TCSS 422 A — Spring 2025
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Lock-based data structures I, ¢
Condition Variables,
Concurrency Problems

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCS5422: Operating Systems [Spring 2025]
prayis 202 School of Engineering and Technology, University of Washington

5/13/2025

OBJECTIVES - 5/13

| = Questions from 5/6 & Midterm Distribution |
= Assignment O Grades Posted
= Assignment 1 - May 13 --> May 16
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

‘TCSS422: Operating Systems [Spring 2025]

L) School of Engineering and Technology, University of Washington - Tacoma

122

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TCS5422A > Assignments

Spring 2021
Home

Announcements

Zoom + Upcoming Assignments
Syliabus s TCS5422 - Online Daly Feedback Survey - 4/1
i % Avallable until Apr 5 at 11:5%pm | Due Apr3at 10pm | /1 pts

Diccucsinne Auian. e P

TCS5422: Computer Operating Systems [Spring 2025]

[Mayi3;2022] School of Engineering and Technology, University of Washington - Tacoma

123

TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions

Question 1 05ps

On.a scale of 1 10 10, please classify your perspective on material covered in today's
el

1 2 3 s s s 7 8 % 1
macly. el metly
mevien 18 e a0 nevien e e

Question 2 05pt

Piease rate the pace of today's class:

TCSS422: Computer Operating Systems [Spring 2025]

evits 2020 School of Engineering and Technology, University of Washington - Tacoma L124

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (48 of 63 respondents - 76.2%):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.08 (\ - previous 6.70)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 4.90 ({ - previous 5.24)

TCS5422: Computer Operating Systems [Spring 20251

LEJELETD School of Engineering and Technology, University of Washington -Tacoma

25

FEEDBACK FROM 5/6

= What exactly is the difference between the terms
concurrency and parallelism?

= This depends on if the computer has 1 or more CPU cores

= On a single CPU core computer:
Concurrency is when multiple tasks can run in
overlapping periods. It's an illusion of multiple tasks
running in parallel because of a very fast switching by the
CPU. The two tasks don’t actually run at the same time on
a single-core CPU.

= Parallelism is when tasks actually run in parallel in
multiple CPUs (or hyperthreads)

TCS5422: Operating Systems [Spring 2025]

LD School of Engineering and Technology, University of Washington - Tacoma

1126

Slides by Wes J. Lloyd

L12.1

TCSS 422 A — Spring 2025
School of Engineering and Technology

FEEDBACK - 2

= What would we say the Ideal sloppy threshold Is?

= |t is subject to our needs?

= Or is there a way to find a mid point between accuracy and
efficlency?

= The ideal sloppy threshold depends on the goal.

= |f your goal is accuracy, chose a low number

= If your goal is performance, chose a high number

= |f your goal is both, you’ll need to pick a number in-between to
balance the trade-off between accuracy and performance

TCSS422: Operating Systems [Spring 2025]
‘ PaVS 2025 School of Engineering and Technology, University of Washington - Tacoma 27

5/13/2025

MIDTERM RESULTS

= Statlstics

= Average: 78.81

= Mode: 84.0

= Median: 80.0

= Min score: 45

= Lower quartile: 77.00
= 2nd quartile: 80.0

= 31 quartile: 84

¥ of students
oy
o I—
e —
o
o —

= Max score: 91 ' %e5%% X

= Standard deviation: S 1SS 4224 Spring 2025 Wickerm
8.93

= Curve: +7

= Question 2 Correction: +4

TCSS562: Software Engineering for Cloud Computing (Spring 2025

‘ L) School of Engineering and Technology, University of Washington - Tacoma

128

OBJECTIVES - 5/13

= Questions from 5/6 & Midterm Distribution
| = Asslgnment 0 Grades Posted]

= Assignment 1 - May 13 --> May 16
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures

= Approximate Counter (Sloppy Counter)

= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables

= Producer/Consumer

= Covering Conditions
= Chapter 32: Concurrency Problems

= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention

TCSS422: Operating Systems [Spring 2025] 1129
School of Engineering and Technology, University of Washington - Tacoma

‘ May 13, 2025

OBJECTIVES - 5/13

= Questions from 5/6 & Midterm Distribution
= Assignment O Grades Posted
| = Assignment 1 - May 13 --> May 16 |

= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures

= Approximate Counter (Sloppy Counter)

= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables

= Producer/Consumer

= Covering Conditions
= Chapter 32: Concurrency Problems

= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention

TCS5422: Operating Systems [Spring 2025]

‘ May 13,2025 School of Engineering and Technology, University of Washington - Tacoma

210

GOOGLE BIG TEXTFILE

= https://faculty.washington.edu/wlloyd
courses/tcss422/assignments/googlebig.txt.gz

May 13, 2025

TCS5422: Operating Systems [Spring 2025] o1
School of Engineering and Technology, University of Washington - Tacoma

10

OBJECTIVES - 5/13

= Questions from 5/6 & Midterm Distribution
= Assignment O Grades Posted
= Assignment 1 - May 13 --> May 16
= Tutorlal 2: Pthread Tutorlal - to be posted]
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCS5422: Operating Systems [Spring 2025]

‘ (RS School of Engineering and Technology, University of Washington - Tacoma

1212

11

Slides by Wes J. Lloyd

12

L12.2

https://faculty.washington.edu/wlloyd/courses/tcss422/assignments/googlebig.txt.gz

TCSS 422 A — Spring 2025
School of Engineering and Technology

TUTORIAL 2

= Pthread Tutorial
= Practice using:
= pthreads
= Locks
= Condition variables

= To be posted in next couple of days

= Generate and visualize prime number generation in parallel

TCSS422: Operating Systems [Spring 2025]

‘ LT} R School of Engineering and Technology, University of Washington - Tacoma

1213

13

CATCH UP FROM LECTURE 11

= Switch to Lecture 11 Slides
= Slides L11.20 to L11.40
(Chapter 29 -Lock Based Data Structures)

‘TCSS422: Operating Systems [Spring 2025]

‘ May 13, 2025 School of Engineering and Technology, University of Washington - Tacoma

1215

15

CHAPTER 30 -
CONDITION VARIABLES

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington -

May 13,2025

Quiz 3

= Build a synchronized array thread-safe data structure
= As a class activity (~30 min allocated)

= Thursday May 15

= Bring Laptops

= Groups of 1 or 2

‘TCSS422: Operating Systems [Spring 2025)

‘ L) School of Engineering and Technology, University of Washington - Tacoma

1214

14

OBJECTIVES - 5/13

= Questions from 5/6 & Midterm Distribution

= Assignment O Grades Posted

= Assignment 1 - May 13 --> May 16

= Tutorial 2: Pthread Tutorial - to be posted

= Chapter 29: Lock Based Data Structures

= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

apte 1 ond
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCS5422: Operating Systems [Spring 2025]

‘ Ry School of Engineering and Technology, University of Washington - Tacoma

216

16

CONDITION VARIABLES

=There are many cases where a thread wants to
wait for another thread before proceeding with
execution

= Consider when a precondition must be fulfilled
before it is meaningful to proceed ...

TCS5422: Operating Systems [Spring 2025]

‘ LD School of Engineering and Technology, University of Washington -Tacoma

17

Slides by Wes J. Lloyd

1218

18

5/13/2025

L12.3

TCSS 422 A — Spring 2025
School of Engineering and Technology

CONDITION VARIABLES - 2

= Support a signaling mechanism to alert
threads when preconditions have been satisfied

= Eliminate busy waiting

= Alert one or more threads to “consume” a result, or
respond to state changes in the application

= Threads are placed on (FIFQ) queue to WAIT for signals

= Signal: wakes one thread (thread waiting longest)
broadcast wakes all threads (ordering by the 0S)

TCSS422: Operating Systems [Spring 2025]

‘ LT} R School of Engineering and Technology, University of Washington - Tacoma

1219

5/13/2025

CONDITION VARIABLES - 3

= Condition variable

= Requires initialization

= Condition API calls

it(pthread cond t *¢, pthread mutex_t *m)i
cond_signal (pthread_cond_t *c)i

= wait() accepts a mutex parameter
= Releases lock, puts thread to sleep, thread added to FIFO queue

= signal()
= Wakes up thread, awakening thread acquires lock

‘TCSS422: Operating Systems [Spring 2025]

‘ L) School of Engineering and Technology, University of Washington - Tacoma

1220

19

CONDITION VARIABLES - QUESTIONS

= Why would we want to put walting threads on a queue?
why not use a stack?
= Queue (FIFO), Stack (LIFO)

= Why do we want to not buslly walt for the lock to become
avallable?

= Using condition variables eliminates busy waiting by putting threads
to “sleep” and yielding the CPU.

= A program has 10-threads, where 9 threads are waiting. The
working thread finishes and broadcasts that the lock is
available. What happens next?
= All threads woken up in FIFO order - based on when started to wait

1221

TCSS422: Operating Systems [Spring 2025]

‘ [Mayi3;2022] School of Engineering and Technology, University of Washington - Tacoma

20

MATRIX GENERATOR

Matrix generation example

Chapter 30
signal.c

TCS5422: Operating Systems [Spring 2025]

‘ May 13,2025 School of Engineering and Technology, University of Washington - Tacoma

222

21

OBJECTIVES - 5/13

= Questions from 5/6 & Midterm Distribution
= Assignment O Grades Posted
= Assignment 1 - May 13 --> May 16
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
| = Producer/Consumer |
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCS5422: Operating Systems [Spring 2025

LEJELETD School of Engineering and Technology, University of Washington - Tacoma

11223

22

MATRIX GENERATOR

= The worker thread produces a matrix
= Matrix stored using shared global pointer
®= The main thread consumes the matrix
= Calculates the average element
= Display the matrix

= What would happen if we don’t use a condition variable to
coordinate exchange of the lock?

= Example program: “nosignal.c”

TCS5422: Operating Systems [Spring 2025]

‘ (RS School of Engineering and Technology, University of Washington - Tacoma

1224

23

Slides by Wes J. Lloyd

24

L12.4

TCSS 422 A — Spring 2025
School of Engineering and Technology

ATTEMPT TO USE CONDITION VARIABLE

WITHOUT A WHILE STATEMENT

thr_exit() {

<€ Child calls
done = 1;
Pthread_cond_signal (sc)s
id thr_jein() {

(done == 0)
Pthread cond wait(sc):

€ Parent calls

[P

}

® Subtle race condition introduced

= Parent thread calls thr_JoIn() and executes comparison (line 7)

= Context switches to the child

= The child runs thr_exit() and signals the parent, but the parent
is not waiting yet. (parent has not reached line 8)

" The signal Is lost !

= The parent deadlocks

TCSS422: Operating Systems [Spring 2025]

PaVS 2025 School of Engineering and Technology, University of Washington - Tacoma

1225

25

PRODUCER / CONSUMER

= Producer
= Produces items - e.g. child the makes matricies
= Places them in a buffer
Example: the buffer size is only 1 element (single array pointer)
= Consumer
= Grabs data out of the buffer
= Our example: parent thread receives dynamically
generated matrices and performs an operation on them
Example: calculates average value of every element (integer)
= Multithreaded web server example
= Http requests placed into work queue; threads process

TCSS422: Operating Systems [Spring 2025]

Rlavis2o2) School of Engineering and Technology, University of Washington - Tacoma

1227

27

WE WILL RETURN AT
5:00PM

TCSS422: Operating Systems [Spring 2025]

peaviis 2022 School of Engineering and Technology. University of Washington -

29

Slides by Wes J. Lloyd

5/13/2025

PRODUCER / CONSUMER

Work Queue

i

‘TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

‘ May 13, 2025

11226

26

PRODUCER / CONSUMER - 2

= Producer / Consumer is also known as Bounded Buffer

= Bounded buffer
= Similar to piping output from one Linux process to another
= grep pthread signal.c | wc -I
= Synchronized access:
sends output from grep > wc as it is produced
= File stream

TCS5422: Operating Systems [Spring 2025]

‘ May 13,2025 School of Engineering and Technology, University of Washington - Tacoma

1228

28

PUT/GET ROUTINES

= Buffer is a one element shared data structure (int)
= Producer “puts” data, Consumer “gets” data
= “Bounded Buffer” shared data structure requires

synchronization

1 buffer;
2 nt count = 0; t » empt
3
a oid put(int value) {
5 assert (count == 0);
6 count = 1;
7 buffer = value;
8 }
9
10 t get() {
11 assert (count == 1);
12 count = 0;
13 buffer;
14 }

‘ May 13, 2025 TCSS422: Operating Systems [Spring 2025]

1230

School of Engineering and Technology, University of Washington - Tacoma

30

L12.5

TCSS 422 A — Spring 2025
School of Engineering and Technology

PRODUCER / CONSUMER - 3

" Producer adds data
= Consumer removes data (busy waiting)
= Without synchronization:

1. Producer Function 2. Consumer Function

1 arg) (
2
3 (int) args
1 i < loopss it) {
5 putii):
6
7)
8
s arg) [
10
1 (
12
11
15 }

TCS5422: Operating Systems [Spring 2025
‘ PaVS 2025 school ofE:;neengngyand Telh:nlnggv, Un!versilvaf Washington - Tacoma 231

31

PRODUCER/CONSUMER - 4

20 (count

21 Pthread_cond wait (&cond, &mutex);

22 tmp = get ()

23 Pthread_cond_signal (&cond) ;

24 Pthread_mutex_unlock (smutex) ;

25 printf ("sd\n", tmp);

26 } Consumer

= This code as-is works with just:
(1) Producer
(1) Consumer

= PROBLEM: no while. If thread wakes up it MUST execute
= |f we scale to (2+) consumer’s it fails
= How can it be fixed ?

TCSS422: Operating Systems [Spring 2025] 1233
School of Engineering and Technology, University of Washington - Tacoma

‘ May 13, 2025

33

PRODUCER/CONSUMER

SYNCHRONIZATION

= When producer threads awake, they do not check if there is
any data in the buffer...

= Need “while” statement, “if” statement is insufficient ...
= What if T, puts a value, wakes T;; whom consumes the value
" Then T, has a value to put, but T ,’s signal on &cond wakes T ,
= There is nothing for T, consume, so T, sleeps

= Tcy, Teo, @and T all sleep forever

= T, needs to wake T, to T,

TCS5422: Operating Systems [Spring 2025]
‘ LEJELETD School of Engineering and Technology, University of Washington -Tacoma 1235

5/13/2025

= The shared data structure needs synchronization!

1
3
] *arg) |
: . Producer
& i< loops; i++) |
7 utex_lock{smutex);
8 1)
9 d_cond_wait (icond, &mutex);
10
11 signal (scond.
12 X_unlock (&mi
13 }
14]
15
16 *consumer (rarg) |
17 iz
18 (1 =0; 1 < loops: i++) |
19 9 Pthread_mutex_lock(smutex):

I e e

32

NO WHILE, 1 PRODUCER, 2 CONSUMERS
T, | State |T;| State |7, | State |Count| Comment

Legend el | Runnin Ready Read, 0

Legend 9 y
c1/p1- lock 2 | Running Ready Ready 0
c2/p2- check var » & | Sleep Ready Ready 0 Nothing to get
c3/p3- wait Sleep Ready | pl | Running 0

Sleep Ready | p2 | Running 0

c4- put() .)

e Sleep ReachllP p4 | Running 1 Buffer now full
p4-ge 0 Ready Ready p5 | Running 1 7., awoken
C5/p5-signal Resdy Resdy | g6 | Runing | 1
c6/p6- unlock Ready Ready | pl | Running 1

Ready Ready | p2 | Runaing 1

e ChD 6o Ready Rmu» 03| Sleep 1 Buffer ful: sleep

i nle e ont Res el | - Rumivg Sleep 1 T,z sneaks in

consumer having :"j" “ :“”“'"" f:”" : .

0 (0 (5 COMD cacylPct | Running Sleep 0 . and grabs data

Ready | <5 | Rumning Ready 0 7, awoken
ReacfP<6 | Rumning Ready 0
‘ 4 | Running Ready Ready 0 Oh oh! No data
TCS5422: Operating Systems [Spring 2025]
‘ May 13,2025 ‘ School of Engineering and Technology, University of Washington - Tacoma H23a

34

EXECUTION TRACE:
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Megend L7, State T, T, State | Count Comment
=Ttk @ | o s | o
€2/p2- check var 3| Sleep nm; o Nothing to get
c3/p3- wait Sleep L Ready 0
c4- put() Seep | 2 Ready a
p4- get() Sieep | <3 [Skeep Ready 0 Nothing to get
¢5/p5- signal Skep Seep | pl | Running | 0
¢6/p6- unlock Steep Seen | p2 | Runming | 0
Skeep Sesp | p4 | Running | 1 Eafter now full
One condition ’ Ready Slesp 85 | Running 1 T,y awoken
can result In Ready Skeep | p6 | Runnng | 1
waking up wrong Ready Sleep pl | Running 1
thread (consumer Ready Skeep | p2 | Runnng | 1
Instead of producer) Ready Sleep o3 Sleep 1 Must sleep (full
€2 | Running Sleep Sleep 1 Recheck condition
e | Running Sleep Sieep 0 Ty grobs data
‘ 5 | Runing Resdy Sieep 0 Gops! Woke T
[vomas [ommsman o ssigion maoms e

35

Slides by Wes J. Lloyd

36

L12.6

TCSS 422 A — Spring 2025

5/13/2025
School of Engineering and Technology

EXECUTION TRACE - 2

WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

TWO CONDITIONS

= T, runs, no data to consume

I 5 T, | State |1,| Sute |T, | Stte | cCount Comment
Legend e
c1/p1-lock < | Running Ready Seep | 0
c2/p2- check var o1 | Running Ready Sleep 0
C3/p3- wait €2 | Running Ready Sleep.]
c4- put() €3 Sleep. Ready Sleep 0 Nothing to get
p4_ get() Sleep] 2 Running Sleep 0

: Sleep| <3 Sleep Sleep. 0 Evaryone aslesp ...
c5/p5- signal
c6/p6- unlock

TCSS422: Operating Systems [Spring 2025]

‘ LT} R School of Engineering and Technology, University of Washington - Tacoma

11237

37

FINAL PRODUCER/CONSUMER

= Change buffer from int, to int buffer[MAX]
= Add indexing variables
= >> Becomes BOUNDED BUFFER, can store multiple matricies

1 t buffer (MAX];
2 £ R =
3 t uze
1 t count =
& 1 put tint value) (
7 Puffer(£i11] = valuer
8 Il = 1
3 count s
10 }
1
12 geti) {
13 tmp = butferusels
14 use = (uze + 1) & MAXs
15 count -7
16 tmps
17 ¥
‘ Ty T TCS5422: Operating Systems [Spring 2025

11239

School of Engineering and Technology, University of Washington - Tacoma

39

FINAL P/C -3

(Cont.)

2 Pthread_cond_signal (sempty) i
24 Pthread_mutex_unlock (smutex)
25 printf (*#d\n®, tmp) :

27)

= Producer: only sleeps when buffer is full
= Consumer: only sleeps if buffers are empty

TCS5422: Operating Systems [Spring 2025

LEJELETD School of Engineering and Technology, University of Washington - Tacoma

1241

41

Slides by Wes J. Lloyd

= Required w/ multiple producer and consumer threads
= Use two condition variables: empty & full

= One condition handles the producer

= the other the consumer

1 cond_t empty, full;
2 mutex_t mutex;
3
4 i *producer (void *arg) {
5 is
6 i< loops; it+) (
7 mutex_lock (smutex) ;
8 (count == 1)
9 Pthread_cond _wait (sempty, &mutex);
10 put (i
11 Pthread_cond_signal(sfull);
12 Pthread_mutex_unlock (smutex) ;
13 }
14 }
15
‘ (B D TC55422: Operating Systems [Spring 2025]

238

School of Engineering and Technology, University of Washington - Tacoma

38

FINAL P/C - 2

10
11 ond_signal (&full);
12 utex unlock(smutex)
13)
14)
15
15 void *consumer(void *arg) [
17 i
18 FRETTC
19
20
21
22
‘ o FD TCS5422: Operating Systems [Spring 2025]

L1240

School of Engineering and Technology, University of Washington - Tacoma

40

|]
- Using one condition variable, and no while loop is "

sufficient to synchronize access to a bounded buffer
shared by:

1 Producer, 1
Consumer Thread

2 Consumers, 1
Producer Thread

2+ Producers, 2+
Consumer Threads

All of the above

None of the above

42

TCSS 422 A — Spring 2025
School of Engineering and Technology

n]
" Using two condition variables, and a while loop is "
sufficient to synchronize access to a bounded buffer
shared by:
1 Producer, 1
Consumer Thread

2 Consumers, 1
Producer Thread

2+ Producers, 2+
Consumer Threads

All of the above

None of the above

43

COVERING CONDITIONS

= A condition that covers all cases (conditions):
= Excellent use case for pthread_cond_broadcast

= Consider memory allocation:

=When a program deals with huge memory
allocation/deallocation on the heap

= Access to the heap must be managed when memory is
scarce

PREVENT: Out of memory:
- queue requests until memory is free

= Which thread should be woken up?

TCSS422: Operating Systems [Spring 2025]
‘ [Mayi3;2022] School of Engineering and Technology, University of Washington - Tacoma L1245

45

COVER CONDITIONS - 3

= Broadcast awakens all blocked threads requesting memory
= Each thread evaluates if there’s enough memory:
(bytesLeft < size)
= Reject: requests that cannot be fulfilled- go back to sleep
Insufficient memory
= Run: requests which can be fulfilled
with newly available memory!

= Another use case: coordinate a group of busy threads to
gracefully end, to EXIT the program

= Overhead
= Many threads may be awoken which can’t execute
TCS5422: Operating Systems [Spring 2025]
‘ (RS School of Engineering and Technology, University of Washington - Tacoma L

47

Slides by Wes J. Lloyd

5/13/2025

OBJECTIVES - 5/13

= Questions from 5/6 & Midterm Distribution
= Assignment O Grades Posted
= Assignment 1 - May 13 --> May 16
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
|__= Covering Conditions |
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

‘TCSS422: Operating Systems [Spring 2025] 12.40
School of Engineering and Technology, University of Washington - Tacoma

‘ May 13, 2025

44

COVERING CONDITIONS - 2
:
:
:
o Check available memory
B
15
s
21
22
z
Z

[wermams [e e o

46

CHAPTER 31: SEMAPHORES

= Offers a combined C language construct that can assume the
role of a lock or a condition variable depending on usage
= Allows fewer concurrency related variables in your code
= Potentially makes code more ambiguous
= For this reason, with limited time in a
10-week quarter, we do not cover

= Ch. 31.6 - Dining Philosophers Problem @
-
»

= Classic computer science problem about

)
[4
sharing eating utensils
= Each philosopher tries to obtain two forks _’ f =
in order to eat N »
F | '3
|

- ~
= Mimics deadlock as there are not enough forks
TCSS422: Operating Systems [Spring 2025] 112.48
School of Engineering and Technology, University of Washington - Tacoma

= Solution is to have one left-handed philosopher
that grabs forks in opposite order

‘ May 13, 2025

48

L12.8

TCSS 422 A — Spring 2025
School of Engineering and Technology

OBJECTIVES - 5/13

= Questions from 5/6 & Midterm Distribution
= Assignment O Grades Posted
= Assignment 1 - May 13 --> May 16
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
|= Chapter 32: Concurrency Problems |
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCSS422: Operating Systems [Spring 2025] L12.49
School of Engineering and Technology, University of Washington - Tacoma

‘ May 13, 2025

49

CONCURRENCY BUGS IN
OPEN SOURCE SOFTWARE

= “Learning from Mistakes - A Comprehensive Study on
Real World Concurrency Bug Characteristics”
=Shan Lu et al.
= Architectural Support For Programming Languages and
Operating Systems (ASPLOS 2008), Seattle WA

Application What it does Non-Deadlock ~ Deadlock
MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Web Browser 41 16
Open Office Office Suite 6 2
Total 74 31
I

51

NON-DEADLOCK BUGS

= Majority of concurrency bugs

= Most common:
= Atomicity violation: forget to use locks

=Qrder violation: failure to initialize lock/condition
before use

TCS5422: Operating Systems [Spring 2025]
‘ LEJELETD School of Engineering and Technology, University of Washington - Tacoma e

5/13/2025

CHAPTER 32 -

CONCURRENCY
PROBLEMS

TCSS422: Operating Systems [Spring 2025]

avjiai202s) ‘School of Engineering and Technology, University of Washington -

50

OBJECTIVES - 5/13

= Questions from 5/6 & Midterm Distribution
= Assignment O Grades Posted
= Assignment 1 - May 13 --> May 16
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems

| = Non-deadlock concurrency bugs |

= Deadlock causes
= Deadlock prevention

TCS5422: Operating Systems [Spring 2025] u2s2
School of Engineering and Technology, University of Washington - Tacoma

‘ May 13, 2025

52

ATOMICITY VIOLATION - MYSQL

= Two threads access the proc_info field in struct thd
" NULLis OinC

= Mutually exclusive access to shared memory among
separate threads is not enforced (e.g. non-atomic)

= Simple example: proc_info deleted

53

Slides by Wes J. Lloyd

1
3 -
. 4 fputs (thd-»proc_infe , .)i

Programmer intended 5 .

variable to be accessed € I

atomically... ;
9 thd->proc_info = NULL;

TCSS422: Operating Systems [Spring 2025]
‘ (RS School of Engineering and Technology, University of Washington -Tacoma s

L12.9

TCSS 422 A — Spring 2025
School of Engineering and Technology

= Add locks for all uses of: thd->proc_info

ATOMICITY VIOLATION - SOLUTION

1 pthread mutex t lock = PTHREAD MUTEX INITIALIZER:
2

3 Threadl::

4 pthread mut: ok (slock) 7

5 (tha->pro o) [

& -

7 fputs (thd->proc_info , .)7

8

1
10 pthread mutex_unlock (slock) i

2 Thread2::

TCSS422: Operating Systems [Spring 2025]

‘ LT} R School of Engineering and Technology, University of Washington - Tacoma

L1255

55

ORDER VIOLATION - SOLUTION

= Use condition & signal to enforce order

1 pthread_mutex_t mtL
pthread_cond_t mtc
mtInit = 07

12 Thread2::
19 mMain (.} [

TCSS422: Operating Systems [Spring 2025]

‘ [Mayi3;2022] School of Engineering and Technology, University of Washington - Tacoma

1257

57

NON-DEADLOCK BUGS - 1

2 97% of Non-Deadlock Bugs were
= Atomicity
=Order violations

= Consider what is involved in “spotting” these
bugs in code
= >> no use of locking constructs to search for

= Desire for automated tool support (IDE)

TCS5422: Operating Systems [Spring 2025

LEJELETD School of Engineering and Technology, University of Washington - Tacoma

11259

ORDER VIOLATION BUGS

= Desired order between memory accesses is flipped
= E.g. something is checked before it is set
= Example:

Threadl::
init(){
mThread = PR_CreateThread (mMain, .);

1 mMain () {
mState = mThread->State

)

= What if mThread is not initialized?

‘TCSS422: Operating Systems [Spring 2025]

‘ L) School of Engineering and Technology, University of Washington - Tacoma

L1256

5

6

ORDER VIOLATION - SOLUTION - 2

= Use condition & signal to enforce order

21
22 pthread mul ck (smtLock) 1
23 (mtlg
24 B _wait (gmtCond, émtLock):|
25 pthread WP 2
26
27 mState = mThread->State;
28
29)
‘ o FD TC55422: Operating Systems [pring 20251

L1258

School of Engineering and Technology, University of Washington - Tacoma

58

NON-DEADLOCK BUGS - 2

= Atomicity
= How can we tell if a given variable is shared?
Can search the code for uses
= How do we know if all instances of its use are shared?
Can some non-synchronized, non-atomic uses be legal?
= Legal uses: before threads are created, after threads exit
Must verify the scope

= Order violation
= Must consider all variable accesses
= Must know desired order

TCS5422: Operating Systems [Spring 2025]

(RS School of Engineering and Technology, University of Washington -Tacoma

11260

59

Slides by Wes J. Lloyd

60

TCSS 422 A — Spring 2025
School of Engineering and Technology

DEADLOCK BUGS

= Presence of a cycle in code
= Thread 1 acquires lock L1, waits for lock L2
= Thread 2 acquires lock L2, waits for lock L1

Thread 1: Thread 2

lock(Ll); lock(

lock (L2); lock(Ll):

= Both threads can block, unless
one manages to acquire both locks

TCSS422: Operating Systems [Spring 2025]

‘ LT} R School of Engineering and Technology, University of Washington - Tacoma

61

REASONS FOR DEADLOCKS

= Complex code

= Must avoid circular dependencies - can be hard to find...
= Encapsulation hides potential locking conflicts

= Easy-to-use APIs embed locks inside

= Programmer doesn’t know they are there

= Consider the Java Vector class:

= Vector is thread safe (synchronized) by design

= If there is a v2.AddAll(v1); call at nearly the same time
deadlock could result

TCSS422: Operating Systems [Spring 2025]

‘ [Mayi3;2022] School of Engineering and Technology, University of Washington - Tacoma

L1263

63

OBJECTIVES - 5/13

= Questions from 5/6 & Midterm Distribution
= Assignment O Grades Posted
= Assignment 1 - May 13 --> May 16
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes

| = Deadlock prevention |

TCS5422: Operating Systems [Spring 2025

‘ LEJELETD School of Engineering and Technology, University of Washington - Tacoma

L1265

5/13/2025

OBJECTIVES - 5/13

= Questions from 5/6 & Midterm Distribution
= Assignment O Grades Posted
= Assignment 1 - May 13 --> May 16
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs

| Deadlock causes |

= Deadlock prevention

‘TCSS422: Operating Systems [Spring 2025]
‘ RERE R0 ‘ School of Engineering and Technology, University of Washington - Tacoma

262

62

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Description

Mutual Exclusion | Threads claim exclusive contrel of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No presmption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Cireular wait resources that are being requested by the next thread in the chain

TCS5422: Operating Systems [Spring 2025]

‘ May 13,2025 School of Engineering and Technology, University of Washington - Tacoma

L1264

64

PREVENTION - MUTUAL EXCLUSION

= Build wait-free data structures
= Eliminate locks altogether

= Build structures using CompareAndSwap atomic CPU (HW)
instruction

= C pseudo code for CompareAndSwap
= Hardware executes this code atomically

expected, int new){

TCS5422: Operating Systems [Spring 2025]

‘ (RS School of Engineering and Technology, University of Washington -Tacoma

11266

65

Slides by Wes J. Lloyd

66

L12.11

TCSS 422 A — Spring 2025
School of Engineering and Technology

PREVENTION - MUTUAL EXCLUSION - 2

= Recall atomic increment

i AtomicIncrement (*value, int amount) (

old = *value;
{ CompareAndsSwap(value, old, old+amount)==0);

= Compare and Swap tries over and over until
successful

= CompareAndSwap is guaranteed to be atomic
=When it runs it is ALWAYS atomic (at HW level)

TCSS422: Operating Systems [Spring 2025]

‘ LT} R School of Engineering and Technology, University of Washington - Tacoma

L1267

67

MUTUAL EXCLUSION - LIST INSERTION - 2

= Lock based implementation

1
3
4
5
6
8
L)
TCSS422: Operating Systems [Spring 2025]
‘ [Mayi3;2022] School of Engineering and Technology, University of Washington - Tacoma L1269

69

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive contrel of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

JHcld-znd-wall

No presmption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Cireular wait resources that are being requested by the next thread in the chain

TCS5422: Operating Systems [Spring 2025
School of Engineering and Technology, University of Washington - Tacoma

May 13, 2025

271

5/13/2025

MUTUAL EXCLUSION: LIST INSERTION

= Consider list insertion

insert(int value){
node t * n =
assert(n
n->va
n->next
& head

(sizeof (node_t)) s

‘TCSS422: Operating Systems [Spring 2025]

L) School of Engineering and Technology, University of Washington - Tacoma

L1268

68

MUTUAL EXCLUSION - LIST INSERTION - 3

= Wait free (no lock) implementation

1 insert (int value) {

2 node_t *n = malloc(sizeof (node_t));

3 assert(n != NULL);

4 n->value = value;

S {

6 n->next = head;

7) (CompareandSwap (shead, n->next, n));
8

}

= Assign &head to n (new node ptr)
= Only when head = n->next

TCS5422: Operating Systems [Spring 2025]

May 13,2025 School of Engineering and Technology, University of Washington - Tacoma

1270

70

PREVENTION LOCK - HOLD AND WAIT

= Problem: acquire all locks atomically
= Solution: use a “lock” “lock”... (like a guard lock)

lock (L2)

unlock(prevention)

= Effective solution - guarantees no race conditions while
acquiring L1, L2, etc.

= Order doesn’t matter for L1, L2

= Prevention (GLOBAL) lock decreases concurrency of code
= Acts Lowers lock granularity

= Encapsulation: consider the Java Vector class...

TCS5422: Operating Systems [Spring 2025]

(RS School of Engineering and Technology, University of Washington - Tacoma

1272

71

Slides by Wes J. Lloyd

72

L12.12

TCSS 422 A — Spring 2025
School of Engineering and Technology

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive contrel of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

*Nn preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Cireular wait resources that are being requested by the next thread in the chain

TCSS422: Operating Systems [Spring 2025]
‘ PaVS 2025 School of Engineering and Technology, University of Washington - Tacoma L1273

73

NO PREEMPTION - LIVELOCKS PROBLEM

= Can lead to livelock

top:
lock(Ll);
(trylock(L2) == -1){
unlock(Ll):
tops

}

= Two threads execute code in parallel >
always fail to obtain both locks

= Fix: add random delay
=Allows one thread to win the
livelock race!

TCSS422: Operating Systems [Spring 2025]
‘ [Mayi3;2022] School of Engineering and Technology, University of Washington - Tacoma 275

75

PREVENTION - CIRCULAR WAIT

=Provide total ordering of lock acquisition
throughout code
=Always acquire locks in same order
=L1, L2, L3, ..
=Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2....

®Must carry out same ordering through entire
program

May 13, 2025

TCS5422: Operating Systems [Spring 2025] 277
School of Engineering and Technology, University of Washington - Tacoma

77

Slides by Wes J. Lloyd

PREVENTION - NO PREEMPTION

= When acquiring locks, don’t BLOCK forever if
unavailable...

= pthread_mutex_trylock() - try once
= pthread_mutex_timedlock() - try and wait awhile

1 topr
2 lock(nl): N 0
3 (trylock(12) == -1 }{
4 unlock(Li);
: ot STOPPING
& }

=Eliminates deadlocks TIME
‘TCSS422: Operating Systems [Spring 2025]
‘ RERE R0 School of Engineering and Technology, University of Washington - Tacoma v27a

74

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive contrel of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No presmption | Resources cannot be forcibly removed from threads that are holding them.

Circular wait There exists a circular chain of threads such that each thread holds one more
resources that are being requested by the next thread in the chain

TCS5422: Operating Systems [Spring 2025]
‘ May 13,2025 School of Engineering and Technology, University of Washington - Tacoma 1278

76

CONDITIONS FOR DEADLOCK

= |f any of the following conditions DOES NOT
EXSIST, describe why deadlock can not occur?

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Clireularwait | 1o ources that are being requested by the next thread in the chain

7CS3422: Operating Systems [Spring 2025]
‘ (RS School of Engineering and Technology, University of Washington -Tacoma 27

78

5/13/2025

L12.13

TCSS 422 A — Spring 2025
School of Engineering and Technology

5/13/2025

" The dining philosophers problem where 5

philosophers compete for 5 forks, and where a
philosopher must hold two forks to eat involves
which deadlock condition(s)?

Mutual Exclusion
Hold-and-wait
No preemption

Circular wait

All of the above

DEADLOCK AVOIDANCE

VIA INTELLIGENT SCHEDULING

= Consider a smart scheduler
=Scheduler knows which locks threads use

= Consider this scenario:
=4 Threads (T1, T2, T3, T4)
=2 Locks (L1, L2)

= Lock requirements of threads:

[yes yes no ne

‘TCSS422: Operating Systems [Spring 2025]

L) School of Engineering and Technology, University of Washington - Tacoma

L1280

79

INTELLIGENT SCHEDULING - 2

= Scheduler produces schedule:

= No deadlock can occur

= Consider:

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L1281

‘ May 13, 2025

81

DETECT AND RECOVER

= Allow deadlock to occasionally occur and then take some
action.

= Example: When OS freezes, reboot...

= How often is this acceptable?
= Once per year
= Once per month
= Once per day
= Consider the effort tradeoff of finding every deadlock bug

= Many database systems employ deadlock detection and

recovery techniques.
112.83

TCS5422: Operating Systems [Spring 2025

‘ LEJELETD School of Engineering and Technology, University of Washington - Tacoma

83

Slides by Wes J. Lloyd

80

INTELLIGENT SCHEDULING - 3

= Scheduler produces schedule

CPU 2 -TZ T3

= Scheduler must be conservative and not take risks
= Slows down execution - many threads

= There has been limited use of these approaches given the
difficulty having intimate lock knowledge about every
thread

TCS5422: Operating Systems [Spring 2025]

Ry School of Engineering and Technology, University of Washington - Tacoma

282

82

QUESTIONS

84

L12.14

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 5/13
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 5/6
	Slide 7: Feedback - 2
	Slide 8: Midterm Results
	Slide 9: OBJECTIVES – 5/13
	Slide 10: OBJECTIVES – 5/13
	Slide 11: Google big textfile
	Slide 12: OBJECTIVES – 5/13
	Slide 13: Tutorial 2
	Slide 14: Quiz 3
	Slide 15: Catch up from lecture 11
	Slide 16: OBJECTIVES – 5/13
	Slide 17: Chapter 30 – condition variables
	Slide 18: Condition variables
	Slide 19: Condition variables - 2
	Slide 20: Condition variables - 3
	Slide 21: Condition variables - questions
	Slide 22: Matrix generator
	Slide 23: OBJECTIVES – 5/13
	Slide 24: Matrix generator
	Slide 25: attempt to use condition variable without a while statement
	Slide 26: Producer / consumer
	Slide 27: Producer / consumer
	Slide 28: Producer / consumer - 2
	Slide 29: We will return at 5:00pm
	Slide 30: Put/get routines
	Slide 31: Producer / consumer - 3
	Slide 32: Producer / consumer - 3
	Slide 33: Producer/consumer - 4
	Slide 34: Execution trace: no while, 1 producer, 2 consumers
	Slide 35: producer/consumer synchronization
	Slide 36: Execution trace: while, 1 condition, 1 producer, 2 consumers
	Slide 37: Execution trace – 2 while, 1 condition, 1 producer, 2 consumers
	Slide 38: Two conditions
	Slide 39: Final producer/consumer
	Slide 40: Final p/c - 2
	Slide 41: Final p/c - 3
	Slide 42
	Slide 43
	Slide 44: OBJECTIVES – 5/13
	Slide 45: Covering conditions
	Slide 46: Covering conditions - 2
	Slide 47: Cover conditions - 3
	Slide 48: Chapter 31: Semaphores
	Slide 49: OBJECTIVES – 5/13
	Slide 50: Chapter 32 – concurrency problems
	Slide 51: Concurrency bugs in open source software
	Slide 52: OBJECTIVES – 5/13
	Slide 53: Non-deadlock bugs
	Slide 54: Atomicity violation - mysql
	Slide 55: Atomicity violation - solution
	Slide 56: Order violation bugs
	Slide 57: Order violation - solution
	Slide 58: Order violation – solution - 2
	Slide 59: Non-deadlock bugs - 1
	Slide 60: Non-deadlock bugs - 2
	Slide 61: Deadlock bugs
	Slide 62: OBJECTIVES – 5/13
	Slide 63: Reasons for deadlocks
	Slide 64: Conditions for deadlock
	Slide 65: OBJECTIVES – 5/13
	Slide 66: Prevention – mutual exclusion
	Slide 67: Prevention – mutual exclusion - 2
	Slide 68: mutual exclusion: List insertion
	Slide 69: mutual exclusion – list insertion - 2
	Slide 70: Mutual exclusion – list insertion - 3
	Slide 71: Conditions for deadlock
	Slide 72: Prevention lock – hold and wait
	Slide 73: Conditions for deadlock
	Slide 74: Prevention – no preemption
	Slide 75: No preemption – livelocks problem
	Slide 76: Conditions for deadlock
	Slide 77: Prevention – circular wait
	Slide 78: Conditions for deadlock
	Slide 79
	Slide 80: Deadlock avoidance via intelligent scheduling
	Slide 81: Intelligent scheduling - 2
	Slide 82: Intelligent scheduling - 3
	Slide 83: Detect and recover
	Slide 84: Questions

