomically

▪ Insert an item into a list

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.7

FEEDBACK FROM 5/9

 Is l ist insertion the only deadlock prevention for mutual

exclusion?

 KEY TAKEHOME MESSAGE from Chapter 32:

 Protecting critical code sections with locks is the

“Mutual Exclusion” cause for deadlock in Chapter 32

 The solution is to eliminate locks to remove the requirement

for mutual exclusion in high-level program code (C)

 Locks can be replaced with atomic CPU instructions

(CompareAndSwap) or atomic data types can be used

▪ E.g. lock-free data structures in Java

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.8

FEEDBACK - 2

 Questions from 5/9

 Assignment 2 - May 31

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 24

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.9

OBJECTIVES – 5/14

 Questions from 5/9

 Assignment 2 - May 31

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 24

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.10

OBJECTIVES – 5/14

 Questions from 5/9

 Assignment 2 - May 31

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 24

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.11

OBJECTIVES – 5/14

 Questions from 5/9

 Assignment 2 - May 31

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 24

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.12

OBJECTIVES – 5/14

7 8

9 10

11 12

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/14/2024

L14.3Slides by Wes J. Lloyd

CHAPTER 13:

ADDRESS SPACES

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L14.13

 Load one process at a time into memory

Poor memory utilization

 Little abstraction

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.14

EARLY MEMORY MANAGEMENT

 Later machines supported running multiple

processes

 Swap out processes during I/O waits to

increase system utilization and efficiency

 Swap entire memory of a process to disk

for context switch

 Too slow, especially for large processes

 Solution→

▪ Leave processes in memory

 Need to protect from errant memory

accesses in a multiprocessing environment

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.15

MULTIPROGRAMMING

WITH SHARED MEMORY

Easy-to-use abstraction of physical

memory for a process

Main elements:

▪Program code

▪Stack

▪Heap

Example: 16KB address space

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.16

ADDRESS SPACE

 Code

▪ Program code

 Stack

▪ Program counter (PC)

▪ Local variables

▪ Parameter variables

▪ Return values (for functions)

 Heap

▪ Dynamic storage

▪ Malloc() new()

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.17

ADDRESS SPACE - 2

 Program code

▪ Static size

 Heap and stack

▪ Dynamic size

▪ Grow and shrink during program execution

▪ Placed at opposite ends

 Addresses are vir tual

▪ They must be physically mapped by the OS

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.18

ADDRESS SPACE - 3

13 14

15 16

17 18

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/14/2024

L14.4Slides by Wes J. Lloyd

Every address is virtual

▪OS translates virtual to physical addresses

▪EXAMPLE: virtual.c

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.19

VIRTUAL ADDRESSING

 Output from 64-bit Linux:

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.20

VIRTUAL ADDRESSING - 2

location of code: 0x400686

location of heap: 0x1129420
location of stack: 0x7ffe040d77e4

 Transparency

▪Memory shouldn’t appear virtualized to the program

▪ OS multiplexes memory among different jobs behind the

scenes

 Protection

▪ Isolation among processes

▪ OS itself must be isolated

▪ One program should not be able to affect another

(or the OS)

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.21

GOALS OF

OS MEMORY VIRTUALIZATION

Efficiency

▪Time

▪ Performance: virtualization must be fast

▪Space

▪ Virtualization must not waste space

▪ Consider data structures for organizing memory

▪ Hardware support TLB: Translation Lookaside Buffer

Goals considered when evaluating memory
virtualization schemes

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.22

GOALS - 2

 Questions from 5/9

 Assignment 2 - May 31

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 24

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.23

OBJECTIVES – 5/14

CHAPTER 14: THE

MEMORY API

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L14.24

19 20

21 22

23 24

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/14/2024

L14.5Slides by Wes J. Lloyd

 Chapter 13: Introduction to memory v i r tualization

▪ The address space

▪ Goals of OS memory virtualization

 Chapter 14: Memory API

▪ Common memory errors

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.25

OBJECTIVES – 5/18

 Allocates memory on the heap

 size_t unsigned integer (must be +)

 size size of memory allocation in bytes

 Returns

 SUCCESS: A void * to a memory address

 FAIL: NULL

 sizeof() of ten used to ask the system how large a given

datatype or struct is

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.26

MALLOC

 Not safe to assume

data type sizes using

dif ferent compilers,

systems

 Dynamic array of 10 ints

 Static array of 10 ints

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.27

SIZEOF()

 Free memory allocated with malloc()

 Provide: (void *) ptr to malloc’d memory

 Returns: nothing

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.28

FREE()

29

#include<stdio.h>

int * set_magic_number_a()
{
 int a =53247;
 return &a;
}

void set_magic_number_b()
{
 int b = 11111;
}

int main()
{
 int * x = NULL;
 x = set_magic_number_a();
 printf("The magic number is=%d\n“,*x);
 set_magic_number_b();
 printf(“The magic number is=%d\n“,*x);
 return 0;
}

What will this code do?

30

#include<stdio.h>

int * set_magic_number_a()
{
 int a =53247;
 return &a;
}

void set_magic_number_b()
{
 int b = 11111;
}

int main()
{
 int * x = NULL;
 x = set_magic_number_a();
 printf("The magic number is=%d\n“,*x);
 set_magic_number_b();
 printf("The magic number is=%d\n“,*x);
 return 0;
}

Output:
$./pointer_error

The magic number is=53247

The magic number is=11111

What will this code do?

We have not changed *x but
the value has changed!!

Why?

25 26

27 28

29 30

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/14/2024

L14.6Slides by Wes J. Lloyd

 Dangling pointers arise when a variable referred (a) goes

“out of scope”, and it’s memory is destroyed/overwritten

(by b) without modifying the value of the pointer (*x).

 The pointer still points to the original memory location

of the deallocated memory (a),

which has now been reclaimed for (b).

DANGLING POINTER (1/2)

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.31

Fortunately in the case, a compiler warning
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int*
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local
variable ‘a’ returned [enabled by default]

This is a common mistake - - -
accidentally referring to addresses that have
gone “out of scope”

DANGLING POINTER (2/2)

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.32

 Allocate “C”lear memory on the heap

 Calloc wipes memory in advance of use…

 size_t num : number of blocks to allocate

 size_t size : size of each block(in bytes)

 Calloc() prevents…

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.33

CALLOC()

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=��F

 Resize an existing memory allocation

 Returned pointer may be same address, or a new address

▪ New if memory allocation must move

 void *ptr: Pointer to memory block allocated with malloc,
calloc, or realloc

 size_t size: New size for the memory block(in bytes)

 EXAMPLE: realloc.c

 EXAMPLE: nom.c

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.34

REALLOC()

 Can’t deallocate twice

 Second call core dumps

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.35

DOUBLE FREE

brk(), sbrk()

 Used to change data segment size (the end of the heap)

 Don’t use these

Mmap(), munmap()

 Can be used to create an extra independent “heap” of memory

for a user program

 See man page

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.36

SYSTEM CALLS

31 32

33 34

35 36

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/14/2024

L14.7Slides by Wes J. Lloyd

WE WILL RETURN AT

5:07PM

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L14.37

 Questions from 5/9

 Assignment 2 - May 31

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 24

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.38

OBJECTIVES – 5/14

CHAPTER 15: ADDRESS

TRANSLATION

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L14.39

 Chapter 15: Address translation

▪ Base and bounds

▪ HW and OS Support

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.40

OBJECTIVES – 5/18

 64KB

Address space

example

 Translation:

mapping

vir tual to

physical

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.41

ADDRESS TRANSLATION

Virtual mapping

Address Space

 Dynamic relocation

 Two registers base & bounds: on the CPU

 OS places program in memory

 Sets base register

 Bounds register

▪ Stores size of program address space (16KB)

 OS verifies that every address:

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.42

BASE AND BOUNDS

0 ≤ 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 < 𝑏𝑜𝑢𝑛𝑑𝑠

37 38

39 40

41 42

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/14/2024

L14.8Slides by Wes J. Lloyd

 Base = 32768

 Bounds =16384

 Fetch instruction at 128 (vir t addr) ↑

▪ Phy addr = virt addr + base reg

▪ 32896 = 128 + 32768 (base)

 Execute instruction

▪ Load from address (var x is @ 15kb=15360)

▪ 48128 = 15360 + 32768 (base) -- found x…

 Bounds register: terminate process if

▪ ACCESS VIOLATION: Virtual address > bounds reg

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.43

INSTRUCTION EXAMPLE

Int x

 MMU

▪ Portion of the CPU dedicated to address translation

▪ Contains base & bounds registers

 Base & Bounds Example:

▪ Consider address translation

▪ 4 KB (4096 bytes) address space, loaded at 16 KB physical location

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.44

MEMORY MANAGEMENT UNIT

Virtual Address Physical Address

0 16384

1024 17408

3000 19384

4400 20784 (out of bounds)FAULT

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.45

DYNAMIC RELOCATION OF PROGRAMS

 Hardware requirements:

Requirements HW support

Privileged mode CPU modes: kernel, user

Base / bounds registers Registers to support address translation

Translate virtual addr; check if in

bounds

Translation circuitry, check limits

Privileged instruction(s) to

 update base / bounds regs

Instructions for modifying base/bound

registers

Privileged instruction(s)

to register exception handlers

Set code pointers to OS code to handle faults

Ability to raise exceptions For out-of-bounds memory access, or

attempts to access privileged instr.

 For base and bounds OS support required

▪When process starts running

▪ Allocate address space in physical memory

▪When a process is terminated

▪ Reclaiming memory for use

▪When context switch occurs

▪ Saving and storing the base-bounds pair

▪ Exception handlers

▪ Function pointers set at OS boot time

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.46

OS SUPPORT FOR MEMORY

VIRTUALIZATION

 OS searches for free space for new process

▪ Free list: data structure that tracks available memory slots

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.47

OS: WHEN PROCESS STARTS RUNNING

 OS places memory back on the free list

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.48

OS: WHEN PROCESS IS TERMINATED

43 44

45 46

47 48

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/14/2024

L14.9Slides by Wes J. Lloyd

 OS must save base and bounds registers

▪ Saved to the Process Control Block PCB (task_struct in Linux)

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.49

OS: WHEN CONTEXT SWITCH OCCURS

 OS can move process data when not running

1. OS un-schedules process from scheduler

2. OS copies address space from current to new location

3. OS updates PCB (base and bounds registers)

4. OS reschedules process

 When process runs new base register is restored to CPU

 Process doesn’t know it was even moved!

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.50

DYNAMIC RELOCATION

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.5
1

 Questions from 5/9

 Assignment 2 - May 31

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 24

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.52

OBJECTIVES – 5/14

CHAPTER 16:

SEGMENTATION

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L14.53

 Address space

▪ Contains significant unused memory

▪ Is relatively large

▪ Preallocates space to handle stack/heap growth

 Large address spaces

▪ Hard to fit in memory

 How can these issues be addressed?

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.54

BASE AND BOUNDS INEFFICIENCIES

49 50

51 52

53 54

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/14/2024

L14.10Slides by Wes J. Lloyd

 Memory segmentation

 Manage the address space as (3) separate segments

▪ Each is a contiguous address space

▪ Provides logically separate segments for: code, stack, heap

 Each segment can placed separately

 Track base and bounds for each segment (registers)

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.55

MULTIPLE SEGMENTS

 Consider 3 segments:

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.56

SEGMENTS IN MEMORY

Much smaller

Virtual Address Space Physical Address Space

 Code segment - physically star ts at 32KB (base)

 Starts at “0” in vir tual address space

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.57

ADDRESS TRANSLATION: CODE SEGMENT

Bounds check:
Is virtual address within 2KB

address space?

 Heap star ts at vir tual address 4096

 The data is at 4200

 Offset= 4200 – 4096 = 104 (vir t addr – vir t heap star t)

 Physical address = 104 + 34816 (of fset + heap base)

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.58

ADDRESS TRANSLATION: HEAP

𝑽𝒊𝒓𝒕𝒖𝒂𝒍 𝒂𝒅𝒅𝒓𝒆𝒔𝒔 + 𝒃𝒂𝒔𝒆 is not the correct physical address.

 Access beyond the address space

 Heap starts at virtual address: 4096

 Data pointer is to 7KB (7168)

 Is data pointer valid?

 Heap starts at 4096 + 2 KB seg size = 6144

 Offset= 7168 > 4096 + 2048 (6144)

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.59

SEGMENTATION FAULT

 Used to dereference memory during translation

 First two bits identify segment type

 Remaining bits identify memory offset

 Example: vir tual heap address 4200 (01000001101000)

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.60

SEGMENT REGISTERS

55 56

57 58

59 60

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/14/2024

L14.11Slides by Wes J. Lloyd

 VIRTUAL ADDRESS = 01000001101000 (on heap)

 SEG_MASK = 0x3000 (11000000000000)

 SEG_SHIFT = 01 → heap (mask gives us segment code)

 OFFSET_MASK = 0xFFF (00111111111111)

 OFFSET = 000001101000 = 104 (isolates segment offset)

 OFFSET < BOUNDS : 104 < 2048

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.61

SEGMENTATION DEREFERENCE

Stack grows backwards (FILO)

Requires hardware support:

Direction bit: tracks direction segment grows

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.62

STACK SEGMENT

 Code sharing: enabled with HW support

 Supports storing shared libraries in memory only once

 DLL: dynamic linked library

 .so (linux): shared object in Linux (under /usr/lib)

 Many programs can access them

 Protection bits: track permissions to segment

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.63

SHARED CODE SEGMENTS

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.6
4

Coarse-grained

Manage memory as large purpose

based segments:

▪Code segment

▪Heap segment

▪Stack segment

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.65

SEGMENTATION GRANULARITY

 Fine-grained

 Manage memory as list of segments

 Code, heap, stack segments composed

of multiple smaller segments

 Segment table

▪ On early systems

▪ Stored in memory

▪ Tracked large number of segments

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.66

SEGMENTATION GRANULARITY - 2

61 62

63 64

65 66

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/14/2024

L14.12Slides by Wes J. Lloyd

 Consider how much free space?

 We’ll say about 24 KB

 Request arrives to allocate a 20 KB heap

segment

 Can we fulfil the request for 20 KB of

contiguous memory?

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.67

MEMORY FRAGMENTATION

 Supports rearranging memory

 Can we fulfil the request for 20 KB of

contiguous memory?

 Drawback: Compaction is slow

▪ Rearranging memory is time consuming

▪ 64KB is fast

▪ 4GB+ … slow

 Algorithms:

▪ Best fit: keep list of free spaces, allocate the

most snug segment for the request

▪ Others: worst fit, first fit… (in future chapters)

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.68

COMPACTION

 Questions from 5/9

 Assignment 2 - May 31

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 24

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.69

OBJECTIVES – 5/14

CHAPTER 17: FREE

SPACE MANAGEMENT

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L14.70

 Chapter 17: Free Space Management

▪ Fragmentation, Splitting, coalescing

▪ The Free List

▪ Memory Allocation Strategies

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.71

OBJECTIVES – 5/18

 How should free space be managed, when satisfying

variable-sized requests?

 What strategies can be used to minimize fragmentation?

 What are the time and space overheads of alternate

approaches?

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.72

FREE SPACE MANAGEMENT

67 68

69 70

71 72

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/14/2024

L14.13Slides by Wes J. Lloyd

 Management of memory using

 Only fixed-sized units

▪ Easy: keep a list

▪Memory request → return first free entry

▪ Simple search

 With variable sized units

▪More challenging

▪ Results from variable sized malloc requests

▪ Leads to fragmentation

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.73

FREE SPACE MANAGEMENT

 Consider a 30-byte heap

 Request for 15-bytes

 Free space: 20 bytes

 No available contiguous chunk → return NULL

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.74

FRAGMENTATION

 External: OS can compact

▪ Example: Client asks for 100 bytes: malloc(100)

▪ OS: No 100 byte contiguous chunk is available:

 returns NULL

▪Memory is externally fragmented - - Compaction can fix!

 Internal: lost space – OS can’t compact

▪ OS returns memory units that are too large

▪ Example: Client asks for 100 bytes: malloc(100)

▪ OS: Returns 125 byte chunk

▪ Fragmentation is *in* the allocated chunk

▪Memory is lost, and unaccounted for – can’t compact

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.75

FRAGMENTATION - 2

 Request for 1 byte of memory: malloc(1)

 OS locates a free chunk to satisfy request

 Splits chunk into two, returns first chunk

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.76

ALLOCATION STRATEGY: SPLITTING

 Consider 30-byte heap

 Free() frees all 10 bytes segments (l ist of 3-f ree 10-byte chunks)

 Request arrives: malloc(30)

 SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!

 Coalescing regroups chunks into contiguous chunk

 Allocation can now proceed

 Coalescing is defragmentation of the free space list

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.77

ALLOCATION STRATEGY: COALESCING

 free(void *ptr): Does not require a size parameter

 How does the OS know how much memory to free?

 Header block

▪ Small descriptive block of memory at start of chunk

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.78

MEMORY HEADERS

73 74

75 76

77 78

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/14/2024

L14.14Slides by Wes J. Lloyd

 Contains size

 Pointers: for faster memory access

 Magic number: integrity checking

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.79

MEMORY HEADERS - 2

 Size of memory chunk is:

 Header size + user malloc size

 N bytes + sizeof(header)

 Easy to determine address of header

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.80

MEMORY HEADERS - 3

 Simple free list struct

 Use mmap to create free list

 4kb heap, 4 byte header, one contiguous free chunk

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.81

THE FREE LIST

 Create and initialize free- l ist “heap”

 Heap layout:

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.82

FREE LIST - 2

 Consider a request for a 100 bytes: malloc(100)

 Header block requires 8 bytes

▪ 4 bytes for size, 4 bytes for magic number

 Split the heap – header goes with each block

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.83

FREE LIST: MALLOC() CALL

First block
is used

 Addresses of chunks

 Start=16384

+ 108 (end of 1st chunk)

+ 108 (end of 2nd chunk)

+ 108 (end of 3 rd chunk)

= 16708

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.84

FREE LIST: FREE() CALL

Free this
block

79 80

81 82

83 84

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/14/2024

L14.15Slides by Wes J. Lloyd

 Free(sptr)

 Our 3 chunks start at 16 KB

(@ 16,384 bytes)

 Free chunk #2 - sptr

 Sptr = 16500

▪ addr – sizeof(node_t)

 Actual start of chunk #2

▪ 16492

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.85

FREE LIST:

FREE() CHUNK #2

Block
Now Free

 Now free remaining chunks:

 Free(16392)

 Free(16608)

 Walk back 8 bytes for actual
star t of chunk

 External fragmentat ion

 Free chunk pointers
out of order

 Coalescing of next
pointers is needed

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.86

FREE LIST- FREE ALL CHUNKS

 Start with small sized heap

 Request more memory when full

 sbrk(), brk()

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.87

GROWING THE HEAP

Segmented heapSegmented heap

 Best f it

▪ Traverse free list

▪ Identify all candidate free chunks

▪ Note which is smallest (has best fit)

▪When splitting, “leftover” pieces are small

(and potentially less useful -- fragmented)

 Worst f it

▪ Traverse free list

▪ Identify largest free chunk

▪ Split largest free chunk, leaving a still large free chunk

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.88

MEMORY ALLOCATION STRATEGIES

 Allocation request for 15 bytes

 Result of Best Fit

 Result of Worst Fit

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.89

EXAMPLES

 First f i t

▪ Start search at beginning of free list

▪ Find first chunk large enough for request

▪ Split chunk, returning a “fit” chunk, saving the remainder

▪ Avoids full free list traversal of best and worst fit

 Next f i t

▪ Similar to first fit, but start search at last search location

▪ Maintain a pointer that “cycles” through the list

▪ Helps balance chunk distribution vs. first fit

▪ Find first chunk, that is large enough for the request, and split

▪ Avoids full free list traversal

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.90

MEMORY ALLOCATION STRATEGIES - 2

85 86

87 88

89 90

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/14/2024

L14.16Slides by Wes J. Lloyd

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.9
1

 For popular sized requests

e.g. for kernel objects such as locks, inodes, etc.

 Manage as segregated free lists

 Provide object caches: stores pre -initialized objects

 How much memory should be dedicated for specialized

requests (object caches)?

 If a given cache is low in memory, can request “ slabs” of

memory from the general allocator for caches.

 General allocator will reclaim slabs when not used

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.92

SEGREGATED LISTS

 Binary buddy allocation

▪ Divides free space by two to find a block that is big enough to

accommodate the request; the next split is too small…

 Consider a 7KB request

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.93

BUDDY ALLOCATION

 Buddy allocation: suffers from internal fragmentation

 Allocated fragments, typically too large

 Coalescing is simple

▪ Two adjacent blocks are promoted up

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.94

BUDDY ALLOCATION - 2

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.9
5

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.9
6

91 92

93 94

95 96

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/14/2024

L14.17Slides by Wes J. Lloyd

 Questions from 5/9

 Assignment 2 - May 31

 Quiz 3 – Activity -Synchronized Array - Thursday

 Tutorial 2 – Pthread/locks/conditions tutorial-Fri May 24

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

 Chapter 15: Address Translation

 Chapter 16: Segmentation

 Chapter 17: Free Space Management

 Chapter 18: Introduction to Paging

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.97

OBJECTIVES – 5/14

CHAPTER 18:

INTRODUCTION TO

PAGING

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L14.98

 Split up address space of process into fixed sized pieces

called pages

 Alternative to variable sized pieces (Segmentation) which

suffers from significant fragmentation

 Physical memory is split up into an array of fixed -size slots

called page f rames.

 Each process has a page table which translates vir tual

addresses to physical addresses

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.99

PAGING

 Flexibility

▪ Abstracts the process address space into pages

▪ No need to track direction of HEAP / STACK growth

▪ Just add more pages…

▪ No need to store unused space

▪ As with segments…

 Simplicity

▪ Pages and page frames are the same size

▪ Easy to allocate and keep a free list of pages

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.100

ADVANTAGES OF PAGING

 Consider a 128 byte (27) address space

with 16-byte (24) pages

 Consider a 64-byte (26)

program address space

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.101

PAGING: EXAMPLE
Page Table:
VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2 PAGE: Has two address components

▪ VPN: Virtual Page Number (serves as the page ID)

▪ Offset: Offset within a Page (indexes any byte in the page)

 Example:

Page Size: 16-bytes (24),

Program Address Space: 64-bytes (26)

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.102

PAGING: ADDRESS TRANSLATION

Here program can have
just four pages…

97 98

99 100

101 102

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/14/2024

L14.18Slides by Wes J. Lloyd

 Consider a 64-byte (26) program address space (4 pages→22)

 Stored in 128-byte (27) physical memory (8 frames→23)

 Offset is preserved

▪ 4 bits indexes any byte

▪ Page size is 16 bytes (24)

 Page table translates a

Vir tual Page Number (VPN) to

a Physical Frame Number (PFN)

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.103

EXAMPLE:

PAGING ADDRESS TRANSLATION

Page Table:
VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2

 (1) Where are page tables stored?

 (2) What are the typical contents of the page table?

 (3) How big are page tables?

 (4) Does paging make the system too slow?

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.104

PAGING DESIGN QUESTIONS

 Example:

▪ Consider a 32-bit process address space (4GB=232 bytes)

▪With 4 KB pages (4KB=212 bytes)

▪ 20 bits for VPN (220 pages)

▪ 12 bits for the page offset (212 unique bytes in a page)

 Page tables for each process are stored in RAM

▪ Support potential storage of 220 translations

= 1,048,576 pages per process

▪ Each page has a page table entry size of 4 bytes

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.105

(1) WHERE ARE PAGE TABLES STORED?

 With 220 slots in our page table for a single process

 Each slot (i.e. entry) dereferences a VPN

 Each entry provides a physical frame number

 Each entry requires 4 bytes (32 bits)

▪ 20 for the PFN on a 4GB system with 4KB pages

▪ 12 for the offset which is preserved

▪ (note we have no status bits, so this is
unrealistically small)

 How much memory is required to store the page table
for 1 process?

▪ Hint: # of entries x space per entry

▪ 4,194,304 bytes (or 4MB) to index one process

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.106

PAGE TABLE EXAMPLE

VPN0

VPN1

VPN2

…

…

VPN1048576

 If 4 MB is required to store one process

 Consider how much memory is required for an entire OS?

▪ With for example 100 processes…

 Page table memory requirement is now 4MB x 100 = 400MB

 If computer has 4GB memory (maximum for 32 -bits),

the page table consumes 10% of memory

400 MB / 4000 GB

 Is this ef f icient?

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.107

NOW FOR AN ENTIRE OS

 Page table is data structure used to map virtual page

numbers (VPN) to the physical address (Physical Frame

Number PFN)

▪ Linear page table → simple array

 Page-table entry

▪ 32 bits for capturing state

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.108

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

103 104

105 106

107 108

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/14/2024

L14.19Slides by Wes J. Lloyd

 P: present

 R/W: read/write bit

 U/S: supervisor

 A: accessed bit

 D: dirty bit

 PFN: the page frame number

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.109

PAGE TABLE ENTRY

 Common flags:

 Valid Bit: Indicating whether the particular translation is valid.

 Protection Bit: Indicating whether the page could be read

from, written to, or executed from

 Present Bit: Indicating whether this page is in physical

memory or on disk(swapped out)

 Dir ty Bit: Indicating whether the page has been modified since

it was brought into memory

 Reference Bit(Accessed Bit) : Indicating that a page has been

accessed

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.110

PAGE TABLE ENTRY - 2

 Page tables are too big to store on the CPU

 Page tables are stored using physical memory

 Paging supports efficiently storing a sparsely populated

address space

▪ Reduced memory requirement

Compared to base and bounds, and segments

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.111

(3) HOW BIG ARE PAGE TABLES?

 Translation

 Issue #1: Starting location of the page table is
needed

▪HW Support: Page-table base register

▪ stores active process

▪Facilitates translation

 Issue #2: Each memory address translation for paging
requires an extra memory reference

▪HW Support: TLBs (Chapter 19)

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.112

(4) DOES PAGING MAKE

THE SYSTEM TOO SLOW?

Page Table:
VP0 → PF3
VP1 → PF7

VP2 → PF5
VP3 → PF2

Stored in RAM →

1. // Extract the VPN from the virtual address

2. VPN = (VirtualAddress & VPN_MASK) >> SHIFT

3.

4. // Form the address of the page-table entry (PTE)

5. PTEAddr = PTBR + (VPN * sizeof(PTE))

6.

7. // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

9.

10. // Check if process can access the page

11. if (PTE.Valid == False)

12. RaiseException(SEGMENTATION_FAULT)

13. else if (CanAccess(PTE.ProtectBits) == False)

14. RaiseException(PROTECTION_FAULT)

15. else

16. // Access is OK: form physical address and fetch it

17. offset = VirtualAddress & OFFSET_MASK

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset

19. Register = AccessMemory(PhysAddr)

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.113

PAGING MEMORY ACCESS

 Example: Use this Array initialization Code

 Assembly equivalent:

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.114

COUNTING MEMORY ACCESSES

109 110

111 112

113 114

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/14/2024

L14.20Slides by Wes J. Lloyd

 Locations:

▪ Page table

▪ Array

▪ Code

 50 accesses

for 5 loop

iterations

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.115

VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.1
16

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.1
17

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.1
18

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.1
19

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.1
20

115 116

117 118

119 120

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/14/2024

L14.21Slides by Wes J. Lloyd

 Consider a 4GB Computer:

 With a 4096-byte page size (4KB)

 How many pages would fit in physical memory?

 Now consider a page table:

 For the page table entry, how many bits are required for the

VPN?

 If we assume the use of 4-byte (32 bit) page table entries,

how many bits are available for status bits?

 How much space does this page table require?

of page table entries x size of page table entry

 How many page tables (for user processes)

would fill the entire 4GB of memory?

May 14, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L14.121

PAGING SYSTEM EXAMPLE QUESTIONS

121 122

	Slide 1: TCSS 422: Operating Systems
	Slide 2: Midterm review session
	Slide 3: OBJECTIVES – 5/14
	Slide 4: Online daily feedback survey
	Slide 5
	Slide 6: Material / pace
	Slide 7: Feedback from 5/9
	Slide 8: Feedback - 2
	Slide 9: OBJECTIVES – 5/14
	Slide 10: OBJECTIVES – 5/14
	Slide 11: OBJECTIVES – 5/14
	Slide 12: OBJECTIVES – 5/14
	Slide 13: Chapter 13: ADDRESS SPACES
	Slide 14: Early memory management
	Slide 15: Multiprogramming with shared memory
	Slide 16: Address space
	Slide 17: Address space - 2
	Slide 18: Address space - 3
	Slide 19: Virtual addressing
	Slide 20: Virtual addressing - 2
	Slide 21: Goals of OS memory virtualization
	Slide 22: Goals - 2
	Slide 23: OBJECTIVES – 5/14
	Slide 24: Chapter 14: The memory API
	Slide 25: OBJECTIVES – 5/18
	Slide 26: malloc
	Slide 27: Sizeof()
	Slide 28: Free()
	Slide 29
	Slide 30
	Slide 31: Dangling Pointer (1/2)
	Slide 32: Dangling Pointer (2/2)
	Slide 33: Calloc()
	Slide 34: Realloc()
	Slide 35: Double free
	Slide 36: System calls
	Slide 37: We will return at 5:07pm
	Slide 38: OBJECTIVES – 5/14
	Slide 39: Chapter 15: Address translation
	Slide 40: OBJECTIVES – 5/18
	Slide 41: Address translation
	Slide 42: Base and bounds
	Slide 43: Instruction example
	Slide 44: Memory management unit
	Slide 45: Dynamic relocation of programs
	Slide 46: OS support for memory virtualization
	Slide 47: OS: When process starts running
	Slide 48: OS: when process is terminated
	Slide 49: Os: when context switch occurs
	Slide 50: Dynamic relocation
	Slide 51
	Slide 52: OBJECTIVES – 5/14
	Slide 53: Chapter 16: segmentation
	Slide 54: Base and bounds inefficiencies
	Slide 55: MULTIPLE SEGMENTS
	Slide 56: Segments in memory
	Slide 57: Address translation: code segment
	Slide 58: Address translation: heap
	Slide 59: Segmentation fault
	Slide 60: Segment registers
	Slide 61: Segmentation dereference
	Slide 62: Stack segment
	Slide 63: Shared CODE segments
	Slide 64
	Slide 65: Segmentation granularity
	Slide 66: Segmentation granularity - 2
	Slide 67: Memory fragmentation
	Slide 68: Compaction
	Slide 69: OBJECTIVES – 5/14
	Slide 70: Chapter 17: free space management
	Slide 71: OBJECTIVES – 5/18
	Slide 72: Free space management
	Slide 73: Free space management
	Slide 74: fragmentation
	Slide 75: Fragmentation - 2
	Slide 76: Allocation strategy: Splitting
	Slide 77: Allocation strategy: coalescing
	Slide 78: Memory headers
	Slide 79: Memory headers - 2
	Slide 80: Memory headers - 3
	Slide 81: The free list
	Slide 82: Free list - 2
	Slide 83: Free list: malloc() call
	Slide 84: Free list: free() call
	Slide 85: Free list: free() chunk #2
	Slide 86: Free list- free all chunks
	Slide 87: Growing the heap
	Slide 88: Memory allocation strategies
	Slide 89: examples
	Slide 90: Memory allocation strategies - 2
	Slide 91
	Slide 92: Segregated lists
	Slide 93: Buddy allocation
	Slide 94: Buddy allocation - 2
	Slide 95
	Slide 96
	Slide 97: OBJECTIVES – 5/14
	Slide 98: Chapter 18: Introduction to paging
	Slide 99: paging
	Slide 100: Advantages of paging
	Slide 101: Paging: example
	Slide 102: Paging: Address translation
	Slide 103: Example: paging address translation
	Slide 104: Paging design questions
	Slide 105: (1) Where are page tables stored?
	Slide 106: Page table example
	Slide 107: Now for an entire OS
	Slide 108: (2) What’s actually in the page table
	Slide 109: Page table entry
	Slide 110: Page table entry - 2
	Slide 111: (3) How big are page tables?
	Slide 112: (4) Does paging make the system too slow?
	Slide 113: Paging memory access
	Slide 114: Counting memory accesses
	Slide 115: Visualizing Memory accesses: For the first 5 loop iterations
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121: Paging system example
	Slide 122: Questions

