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 Questions from 5/9

 Pthread Tutorial-May 24 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API
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OBJECTIVES – 5/9

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p
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ONLINE DAILY FEEDBACK SURVEY
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 Please classify your perspective on material covered in today’s 

class (26 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average –  6.58  (  -  previous 6.56) 

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average –  5.31 (no change -  previous 5.31)
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 Why does the (bounded) buf fer consist of only 1 element? 

▪ In the textbook example, the initial bounded buffer example

is a single integer

▪ Think of this as an integer array of 1 element

▪ This is initially done for simplicity it teaching the bounded buffer 

concepts

▪ By not having an array, it is not necessary to track the index for 

where elements are added (fill index), and where elements are 

removed (use index) from the bounded buffer

 Why isn’t the buf fer an array of multiple pointers that stores 

data in a FIFO order?

▪ This can be done. For example, we could have an array of matrices, 

where each matrix is a 2-D array of integers on the heap

May 9, 2024
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FEEDBACK FROM 5/7

 Is the buffer in the stack or in the heap?

▪ In signal.c (chapter 30), the bounded buffer is a matrix pointer

which is defined as a global variable in the program’s data segment

 int ** bigmatrix;

▪ Globals are not on the stack or heap, but in the data segment

 How are the memory addresses of  each element in a matrix 

assigned ( in signal.c)?

▪ In GenMatrix(), the 2-D matrix is represented as an array of integer 

arrays

▪ Int *mm is made to point at a row: matrix[ i]

int * mm = matrix[i];

▪ Then, we access the jth element of the row to assign the column value

mm[j] = rand() % ELEMENT_SIZE;

May 9, 2024
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FEEDBACK - 2
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 Questions from 5/9

 Pthread Tutorial-May 24 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API
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OBJECTIVES – 5/9

 Questions from 5/9

 Pthread Tutorial-May 24 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API
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OBJECTIVES – 5/9
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 Questions from 5/9

 Pthread Tutorial-May 24 / Assignment 2 posted next week

 Quiz 3 –  Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API
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OBJECTIVES – 5/9

CHAPTER 30 –

CONDITION VARIABLES
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 Questions from 5/9

 Pthread Tutorial-May 24 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington  -  Tacoma

L13.13

OBJECTIVES – 5/9

 A condition that covers all cases (conditions):

 Excellent use case for pthread_cond_broadcast

 Consider memory allocation:

▪When a program deals with huge memory 
allocation/deallocation on the heap

▪ Access to the heap must be managed when memory is 
scarce 

PREVENT: Out of memory:
- queue requests until memory is free

▪Which thread should be woken up?

May 9, 2024
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COVERING CONDITIONS
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May 9, 2024
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COVERING CONDITIONS - 2

Broadcast

Check available memory

 Broadcast awakens all blocked threads requesting memory

 Each thread evaluates if there’s enough memory: (bytesLeft < 

size)

▪ Reject: requests that cannot be fulfilled- go back to sleep

▪ Insufficient memory

▪ Run: requests which can be fulfilled

▪ with newly available memory!

 Another use case: coordinate a group of busy threads to 

gracefully end, to EXIT the program

 Overhead

▪ Many threads may be awoken which can’t execute

May 9, 2024
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COVER CONDITIONS - 3
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 Offers a combined C language construct that can assume the 
role of a lock or a condition variable depending on usage 

▪ Allows fewer concurrency related variables in your code

▪ Potentially makes code more ambiguous 

▪ For this reason, with limited time in a 
10-week quarter, we do not cover semaphores in TCSS 422

 Ch. 31.6 –  Dining Philosophers Problem

▪ Classic computer science problem about 
sharing eating utensils

▪ Each philosopher tries to obtain two forks
in order to eat

▪ Mimics deadlock as there are not enough forks

▪ Solution is to have one left-handed philosopher 
that grabs forks in opposite order

May 9, 2024 L13.17

CHAPTER 31: SEMAPHORES

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

 Questions from 5/9

 Pthread Tutorial-May 24 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 9, 2024
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OBJECTIVES – 5/9
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CHAPTER 32 –

CONCURRENCY 

PROBLEMS

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L13.19

 “Learning from Mistakes – A Comprehensive Study on 

Real World Concurrency Bug Characteristics”

▪ Shan Lu et al.

▪ Architectural Support For Programming Languages and 

Operating Systems (ASPLOS 2008), Seattle WA

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma
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CONCURRENCY BUGS IN 

OPEN SOURCE SOFTWARE
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 Questions from 5/9

 Pthread Tutorial-May 24 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API
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OBJECTIVES – 5/9

Majority of concurrency bugs

Most common:

▪Atomicity violation: forget to use locks

▪Order violation: failure to initialize lock/condition 

before use

May 9, 2024
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NON-DEADLOCK BUGS
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 Two threads access the proc_info field in struct thd

 NULL is 0 in C

 Mutually exclusive access to shared memory among 

separate threads is not enforced  (e.g. non -atomic)

 Simple example: proc_info deleted

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
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ATOMICITY VIOLATION - MYSQL

Programmer intended
variable to be accessed
atomically… 

 Add locks for all uses of: thd->proc_info

May 9, 2024
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ATOMICITY VIOLATION - SOLUTION
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Desired order between memory accesses is flipped

E.g. something is checked before it is set

Example:

What if mThread is not initialized?

May 9, 2024
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ORDER VIOLATION BUGS

 Use condition & signal to enforce order

May 9, 2024
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ORDER VIOLATION - SOLUTION
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 Use condition & signal to enforce order

May 9, 2024
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ORDER VIOLATION – SOLUTION - 2

97% of Non-Deadlock Bugs were

▪Atomicity

▪Order violations

Consider what is involved in “spotting” these 

bugs in code

▪ >> no use of locking constructs to search for

Desire for automated tool support (IDE)

May 9, 2024
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NON-DEADLOCK BUGS - 1
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Atomicity

▪ How can we tell if a given variable is shared?

▪ Can search the code for uses

▪ How do we know if all instances of its use are shared?

▪ Can some non-synchronized, non-atomic uses be legal?  

▪ Legal uses: before threads are created, after threads exit

▪ Must verify the scope

Order violation

▪Must consider all variable accesses

▪Must know desired order

May 9, 2024
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NON-DEADLOCK BUGS - 2

WE WILL RETURN AT 

4:50PM

May 9, 2024
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 Presence of a cycle in code

 Thread 1 acquires lock L1, waits for lock L2

 Thread 2 acquires lock L2, waits for lock L1

 Both threads can block, unless 

one manages to acquire both locks

May 9, 2024
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DEADLOCK BUGS

 Questions from 5/9

 Pthread Tutorial-May 24 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 9, 2024
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OBJECTIVES – 5/9
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 Complex code

▪ Must avoid circular dependencies – can be hard to find…

 Encapsulation hides potential locking conflicts

▪ Easy-to-use APIs embed locks inside

▪ Programmer doesn’t know they are there

▪ Consider the Java Vector class:

▪ Vector is thread safe (synchronized) by design

▪ If there is a v2.AddAll(v1); call at nearly the same time 

deadlock could result

May 9, 2024
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REASONS FOR DEADLOCKS

Four conditions are required for dead lock to occur

May 9, 2024
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CONDITIONS FOR DEADLOCK
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 Questions from 5/9

 Pthread Tutorial-May 24 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API
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OBJECTIVES – 5/9

 Build wait-free data structures

▪ Eliminate locks altogether 

▪ Build structures using CompareAndSwap atomic CPU (HW) 

instruction

 C pseudo code for CompareAndSwap

 Hardware executes this code atomically

May 9, 2024
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PREVENTION – MUTUAL EXCLUSION
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Recall atomic increment

Compare and Swap tries over and over until 

successful

CompareAndSwap is guaranteed to be atomic

When it runs it is ALWAYS atomic (at HW level)

May 9, 2024
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PREVENTION – MUTUAL EXCLUSION - 2

Consider list insertion

May 9, 2024
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MUTUAL EXCLUSION: LIST INSERTION
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 Lock based implementation

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
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MUTUAL EXCLUSION – LIST INSERTION - 2

Wait free (no lock) implementation

Assign &head to n  (new node ptr)

Only when head = n->next

May 9, 2024
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MUTUAL EXCLUSION – LIST INSERTION - 3

1  void insert(int value) {

2  node_t *n = malloc(sizeof(node_t));

3  assert(n != NULL);

4  n->value = value;

5  do {

6   n->next = head;

7  } while (CompareAndSwap(&head, n->next, n));

8  }
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Four conditions are required for dead lock to occur

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.41

CONDITIONS FOR DEADLOCK

 Problem: acquire all locks atomically

 Solution: use a “lock” “lock”… ( like a guard lock)

 Effective solution – guarantees no race conditions while 

acquiring L1, L2, etc.  

 Order doesn’t matter for L1, L2

 Prevention (GLOBAL) lock decreases concurrency of code

▪ Acts Lowers lock granularity 

 Encapsulation: consider the Java Vector class…

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.42

PREVENTION LOCK – HOLD AND WAIT
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Four conditions are required for dead lock to occur

May 9, 2024
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CONDITIONS FOR DEADLOCK

When acquiring locks, don’t BLOCK forever if 

unavailable…

pthread_mutex_trylock() - try once

pthread_mutex_timedlock() - try and wait awhile

Eliminates deadlocks

May 9, 2024
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PREVENTION – NO PREEMPTION
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Can lead to livelock

 Two threads execute code in parallel → 

 always fail to obtain both locks

Fix: add random delay 

▪Allows one thread to win the 

livelock race!

May 9, 2024
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NO PREEMPTION – LIVELOCKS PROBLEM

Four conditions are required for dead lock to occur

May 9, 2024
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CONDITIONS FOR DEADLOCK
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Provide total ordering of lock acquisition 

throughout code

▪Always acquire locks in same order

▪L1, L2, L3, …

▪Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2….

Must carry out same ordering through entire 

program

May 9, 2024
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PREVENTION – CIRCULAR WAIT

 If any of the following conditions DOES NOT 

EXSIST, describe why deadlock can not occur?

May 9, 2024
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CONDITIONS FOR DEADLOCK
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May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington  -  Tacoma

L10.4
9

Consider a smart scheduler

▪Scheduler knows which locks threads use

Consider this scenario: 

▪4 Threads (T1, T2, T3, T4)

▪2 Locks (L1, L2)

Lock requirements of threads:

May 9, 2024
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DEADLOCK AVOIDANCE 

VIA INTELLIGENT SCHEDULING
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Scheduler produces schedule:

No deadlock can occur

Consider:

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.51

INTELLIGENT SCHEDULING - 2

 Scheduler produces schedule

 Scheduler must be conservative and not take risks

 Slows down execution – many threads 

 There has been limited use of these approaches given the 

difficulty having intimate lock knowledge about every 

thread

May 9, 2024
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INTELLIGENT SCHEDULING - 3
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 Allow deadlock to occasionally occur and then take some 

action.

▪ Example: When OS freezes, reboot…

 How often is this acceptable?

▪ Once per year

▪ Once per month

▪ Once per day

▪ Consider the effort tradeoff of finding every deadlock bug

 Many database systems employ deadlock detection and 

recovery techniques.

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.53

DETECT AND RECOVER

 Questions from 5/9

 Pthread Tutorial-May 24 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 9, 2024
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OBJECTIVES – 5/9
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CHAPTER 13: 

ADDRESS SPACES

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L13.55

 Chapter 13: Introduction to memory vir tualization

▪ The address space

▪ Goals of OS memory virtualization

 Chapter 14: Memory API

▪ Common memory errors

May 9, 2024
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OBJECTIVES – 5/9
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 What is memory virtualization?

 This is not “virtual” memory, 

▪ Classic use of disk space as additional RAM

▪When available RAM was low

▪ Less common recently

May 9, 2024
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MEMORY VIRTUALIZATION

 Presentation of system memory to each process

 Appears as if each process can access the entire 

machine’s address space

 Each process’s view of memory is isolated from others

 Everyone has their own sandbox

May 9, 2024
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MEMORY VIRTUALIZATION - 2

Process A Process B Process C
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 Easier to program

▪ Programs don’t need to understand special memory models

 Abstraction enables sophisticated approaches to manage 
and share memory among processes

 Isolation

▪ From other processes: easier to code

 Protection

▪ From other processes

▪ From programmer error (segmentation fault)

May 9, 2024
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MOTIVATION FOR 

MEMORY VIRTUALIZATION

 Load one process at a time into memory

Poor memory utilization

Little abstraction

May 9, 2024
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EARLY MEMORY MANAGEMENT
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 Later machines supported running multiple 

processes

 Swap out processes during I/O waits to 

increase system utilization and efficiency

 Swap entire memory of a process to disk 

for context switch

 Too slow, especially for large processes

 Solution→

▪ Leave processes in memory

 Need to protect from errant memory 

accesses in a multiprocessing environment

May 9, 2024
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MULTIPROGRAMMING 

WITH SHARED MEMORY

Easy-to-use abstraction of physical 

memory for a process

Main elements:

▪Program code

▪Stack

▪Heap

Example: 16KB address space

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.62

ADDRESS SPACE
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 Code

▪ Program code

 Stack

▪ Program counter (PC)

▪ Local variables

▪ Parameter variables

▪ Return values (for functions)

 Heap

▪ Dynamic storage

▪ Malloc() new()

May 9, 2024
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ADDRESS SPACE - 2

 Program code

▪ Static size

 Heap and stack

▪ Dynamic size

▪ Grow and shrink during program execution

▪ Placed at opposite ends

 Addresses are virtual

▪ They must be physically mapped by the OS
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ADDRESS SPACE - 3
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Every address is virtual

▪OS translates virtual to physical addresses

▪EXAMPLE: virtual.c
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VIRTUAL ADDRESSING

 Output from 64-bit Linux:
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VIRTUAL ADDRESSING - 2

location of code: 0x400686

location of heap: 0x1129420
location of stack: 0x7ffe040d77e4
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 Transparency

▪Memory shouldn’t appear virtualized to the program

▪ OS multiplexes memory among different jobs behind the 

scenes

 Protection

▪ Isolation among processes

▪ OS itself must be isolated

▪ One program should not be able to affect another 

(or the OS)
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GOALS OF 

OS MEMORY VIRTUALIZATION

Efficiency

▪Time

▪ Performance: virtualization must be fast

▪Space

▪ Virtualization must not waste space

▪ Consider data structures for organizing memory

▪ Hardware support TLB: Translation Lookaside Buffer

Goals considered when evaluating memory 
virtualization schemes
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GOALS - 2
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 Questions from 5/9

 Pthread Tutorial-May 24 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington  -  Tacoma

L13.69

OBJECTIVES – 5/9

CHAPTER 14: THE 

MEMORY API
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 Chapter 13: Introduction to memory vir tualization

▪ The address space

▪ Goals of OS memory virtualization

 Chapter 14: Memory API

▪ Common memory errors
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OBJECTIVES – 5/9

 Allocates memory on the heap

 size_t unsigned integer (must be +)

 size  size of memory allocation in bytes

 Returns

 SUCCESS: A void * to a memory address

 FAIL: NULL

 sizeof() often used to ask the system how large a given 

datatype or struct is
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MALLOC
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 Not safe to assume 

data type sizes using 

dif ferent compilers, 

systems

 Dynamic array of 10 ints

 Static array of 10 ints
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SIZEOF()

 Free memory allocated with malloc()

 Provide: (void *) ptr to malloc’d  memory

 Returns: nothing
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FREE()
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75

#include<stdio.h>
 

int * set_magic_number_a()
{
  int a =53247; 
  return &a;
}

void set_magic_number_b() 
{
  int b = 11111;
}

int main()
{
  int * x = NULL;
  x = set_magic_number_a();
  printf("The magic number is=%d\n“,*x);
  set_magic_number_b();
  printf(“The magic number is=%d\n“,*x);
  return 0;
}

What will this code do?

76

#include<stdio.h>
 

int * set_magic_number_a()
{
  int a =53247; 
  return &a;
}

void set_magic_number_b() 
{
  int b = 11111;
}

int main()
{
  int * x = NULL;
  x = set_magic_number_a();
  printf("The magic number is=%d\n“,*x);
  set_magic_number_b();
  printf("The magic number is=%d\n“,*x);
  return 0;
}

Output:
$ ./pointer_error 

The magic number is=53247

The magic number is=11111

What will this code do?

We have not changed *x but 

the value has changed!!

Why?
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 Dangling pointers arise when a variable referred (a) goes 

“out of scope”, and it’s memory is destroyed/overwritten

(by b) without modifying the value of the pointer (*x).

 The pointer still points to the original memory location 

of the deallocated memory (a), 

which has now been reclaimed for (b).

DANGLING POINTER (1/2)
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Fortunately in the case, a compiler warning 
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int* 
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local 
variable ‘a’ returned [enabled by default]

This is a common mistake - - - 
accidentally referring to addresses that have 
gone “out of scope”  

DANGLING POINTER (2/2)
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 Allocate “C”lear  memory on the heap

 Calloc wipes memory in advance of use…

 size_t num :  number of blocks to allocate

 size_t size :  size of each block(in bytes)

 Calloc() prevents…
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CALLOC()

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=��F

 Resize an existing memory allocation

 Returned pointer may be same address, or a new address

▪ New if memory allocation must move

 void *ptr: Pointer to memory block allocated with malloc, 

calloc, or realloc

 size_t size: New size for the memory block(in bytes)

 EXAMPLE: realloc.c

 EXAMPLE: nom.c
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REALLOC()
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 Can’t deallocate twice

 Second call core dumps
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DOUBLE FREE

brk(), sbrk()

 Used to change data segment size (the end of the heap)

 Don’t use these

Mmap(), munmap()

 Can be used to create an extra independent “heap” of memory 

for a user program

 See man page
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SYSTEM CALLS
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QUESTIONS

83
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