
TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L12.1Slides by Wes J. Lloyd

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

Lock-based data structures II,
Condition Variables,

Concurrency Problems

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions f rom 4/30 & Midterm Distribution

 Assignment 0 Grades Posted

 Assignment 1 – May 9

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Approximate Counter (Sloppy Counter)

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.2

OBJECTIVES – 5/7

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

May 7, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.3

ONLINE DAILY FEEDBACK SURVEY

May 7, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L12.4

 Please classify your perspective on material covered in today’s

class (32 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.56 (- previous 6.98)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.31 (- previous 5.52)

May 7, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.5

MATERIAL / PACE

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.6

FEEDBACK FROM 4/30

1 2

3 4

5 6

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L12.2Slides by Wes J. Lloyd

 Questions from 4/30 & Midterm Distribution

 Assignment 0 Grades Posted

 Assignment 1 – May 9

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Approximate Counter (Sloppy Counter)

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.8

OBJECTIVES – 5/7

 Questions from 4/30 & Midterm Distribution

 Assignment 0 Grades Posted

 Assignment 1 – May 9

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Approximate Counter (Sloppy Counter)

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.9

OBJECTIVES – 5/7

https://faculty.washington.edu/wll

oyd/courses/tcss422/assignments

/googlebig.txt.gz

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.10

 Questions from 4/30 & Midterm Distribution

 Assignment 0 Grades Posted

 Assignment 1 – May 9

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Approximate Counter (Sloppy Counter)

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.11

OBJECTIVES – 5/7

 Pthread Tutorial

 Practice using:

▪ pthreads

▪ Locks

▪ Condition variables

 Generate and visualize prime number generation in parallel

 To be posted in next couple of days

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.12

TUTORIAL 2

 Questions from 4/30 & Midterm Distribution

 Assignment 0 Grades Posted

 Assignment 1 – May 9

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.13

OBJECTIVES – 5/7

8 9

10 11

12 13

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L12.3Slides by Wes J. Lloyd

CHAPTER 30 –

CONDITION VARIABLES

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.1
4

 There are many cases where a thread wants to

wait for another thread before proceeding with

execution

Consider when a precondition must be fulfilled

before it is meaningful to proceed …

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.15

CONDITION VARIABLES

 Support a signaling mechanism to alert

threads when preconditions have been satisfied

 Eliminate busy waiting

 Alert one or more threads to “consume” a result, or

respond to state changes in the application

 Threads are placed on (FIFO) queue to WAIT for signals

 Signal: wakes one thread (thread waiting longest)

broadcast wakes all threads (ordering by the OS)

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.16

CONDITION VARIABLES - 2

 Condition variable

▪ Requires initialization

 Condition API calls

 wait() accepts a mutex parameter

▪ Releases lock, puts thread to sleep, thread added to FIFO queue

 signal()

▪ Wakes up thread, awakening thread acquires lock

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.17

CONDITION VARIABLES - 3

pthread cond t c;

 Why would we want to put waiting threads on a queue?

why not use a stack?

▪ Queue (FIFO), Stack (LIFO)

 Why do we want to not busily wait for the lock to become

available?

▪ Using condition variables eliminates busy waiting by putting threads

to “sleep” and yielding the CPU.

 A program has 10-threads, where 9 threads are waiting. The

working thread finishes and broadcasts that the lock is

available. What happens next?

▪ All threads woken up in FIFO order - based on when started to wait

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.18

CONDITION VARIABLES - QUESTIONS

Matrix generation example

Chapter 30

signal.c

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.19

MATRIX GENERATOR

14 15

16 17

18 19

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L12.4Slides by Wes J. Lloyd

 Questions from 4/30 & Midterm Distribution

 Assignment 0 Grades Posted

 Assignment 1 – May 9

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.20

OBJECTIVES – 5/7

 The worker thread produces a matrix

▪ Matrix stored using shared global pointer

 The main thread consumes the matrix

▪ Calculates the average element

▪ Display the matrix

 What would happen if we don’t use a condition variable to

coordinate exchange of the lock?

 Example program: “nosignal.c”

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.21

MATRIX GENERATOR

 Subtle race condition introduced

 Parent thread calls thr_join() and executes comparison (line 7)

 Context switches to the child

 The child runs thr_exit() and signals the parent, but the parent

is not waiting yet. (parent has not reached line 8)

 The s ignal is lost !

 The parent deadlocks

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.22

ATTEMPT TO USE CONDITION VARIABLE

WITHOUT A WHILE STATEMENT

 Parent calls

 Child calls

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.23

PRODUCER / CONSUMER

 Producer

▪ Produces items – e.g. child the makes matricies

▪ Places them in a buffer

▪ Example: the buffer size is only 1 element (single array pointer)

 Consumer

▪ Grabs data out of the buffer

▪ Our example: parent thread receives dynamically

generated matrices and performs an operation on them

▪ Example: calculates average value of every element (integer)

 Multithreaded web server example

▪ Http requests placed into work queue; threads process

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.24

PRODUCER / CONSUMER

 Producer / Consumer is also known as Bounded Buffer

 Bounded buffer

▪ Similar to piping output from one Linux process to another

▪ grep pthread signal.c | wc –l

▪ Synchronized access:

sends output from grep → wc as it is produced

▪ File stream

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.25

PRODUCER / CONSUMER - 2

20 21

22 23

24 25

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L12.5Slides by Wes J. Lloyd

WE WILL RETURN AT

5:00PM

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.2
6

 Buffer is a one element shared data structure (int)

 Producer “puts” data, Consumer “gets” data

 “Bounded Buffer” shared data structure requires

synchronization

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.27

PUT/GET ROUTINES

1 int buffer;

2 int count = 0; // initially, empty

3

4 void put(int value) {

5 assert(count == 0);

6 count = 1;

7 buffer = value;

8 }

9

10 int get() {

11 assert(count == 1);

12 count = 0;

13 return buffer;

14 }

 Producer adds data

 Consumer removes data (busy waiting)

 Without synchronization:

1. Producer Function 2. Consumer Function

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.28

PRODUCER / CONSUMER - 3

 The shared data structure needs synchronization!

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.29

PRODUCER / CONSUMER - 3

Producer

 This code as-is works with just:

 (1) Producer

 (1) Consumer

 PROBLEM: no while. If thread wakes up it MUST execute

 If we scale to (2+) consumer’s it fails

▪ How can it be fixed ?

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.30

PRODUCER/CONSUMER - 4

20 if (count == 0) // c2

21 Pthread_cond_wait(&cond, &mutex); // c3

22 int tmp = get(); // c4

23 Pthread_cond_signal(&cond); // c5

24 Pthread_mutex_unlock(&mutex); // c6

25 printf("%d\n", tmp);

26 }

27 }

Consumer

No whi le can

result i n s econd

consumer having

no data to consume

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.31

EXECUTION TRACE:
NO WHILE, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

26 27

28 29

30 31

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L12.6Slides by Wes J. Lloyd

 When producer threads awake, they do not check if there is

any data in the buffer…

▪ Need “while” statement, “if” statement is insufficient …

 What if Tp puts a value, wakes Tc1 whom consumes the value

 Then Tp has a value to put, but Tc1’s signal on &cond wakes Tc2

 There is nothing for Tc2 consume, so Tc2 sleeps

 Tc1, Tc2, and Tp all sleep forever

 Tc1 needs to wake Tp to Tc2

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.32

PRODUCER/CONSUMER

SYNCHRONIZATION

One co ndit ion

can r esult in

w aking up w rong

thread (consumer

instead o f p roducer)

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.33

EXECUTION TRACE:
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

 Tc2 runs, no data to consume

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.34

EXECUTION TRACE – 2
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

 Required w/ multiple producer and consumer threads

 Use two condition variables: empty & full

▪ One condition handles the producer

▪ the other the consumer

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.35

TWO CONDITIONS

1 cond_t empty, fill;

2 mutex_t mutex;

3

4 void *producer(void *arg) {

5 int i;

6 for (i = 0; i < loops; i++) {

7 Pthread_mutex_lock(&mutex);

8 while (count == 1)

9 Pthread_cond_wait(&empty, &mutex);

10 put(i);

11 Pthread_cond_signal(&fill);

12 Pthread_mutex_unlock(&mutex);

13 }

14 }

15

full;

&full);

 Change buffer from int, to int buffer[MAX]

 Add indexing variables

 >> Becomes BOUNDED BUFFER , can store multiple matricies

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.36

FINAL PRODUCER/CONSUMER

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.37

FINAL P/C - 2

full

(&full);

&full,

32 33

34 35

36 37

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L12.7Slides by Wes J. Lloyd

 Producer: only sleeps when buffer is full

 Consumer: only sleeps if buffers are empty

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.38

FINAL P/C - 3

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.3
9

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.4
0

 Questions from 4/30 & Midterm Distribution

 Assignment 0 Grades Posted

 Assignment 1 – May 9

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.41

OBJECTIVES – 5/7

 A condition that covers all cases (conditions):

 Excellent use case for pthread_cond_broadcast

 Consider memory allocation:

▪When a program deals with huge memory
allocation/deallocation on the heap

▪ Access to the heap must be managed when memory is
scarce

PREVENT: Out of memory:
- queue requests until memory is free

▪Which thread should be woken up?

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.42

COVERING CONDITIONS

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.43

COVERING CONDITIONS - 2

Broadcast

Check available memory

38 39

40 41

42 43

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L12.8Slides by Wes J. Lloyd

 Broadcast awakens all blocked threads requesting memory

 Each thread evaluates if there’s enough memory :

(bytesLeft < size)

▪ Reject: requests that cannot be fulfilled- go back to sleep

▪ Insufficient memory

▪ Run: requests which can be fulfilled

▪ with newly available memory!

 Another use case: coordinate a group of busy threads to

gracefully end, to EXIT the program

 Overhead

▪ Many threads may be awoken which can’t execute

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.44

COVER CONDITIONS - 3

 Offers a combined C language construct that can assume the
role of a lock or a condition variable depending on usage

▪ Allows fewer concurrency related variables in your code

▪ Potentially makes code more ambiguous

▪ For this reason, with limited time in a
10-week quarter, we do not cover

 Ch. 31.6 – Dining Philosophers Problem

▪ Classic computer science problem about
sharing eating utensils

▪ Each philosopher tries to obtain two forks
in order to eat

▪ Mimics deadlock as there are not enough forks

▪ Solution is to have one left-handed philosopher
that grabs forks in opposite order

May 7, 2024 L12.45

CHAPTER 31: SEMAPHORES

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

 Questions from 4/30 & Midterm Distribution

 Assignment 0 Grades Posted

 Assignment 1 – May 9

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.46

OBJECTIVES – 5/7

CHAPTER 32 –

CONCURRENCY

PROBLEMS

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L12.47

 “Learning from Mistakes – A Comprehensive Study on

Real World Concurrency Bug Characteristics”

▪ Shan Lu et al.

▪ Architectural Support For Programming Languages and

Operating Systems (ASPLOS 2008), Seattle WA

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.48

CONCURRENCY BUGS IN

OPEN SOURCE SOFTWARE

 Questions from 4/30 & Midterm Distribution

 Assignment 0 Grades Posted

 Assignment 1 – May 9

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.49

OBJECTIVES – 5/7

44 45

46 47

48 49

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L12.9Slides by Wes J. Lloyd

Majority of concurrency bugs

Most common:

▪Atomicity violation: forget to use locks

▪Order violation: failure to initialize lock/condition

before use

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.50

NON-DEADLOCK BUGS

 Two threads access the proc_info field in struct thd

 NULL is 0 in C

 Mutually exclusive access to shared memory among

separate threads is not enforced (e.g. non -atomic)

 Simple example: proc_info deleted

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.51

ATOMICITY VIOLATION - MYSQL

Programmer intended
variable to be accessed
atomically…

 Add locks for all uses of: thd->proc_info

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.52

ATOMICITY VIOLATION - SOLUTION

Desired order between memory accesses is flipped

E.g. something is checked before it is set

Example:

What if mThread is not initialized?

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.53

ORDER VIOLATION BUGS

 Use condition & signal to enforce order

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.54

ORDER VIOLATION - SOLUTION

 Use condit ion & signal to enforce order

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.55

ORDER VIOLATION – SOLUTION - 2

50 51

52 53

54 55

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L12.10Slides by Wes J. Lloyd

97% of Non-Deadlock Bugs were

▪Atomicity

▪Order violations

Consider what is involved in “spotting” these

bugs in code

▪ >> no use of locking constructs to search for

Desire for automated tool support (IDE)

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.56

NON-DEADLOCK BUGS - 1

Atomicity

▪ How can we tell if a given variable is shared?

▪ Can search the code for uses

▪ How do we know if all instances of its use are shared?

▪ Can some non-synchronized, non-atomic uses be legal?

▪ Legal uses: before threads are created, after threads exit

▪ Must verify the scope

Order violation

▪Must consider all variable accesses

▪Must know desired order

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.57

NON-DEADLOCK BUGS - 2

 Presence of a cycle in code

 Thread 1 acquires lock L1, waits for lock L2

 Thread 2 acquires lock L2, waits for lock L1

 Both threads can block, unless

one manages to acquire both locks

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.58

DEADLOCK BUGS

 Questions from 4/30 & Midterm Distribution

 Assignment 0 Grades Posted

 Assignment 1 – May 9

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.59

OBJECTIVES – 5/7

 Complex code

▪ Must avoid circular dependencies – can be hard to find…

 Encapsulation hides potential locking conflicts

▪ Easy-to-use APIs embed locks inside

▪ Programmer doesn’t know they are there

▪ Consider the Java Vector class:

▪ Vector is thread safe (synchronized) by design

▪ If there is a v2.AddAll(v1); call at nearly the same time

deadlock could result

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.60

REASONS FOR DEADLOCKS

 Four conditions are required for dead lock to occur

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.61

CONDITIONS FOR DEADLOCK

56 57

58 59

60 61

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L12.11Slides by Wes J. Lloyd

 Questions from 4/30 & Midterm Distribution

 Assignment 0 Grades Posted

 Assignment 1 – May 9

 Tutorial 2: Pthread Tutorial - to be posted

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Chapter 30: Condition Variables

▪ Producer/Consumer

▪ Covering Conditions

 Chapter 32: Concurrency Problems

▪ Non-deadlock concurrency bugs

▪ Deadlock causes

▪ Deadlock prevention

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.62

OBJECTIVES – 5/7

 Build wait-free data structures

▪ Eliminate locks altogether

▪ Build structures using CompareAndSwap atomic CPU (HW)

instruction

 C pseudo code for CompareAndSwap

 Hardware executes this code atomically

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.63

PREVENTION – MUTUAL EXCLUSION

Recall atomic increment

Compare and Swap tries over and over until

successful

CompareAndSwap is guaranteed to be atomic

When it runs it is ALWAYS atomic (at HW level)

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.64

PREVENTION – MUTUAL EXCLUSION - 2

Consider list insertion

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.65

MUTUAL EXCLUSION: LIST INSERTION

 Lock based implementation

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.66

MUTUAL EXCLUSION – LIST INSERTION - 2

Wait free (no lock) implementation

Assign &head to n (new node ptr)

Only when head = n->next

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.67

MUTUAL EXCLUSION – LIST INSERTION - 3

1 void insert(int value) {

2 node_t *n = malloc(sizeof(node_t));

3 assert(n != NULL);

4 n->value = value;

5 do {

6 n->next = head;

7 } while (CompareAndSwap(&head, n->next, n));

8 }

62 63

64 65

66 67

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L12.12Slides by Wes J. Lloyd

 Four conditions are required for dead lock to occur

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.68

CONDITIONS FOR DEADLOCK

 Problem: acquire all locks atomically

 Solution: use a “lock” “lock”… (like a guard lock)

 Effective solution – guarantees no race conditions while

acquiring L1, L2, etc.

 Order doesn’t matter for L1, L2

 Prevention (GLOBAL) lock decreases concurrency of code

▪ Acts Lowers lock granularity

 Encapsulation: consider the Java Vector class…

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.69

PREVENTION LOCK – HOLD AND WAIT

 Four conditions are required for dead lock to occur

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.70

CONDITIONS FOR DEADLOCK

When acquiring locks, don’t BLOCK forever if

unavailable…

pthread_mutex_trylock() - try once

pthread_mutex_timedlock() - try and wait awhile

Eliminates deadlocks

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.71

PREVENTION – NO PREEMPTION

Can lead to livelock

 Two threads execute code in parallel →

 always fail to obtain both locks

 Fix: add random delay

▪Allows one thread to win the

livelock race!

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.72

NO PREEMPTION – LIVELOCKS PROBLEM

 Four conditions are required for dead lock to occur

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.73

CONDITIONS FOR DEADLOCK

68 69

70 71

72 73

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L12.13Slides by Wes J. Lloyd

Provide total ordering of lock acquisition

throughout code

▪Always acquire locks in same order

▪L1, L2, L3, …

▪Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2….

Must carry out same ordering through entire

program

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.74

PREVENTION – CIRCULAR WAIT

 If any of the following conditions DOES NOT

EXSIST, describe why deadlock can not occur?

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.75

CONDITIONS FOR DEADLOCK

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.7
6

Consider a smart scheduler

▪Scheduler knows which locks threads use

Consider this scenario:

▪4 Threads (T1, T2, T3, T4)

▪2 Locks (L1, L2)

 Lock requirements of threads:

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.77

DEADLOCK AVOIDANCE

VIA INTELLIGENT SCHEDULING

Scheduler produces schedule:

No deadlock can occur

Consider:

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.78

INTELLIGENT SCHEDULING - 2

 Scheduler produces schedule

 Scheduler must be conservative and not take risks

 Slows down execution – many threads

 There has been limited use of these approaches given the

difficulty having intimate lock knowledge about every

thread

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.79

INTELLIGENT SCHEDULING - 3

74 75

76 77

78 79

TCSS 422 A – Spring 2024
School of Engineering and Technology

5/9/2024

L12.14Slides by Wes J. Lloyd

 Allow deadlock to occasionally occur and then take some

action.

▪ Example: When OS freezes, reboot…

 How often is this acceptable?

▪ Once per year

▪ Once per month

▪ Once per day

▪ Consider the effort tradeoff of finding every deadlock bug

 Many database systems employ deadlock detection and

recovery techniques.

May 7, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L12.80

DETECT AND RECOVER QUESTIONS

80 81

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 5/7
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 4/30
	Slide 8: OBJECTIVES – 5/7
	Slide 9: OBJECTIVES – 5/7
	Slide 10
	Slide 11: OBJECTIVES – 5/7
	Slide 12: Tutorial 2
	Slide 13: OBJECTIVES – 5/7
	Slide 14: Chapter 30 – condition variables
	Slide 15: Condition variables
	Slide 16: Condition variables - 2
	Slide 17: Condition variables - 3
	Slide 18: Condition variables - questions
	Slide 19: Matrix generator
	Slide 20: OBJECTIVES – 5/7
	Slide 21: Matrix generator
	Slide 22: attempt to use condition variable without a while statement
	Slide 23: Producer / consumer
	Slide 24: Producer / consumer
	Slide 25: Producer / consumer - 2
	Slide 26: We will return at 5:00pm
	Slide 27: Put/get routines
	Slide 28: Producer / consumer - 3
	Slide 29: Producer / consumer - 3
	Slide 30: Producer/consumer - 4
	Slide 31: Execution trace: no while, 1 producer, 2 consumers
	Slide 32: producer/consumer synchronization
	Slide 33: Execution trace: while, 1 condition, 1 producer, 2 consumers
	Slide 34: Execution trace – 2 while, 1 condition, 1 producer, 2 consumers
	Slide 35: Two conditions
	Slide 36: Final producer/consumer
	Slide 37: Final p/c - 2
	Slide 38: Final p/c - 3
	Slide 39
	Slide 40
	Slide 41: OBJECTIVES – 5/7
	Slide 42: Covering conditions
	Slide 43: Covering conditions - 2
	Slide 44: Cover conditions - 3
	Slide 45: Chapter 31: Semaphores
	Slide 46: OBJECTIVES – 5/7
	Slide 47: Chapter 32 – concurrency problems
	Slide 48: Concurrency bugs in open source software
	Slide 49: OBJECTIVES – 5/7
	Slide 50: Non-deadlock bugs
	Slide 51: Atomicity violation - mysql
	Slide 52: Atomicity violation - solution
	Slide 53: Order violation bugs
	Slide 54: Order violation - solution
	Slide 55: Order violation – solution - 2
	Slide 56: Non-deadlock bugs - 1
	Slide 57: Non-deadlock bugs - 2
	Slide 58: Deadlock bugs
	Slide 59: OBJECTIVES – 5/7
	Slide 60: Reasons for deadlocks
	Slide 61: Conditions for deadlock
	Slide 62: OBJECTIVES – 5/7
	Slide 63: Prevention – mutual exclusion
	Slide 64: Prevention – mutual exclusion - 2
	Slide 65: mutual exclusion: List insertion
	Slide 66: mutual exclusion – list insertion - 2
	Slide 67: Mutual exclusion – list insertion - 3
	Slide 68: Conditions for deadlock
	Slide 69: Prevention lock – hold and wait
	Slide 70: Conditions for deadlock
	Slide 71: Prevention – no preemption
	Slide 72: No preemption – livelocks problem
	Slide 73: Conditions for deadlock
	Slide 74: Prevention – circular wait
	Slide 75: Conditions for deadlock
	Slide 76
	Slide 77: Deadlock avoidance via intelligent scheduling
	Slide 78: Intelligent scheduling - 2
	Slide 79: Intelligent scheduling - 3
	Slide 80: Detect and recover
	Slide 81: Questions

