
TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L13.1Slides by Wes J. Lloyd

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

Condition Variables II,
Concurrency Problems

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

SPECIAL TIME THURSDAY MAY 9

Thursday Office Hours

▪6:00pm to 7:00 pm – CP 229 and Zoom

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.2

OFFICE HOURS – THURSDAY

 Questions from 5/9

 Pthread Tutorial-May 24 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.3

OBJECTIVES – 5/9

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

May 9, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.4

ONLINE DAILY FEEDBACK SURVEY

May 9, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L13.5

 Please classify your perspective on material covered in today’s

class (26 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.58 (- previous 6.56)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.31 (no change - previous 5.31)

May 9, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.6

MATERIAL / PACE

1 2

3 4

5 6

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L13.2Slides by Wes J. Lloyd

 Why does the (bounded) buffer consist of only 1 element?

▪ In the textbook example, the initial bounded buffer example

is a single integer

▪ Think of this as an integer array of 1 element

▪ This is initially done for simplicity it teaching the bounded buffer

concepts

▪ By not having an array, it is not necessary to track the index for

where elements are added (fill index), and where elements are

removed (use index) from the bounded buffer

 Why isn’t the buffer an array of multiple pointers that stores

data in a FIFO order?

▪ This can be done. For example, we could have an array of matrices,

where each matrix is a 2-D array of integers on the heap

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.7

FEEDBACK FROM 5/7

 Is the buffer in the s tack or in the heap?

▪ In signal.c (chapter 30), the bounded buffer is a matrix pointer

which is defined as a global variable in the program’s data segment

 int ** bigmatrix;

▪ Globals are not on the stack or heap, but in the data segment

 How are the memory addresses o f each element in a matrix

assigned (in s ignal.c)?

▪ In GenMatrix(), the 2-D matrix is represented as an array of integer

arrays

▪ Int *mm is made to point at a row: matrix[i]

int * mm = matrix[i];

▪ Then, we access the jth element of the row to assign the column value

mm[j] = rand() % ELEMENT_SIZE;

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.8

FEEDBACK - 2

 Questions from 5/9

 Pthread Tutorial-May 24 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.9

OBJECTIVES – 5/9

 Questions from 5/9

 Pthread Tutorial-May 24 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.10

OBJECTIVES – 5/9

 Questions from 5/9

 Pthread Tutorial-May 24 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.11

OBJECTIVES – 5/9

CHAPTER 30 –

CONDITION VARIABLES

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.1
2

7 8

9 10

11 12

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L13.3Slides by Wes J. Lloyd

 Questions from 5/9

 Pthread Tutorial-May 24 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.13

OBJECTIVES – 5/9

 A condition that covers all cases (conditions):

 Excellent use case for pthread_cond_broadcast

 Consider memory allocation:

▪When a program deals with huge memory
allocation/deallocation on the heap

▪ Access to the heap must be managed when memory is
scarce

PREVENT: Out of memory:
- queue requests until memory is free

▪Which thread should be woken up?

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.14

COVERING CONDITIONS

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.15

COVERING CONDITIONS - 2

Broadcast

Check available memory

 Broadcast awakens all blocked threads requesting memory

 Each thread evaluates if there’s enough memory: (bytesLeft <

size)

▪ Reject: requests that cannot be fulfilled- go back to sleep

▪ Insufficient memory

▪ Run: requests which can be fulfilled

▪ with newly available memory!

 Another use case: coordinate a group of busy threads to

gracefully end, to EXIT the program

 Overhead

▪ Many threads may be awoken which can’t execute

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.16

COVER CONDITIONS - 3

 Offers a combined C language construct that can assume the
role of a lock or a condition variable depending on usage

▪ Allows fewer concurrency related variables in your code

▪ Potentially makes code more ambiguous

▪ For this reason, with limited time in a
10-week quarter, we do not cover semaphores in TCSS 422

 Ch. 31.6 – Dining Philosophers Problem

▪ Classic computer science problem about
sharing eating utensils

▪ Each philosopher tries to obtain two forks
in order to eat

▪ Mimics deadlock as there are not enough forks

▪ Solution is to have one left-handed philosopher
that grabs forks in opposite order

May 9, 2024 L13.17

CHAPTER 31: SEMAPHORES

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

 Questions from 5/9

 Pthread Tutorial-May 24 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.18

OBJECTIVES – 5/9

13 14

15 16

17 18

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L13.4Slides by Wes J. Lloyd

CHAPTER 32 –

CONCURRENCY

PROBLEMS

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L13.19

 “Learning from Mistakes – A Comprehensive Study on

Real World Concurrency Bug Characteristics”

▪ Shan Lu et al.

▪ Architectural Support For Programming Languages and

Operating Systems (ASPLOS 2008), Seattle WA

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.20

CONCURRENCY BUGS IN

OPEN SOURCE SOFTWARE

 Questions from 5/9

 Pthread Tutorial-May 24 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.21

OBJECTIVES – 5/9

Majority of concurrency bugs

Most common:

▪Atomicity violation: forget to use locks

▪Order violation: failure to initialize lock/condition

before use

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.22

NON-DEADLOCK BUGS

 Two threads access the proc_info field in struct thd

 NULL is 0 in C

 Mutually exclusive access to shared memory among

separate threads is not enforced (e.g. non -atomic)

 Simple example: proc_info deleted

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.23

ATOMICITY VIOLATION - MYSQL

Programmer intended
variable to be accessed
atomically…

 Add locks for all uses of: thd->proc_info

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.24

ATOMICITY VIOLATION - SOLUTION

19 20

21 22

23 24

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L13.5Slides by Wes J. Lloyd

Desired order between memory accesses is flipped

E.g. something is checked before it is set

Example:

What if mThread is not initialized?

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.25

ORDER VIOLATION BUGS

 Use condition & signal to enforce order

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.26

ORDER VIOLATION - SOLUTION

 Use condit ion & signal to enforce order

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.27

ORDER VIOLATION – SOLUTION - 2

97% of Non-Deadlock Bugs were

▪Atomicity

▪Order violations

Consider what is involved in “spotting” these

bugs in code

▪ >> no use of locking constructs to search for

Desire for automated tool support (IDE)

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.28

NON-DEADLOCK BUGS - 1

Atomicity

▪ How can we tell if a given variable is shared?

▪ Can search the code for uses

▪ How do we know if all instances of its use are shared?

▪ Can some non-synchronized, non-atomic uses be legal?

▪ Legal uses: before threads are created, after threads exit

▪ Must verify the scope

Order violation

▪Must consider all variable accesses

▪Must know desired order

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.29

NON-DEADLOCK BUGS - 2

WE WILL RETURN AT

4:50PM

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.3
0

25 26

27 28

29 30

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L13.6Slides by Wes J. Lloyd

 Presence of a cycle in code

 Thread 1 acquires lock L1, waits for lock L2

 Thread 2 acquires lock L2, waits for lock L1

 Both threads can block, unless

one manages to acquire both locks

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.31

DEADLOCK BUGS

 Questions from 5/9

 Pthread Tutorial-May 24 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.32

OBJECTIVES – 5/9

 Complex code

▪ Must avoid circular dependencies – can be hard to find…

 Encapsulation hides potential locking conflicts

▪ Easy-to-use APIs embed locks inside

▪ Programmer doesn’t know they are there

▪ Consider the Java Vector class:

▪ Vector is thread safe (synchronized) by design

▪ If there is a v2.AddAll(v1); call at nearly the same time

deadlock could result

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.33

REASONS FOR DEADLOCKS

 Four conditions are required for dead lock to occur

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.34

CONDITIONS FOR DEADLOCK

 Questions from 5/9

 Pthread Tutorial-May 24 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.35

OBJECTIVES – 5/9

 Build wait-free data structures

▪ Eliminate locks altogether

▪ Build structures using CompareAndSwap atomic CPU (HW)

instruction

 C pseudo code for CompareAndSwap

 Hardware executes this code atomically

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.36

PREVENTION – MUTUAL EXCLUSION

31 32

33 34

35 36

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L13.7Slides by Wes J. Lloyd

Recall atomic increment

Compare and Swap tries over and over until

successful

CompareAndSwap is guaranteed to be atomic

When it runs it is ALWAYS atomic (at HW level)

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.37

PREVENTION – MUTUAL EXCLUSION - 2

Consider list insertion

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.38

MUTUAL EXCLUSION: LIST INSERTION

 Lock based implementation

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.39

MUTUAL EXCLUSION – LIST INSERTION - 2

Wait free (no lock) implementation

Assign &head to n (new node ptr)

Only when head = n->next

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.40

MUTUAL EXCLUSION – LIST INSERTION - 3

1 void insert(int value) {

2 node_t *n = malloc(sizeof(node_t));

3 assert(n != NULL);

4 n->value = value;

5 do {

6 n->next = head;

7 } while (CompareAndSwap(&head, n->next, n));

8 }

 Four conditions are required for dead lock to occur

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.41

CONDITIONS FOR DEADLOCK

 Problem: acquire all locks atomically

 Solution: use a “lock” “lock”… (like a guard lock)

 Effective solution – guarantees no race conditions while

acquiring L1, L2, etc.

 Order doesn’t matter for L1, L2

 Prevention (GLOBAL) lock decreases concurrency of code

▪ Acts Lowers lock granularity

 Encapsulation: consider the Java Vector class…

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.42

PREVENTION LOCK – HOLD AND WAIT

37 38

39 40

41 42

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L13.8Slides by Wes J. Lloyd

 Four conditions are required for dead lock to occur

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.43

CONDITIONS FOR DEADLOCK

When acquiring locks, don’t BLOCK forever if

unavailable…

pthread_mutex_trylock() - try once

pthread_mutex_timedlock() - try and wait awhile

Eliminates deadlocks

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.44

PREVENTION – NO PREEMPTION

Can lead to livelock

 Two threads execute code in parallel →

 always fail to obtain both locks

 Fix: add random delay

▪Allows one thread to win the

livelock race!

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.45

NO PREEMPTION – LIVELOCKS PROBLEM

 Four conditions are required for dead lock to occur

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.46

CONDITIONS FOR DEADLOCK

Provide total ordering of lock acquisition

throughout code

▪Always acquire locks in same order

▪L1, L2, L3, …

▪Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2….

Must carry out same ordering through entire

program

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.47

PREVENTION – CIRCULAR WAIT

 If any of the following conditions DOES NOT

EXSIST, describe why deadlock can not occur?

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.48

CONDITIONS FOR DEADLOCK

43 44

45 46

47 48

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L13.9Slides by Wes J. Lloyd

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.4
9

Consider a smart scheduler

▪Scheduler knows which locks threads use

Consider this scenario:

▪4 Threads (T1, T2, T3, T4)

▪2 Locks (L1, L2)

 Lock requirements of threads:

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.50

DEADLOCK AVOIDANCE

VIA INTELLIGENT SCHEDULING

Scheduler produces schedule:

No deadlock can occur

Consider:

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.51

INTELLIGENT SCHEDULING - 2

 Scheduler produces schedule

 Scheduler must be conservative and not take risks

 Slows down execution – many threads

 There has been limited use of these approaches given the

difficulty having intimate lock knowledge about every

thread

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.52

INTELLIGENT SCHEDULING - 3

 Allow deadlock to occasionally occur and then take some

action.

▪ Example: When OS freezes, reboot…

 How often is this acceptable?

▪ Once per year

▪ Once per month

▪ Once per day

▪ Consider the effort tradeoff of finding every deadlock bug

 Many database systems employ deadlock detection and

recovery techniques.

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.53

DETECT AND RECOVER

 Questions from 5/9

 Pthread Tutorial-May 24 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.54

OBJECTIVES – 5/9

49 50

51 52

53 54

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L13.10Slides by Wes J. Lloyd

CHAPTER 13:

ADDRESS SPACES

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L13.55

 Chapter 13: Introduction to memory v i r tualization

▪ The address space

▪ Goals of OS memory virtualization

 Chapter 14: Memory API

▪ Common memory errors

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.56

OBJECTIVES – 5/9

 What is memory virtualization?

 This is not “virtual” memory,

▪ Classic use of disk space as additional RAM

▪When available RAM was low

▪ Less common recently

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.57

MEMORY VIRTUALIZATION

 Presentation of system memory to each process

 Appears as if each process can access the entire

machine’s address space

 Each process’s view of memory is isolated from others

 Everyone has their own sandbox

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.58

MEMORY VIRTUALIZATION - 2

Process A Process B Process C

 Easier to program

▪ Programs don’t need to understand special memory models

 Abstraction enables sophisticated approaches to manage
and share memory among processes

 Isolation

▪ From other processes: easier to code

 Protection

▪ From other processes

▪ From programmer error (segmentation fault)

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.59

MOTIVATION FOR

MEMORY VIRTUALIZATION

 Load one process at a time into memory

Poor memory utilization

 Little abstraction

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.60

EARLY MEMORY MANAGEMENT

55 56

57 58

59 60

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L13.11Slides by Wes J. Lloyd

 Later machines supported running multiple

processes

 Swap out processes during I/O waits to

increase system utilization and efficiency

 Swap entire memory of a process to disk

for context switch

 Too slow, especially for large processes

 Solution→

▪ Leave processes in memory

 Need to protect from errant memory

accesses in a multiprocessing environment

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.61

MULTIPROGRAMMING

WITH SHARED MEMORY

Easy-to-use abstraction of physical

memory for a process

Main elements:

▪Program code

▪Stack

▪Heap

Example: 16KB address space

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.62

ADDRESS SPACE

 Code

▪ Program code

 Stack

▪ Program counter (PC)

▪ Local variables

▪ Parameter variables

▪ Return values (for functions)

 Heap

▪ Dynamic storage

▪ Malloc() new()

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.63

ADDRESS SPACE - 2

 Program code

▪ Static size

 Heap and stack

▪ Dynamic size

▪ Grow and shrink during program execution

▪ Placed at opposite ends

 Addresses are vir tual

▪ They must be physically mapped by the OS

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.64

ADDRESS SPACE - 3

Every address is virtual

▪OS translates virtual to physical addresses

▪EXAMPLE: virtual.c

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.65

VIRTUAL ADDRESSING

 Output from 64-bit Linux:

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.66

VIRTUAL ADDRESSING - 2

location of code: 0x400686
location of heap: 0x1129420
location of stack: 0x7ffe040d77e4

61 62

63 64

65 66

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L13.12Slides by Wes J. Lloyd

 Transparency

▪Memory shouldn’t appear virtualized to the program

▪ OS multiplexes memory among different jobs behind the

scenes

 Protection

▪ Isolation among processes

▪ OS itself must be isolated

▪ One program should not be able to affect another

(or the OS)

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.67

GOALS OF

OS MEMORY VIRTUALIZATION

Efficiency

▪Time

▪ Performance: virtualization must be fast

▪Space

▪ Virtualization must not waste space

▪ Consider data structures for organizing memory

▪ Hardware support TLB: Translation Lookaside Buffer

Goals considered when evaluating memory
virtualization schemes

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.68

GOALS - 2

 Questions from 5/9

 Pthread Tutorial-May 24 / Assignment 2 posted next week

 Quiz 3 – Synchronized Array (class activity -next week)

 Chapter 30: Condition Variables

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

 Chapter 13: Address Spaces

 Chapter 14: The Memory API

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.69

OBJECTIVES – 5/9

CHAPTER 14: THE

MEMORY API

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L13.70

 Chapter 13: Introduction to memory v i r tualization

▪ The address space

▪ Goals of OS memory virtualization

 Chapter 14: Memory API

▪ Common memory errors

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.71

OBJECTIVES – 5/9

 Allocates memory on the heap

 size_t unsigned integer (must be +)

 size size of memory allocation in bytes

 Returns

 SUCCESS: A void * to a memory address

 FAIL: NULL

 sizeof() of ten used to ask the system how large a given

datatype or struct is

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.72

MALLOC

67 68

69 70

71 72

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L13.13Slides by Wes J. Lloyd

 Not safe to assume

data type sizes using

dif ferent compilers,

systems

 Dynamic array of 10 ints

 Static array of 10 ints

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.73

SIZEOF()

 Free memory allocated with malloc()

 Provide: (void *) ptr to malloc’d memory

 Returns: nothing

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.74

FREE()

75

#include<stdio.h>

int * set_magic_number_a()
{
 int a =53247;
 return &a;
}

void set_magic_number_b()
{
 int b = 11111;
}

int main()
{
 int * x = NULL;
 x = set_magic_number_a();
 printf("The magic number is=%d\n“,*x);
 set_magic_number_b();
 printf(“The magic number is=%d\n“,*x);
 return 0;
}

What will this code do?

76

#include<stdio.h>

int * set_magic_number_a()
{
 int a =53247;
 return &a;
}

void set_magic_number_b()
{
 int b = 11111;
}

int main()
{
 int * x = NULL;
 x = set_magic_number_a();
 printf("The magic number is=%d\n“,*x);
 set_magic_number_b();
 printf("The magic number is=%d\n“,*x);
 return 0;
}

Output:
$./pointer_error

The magic number is=53247

The magic number is=11111

What will this code do?

We have not changed *x but
the value has changed!!

Why?

 Dangling pointers arise when a variable referred (a) goes

“out of scope”, and it’s memory is destroyed/overwritten

(by b) without modifying the value of the pointer (*x).

 The pointer still points to the original memory location

of the deallocated memory (a),

which has now been reclaimed for (b).

DANGLING POINTER (1/2)

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.77

Fortunately in the case, a compiler warning
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int*
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local
variable ‘a’ returned [enabled by default]

This is a common mistake - - -
accidentally referring to addresses that have
gone “out of scope”

DANGLING POINTER (2/2)

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.78

73 74

75 76

77 78

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L13.14Slides by Wes J. Lloyd

 Allocate “C”lear memory on the heap

 Calloc wipes memory in advance of use…

 size_t num : number of blocks to allocate

 size_t size : size of each block(in bytes)

 Calloc() prevents…

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.79

CALLOC()

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=��F

 Resize an existing memory allocation

 Returned pointer may be same address, or a new address

▪ New if memory allocation must move

 void *ptr: Pointer to memory block allocated with malloc,
calloc, or realloc

 size_t size: New size for the memory block(in bytes)

 EXAMPLE: realloc.c

 EXAMPLE: nom.c

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.80

REALLOC()

 Can’t deallocate twice

 Second call core dumps

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.81

DOUBLE FREE

brk(), sbrk()

 Used to change data segment size (the end of the heap)

 Don’t use these

Mmap(), munmap()

 Can be used to create an extra independent “heap” of memory

for a user program

 See man page

May 9, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L13.82

SYSTEM CALLS

QUESTIONS

79 80

81 82

83

	Slide 1: TCSS 422: Operating Systems
	Slide 2: Office hours – THURSDAY
	Slide 3: OBJECTIVES – 5/9
	Slide 4: Online daily feedback survey
	Slide 5
	Slide 6: Material / pace
	Slide 7: Feedback from 5/7
	Slide 8: Feedback - 2
	Slide 9: OBJECTIVES – 5/9
	Slide 10: OBJECTIVES – 5/9
	Slide 11: OBJECTIVES – 5/9
	Slide 12: Chapter 30 – condition variables
	Slide 13: OBJECTIVES – 5/9
	Slide 14: Covering conditions
	Slide 15: Covering conditions - 2
	Slide 16: Cover conditions - 3
	Slide 17: Chapter 31: Semaphores
	Slide 18: OBJECTIVES – 5/9
	Slide 19: Chapter 32 – concurrency problems
	Slide 20: Concurrency bugs in open source software
	Slide 21: OBJECTIVES – 5/9
	Slide 22: Non-deadlock bugs
	Slide 23: Atomicity violation - mysql
	Slide 24: Atomicity violation - solution
	Slide 25: Order violation bugs
	Slide 26: Order violation - solution
	Slide 27: Order violation – solution - 2
	Slide 28: Non-deadlock bugs - 1
	Slide 29: Non-deadlock bugs - 2
	Slide 30: We will return at 4:50pm
	Slide 31: Deadlock bugs
	Slide 32: OBJECTIVES – 5/9
	Slide 33: Reasons for deadlocks
	Slide 34: Conditions for deadlock
	Slide 35: OBJECTIVES – 5/9
	Slide 36: Prevention – mutual exclusion
	Slide 37: Prevention – mutual exclusion - 2
	Slide 38: mutual exclusion: List insertion
	Slide 39: mutual exclusion – list insertion - 2
	Slide 40: Mutual exclusion – list insertion - 3
	Slide 41: Conditions for deadlock
	Slide 42: Prevention lock – hold and wait
	Slide 43: Conditions for deadlock
	Slide 44: Prevention – no preemption
	Slide 45: No preemption – livelocks problem
	Slide 46: Conditions for deadlock
	Slide 47: Prevention – circular wait
	Slide 48: Conditions for deadlock
	Slide 49
	Slide 50: Deadlock avoidance via intelligent scheduling
	Slide 51: Intelligent scheduling - 2
	Slide 52: Intelligent scheduling - 3
	Slide 53: Detect and recover
	Slide 54: OBJECTIVES – 5/9
	Slide 55: Chapter 13: ADDRESS SPACES
	Slide 56: OBJECTIVES – 5/9
	Slide 57: Memory virtualization
	Slide 58: Memory virtualization - 2
	Slide 59: Motivation for memory virtualization
	Slide 60: Early memory management
	Slide 61: Multiprogramming with shared memory
	Slide 62: Address space
	Slide 63: Address space - 2
	Slide 64: Address space - 3
	Slide 65: Virtual addressing
	Slide 66: Virtual addressing - 2
	Slide 67: Goals of OS memory virtualization
	Slide 68: Goals - 2
	Slide 69: OBJECTIVES – 5/9
	Slide 70: Chapter 14: The memory API
	Slide 71: OBJECTIVES – 5/9
	Slide 72: malloc
	Slide 73: Sizeof()
	Slide 74: Free()
	Slide 75
	Slide 76
	Slide 77: Dangling Pointer (1/2)
	Slide 78: Dangling Pointer (2/2)
	Slide 79: Calloc()
	Slide 80: Realloc()
	Slide 81: Double free
	Slide 82: System calls
	Slide 83: Questions

