TCSS 422 A — Spring 2024
School of Engineering and Technology

5/9/2024

TCSS 422: OPERATING SYSTEMS

Lock-based data structures Il, &
Condition Variables,
Concurrency Problems

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2024]

MayZ;2024 School of Engineering and Technology, University of Washington

OBJECTIVES - 5/7

| = Questions from 4/30 & Midterm Distribution|
= Assignment O Grades Posted
= Assignment 1 - May 9
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCS5422: Operating Systems [Spring 2024]

(b School of Engineering and Technology, University of Washington - Tacoma

1122

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TC55422A > Assignments

sping 2021
Home
Announcements
Joom * Upcoming Assignments
Syllabus s TCSS422 - Online Daily Feedback Survey - 4/1

i ™ Avallable until Apr 5 at 11:5%pm | DueApr3 at 10pm | -/1pts
Nizerccinne An.r e

TCS5422: Computer Operating Systems [Spring 2024]

N ayzz2024 School of Engineering and Technology, University of Washington - Tacoma

123

TCSS 422 - Online Daily Feedback Survey - 4/1

Quiz Instructions

Question 1 05 pes

On.a scale of 110 10, please classify your perspective on material covered in today's
el

1 2 3 4 5 s 7T 8 3 1
manly. et sty
i 10 e ol nevie o

Question 2 05pes

Piease rate the pace of today's class:

1 2 3 a4 s & 7 8 3 10

TCSS422: Computer Operating Systems [Spring 2024]

May 7,2024 School of Engineering and Technology, University of Washington - Tacoma

L1124

MATERIAL / PACE

FEEDBACK FROM 4/30

= Please classify your perspective on material covered in today’s
class (32 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - 6.56 (\ - previous 6.98)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.31 ({ - previous 5.52)

TCS5422: Computer Operating Systems [Spring 2024]

e School of Engineering and Technology, University of Washington -Tacoma

L2

TC55422: Operating Systems [Spring 2024]

‘ L School of Engineering and Technology, University of Washington - Tacoma

1126

Slides by Wes J. Lloyd

L12.1

TCSS 422 A — Spring 2024
School of Engineering and Technology

OBJECTIVES - 5/7

= Questions from 4/30 & Midterm Distribution
| = Asslgnment 0 Grades Posted]
= Assignment 1 - May 9
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCSS422: Operating Systems [Spring 2024]

‘ LA Lk School of Engineering and Technology, University of Washington - Tacoma

128

mhttps://faculty.washington.edu/wll
oyd/courses/tcss422/assignments
/googlebig.txt.gz

TCSS422: Operating Systems [Spring 2024]

‘ Rayiz028 School of Engineering and Technology, University of Washington - Tacoma

210

TUTORIAL 2

= Pthread Tutorial
= Practice using:
= pthreads
= Locks
= Condition variables

= Generate and visualize prime number generation in parallel

= To be posted in next couple of days

TCS5422: Operating Systems [Spring 2024]

‘ e School of Engineering and Technology, University of Washington - Tacoma

u212

5/9/2024

OBJECTIVES - 5/7

= Questions from 4/30 & Midterm Distribution
= Assignment O Grades Posted
| = Asslgnment 1 - May 9 |
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCS5422: Operating Systems [Spring 2024]

‘ (b School of Engineering and Technology, University of Washington - Tacoma

129

OBJECTIVES - 5/7

= Questions from 4/30 & Midterm Distribution
= Assignment O Grades Posted
= Assignment 1 - May 9
|= Tutorial 2: Pthread Tutorial - to be posted |
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCS5422: Operating Systems [Spring 2024]

May7, 2024 School of Engineering and Technology, University of Washington - Tacoma

211

11

OBJECTIVES - 5/7

= Questions from 4/30 & Midterm Distribution
= Assignment O Grades Posted
= Assignment 1 - May 9
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

=Ch r 30: Condltion Varlabl
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TC55422: Operating Systems [Spring 2024]

L School of Engineering and Technology, University of Washington - Tacoma

1213

Slides by Wes J. Lloyd

13

L12.2

TCSS 422 A — Spring 2024
School of Engineering and Technology

CHAPTER 30 -
CONDITION VARIABLES

TCSS422: Operating Systems [Spring 2024]

ayji2020 School of Engineering and Technology, University of Washington -

CONDITION VARIABLES - 2

= Support a signaling mechanism to alert v
threads when preconditions have been satisfied

= Eliminate busy waiting

= Alert one or more threads to “consume” a result, or
respond to state changes in the application

= Threads are placed on (FIFO) queue to WAIT for signals

= Signal: wakes one thread (thread waiting longest)
broadcast wakes all threads (ordering by the 0S)

TCSS422: Operating Systems [Spring 2024]

May7, 2024 School of Engineering and Technology, University of Washington - Tacoma

L2316

16

CONDITION VARIABLES - QUESTIONS

= Why would we want to put walting threads on a queue?
why not use a stack?
= Queue (FIFO), Stack (LIFO)

= Why do we want to not busily wait for the lock to become
available?
= Using condition variables eliminates busy waiting by putting threads
to “sleep” and yielding the CPU.

= A program has 10-threads, where 9 threads are waiting. The
working thread finishes and broadcasts that the lock is
available. What happens next?
= All threads woken up in FIFO order - based on when started to wait

TCS5422: Operating Systems [Spring 2024]

e School of Engineering and Technology, University of Washington - Tacoma

L1218

5/9/2024

CONDITION VARIABLES

=There are many cases where a thread wants to
wait for another thread before proceeding with
execution

= Consider when a precondition must be fulfilled
before it is meaningful to proceed ...

TCS5422: Operating Systems [Spring 2024]

‘ (b School of Engineering and Technology, University of Washington - Tacoma

1215

15

CONDITION VARIABLES - 3

= Condition variable

= Requires initialization

= Condition API calls

pthread_cond_wait (pthread cond_t *c, pthread mutex_t *m);
pthread_cond_signal {pthread_cond_t *c):

= wait() accepts a mutex parameter
= Releases lock, puts thread to sleep, thread added to FIFO queue

= signal()
= Wakes up thread, awakening thread acquires lock

TCS5422: Operating Systems [Spring 2024]

‘ ey 20 School of Engineering and Technology, University of Washington - Tacoma

1217

17

MATRIX GENERATOR

Matrix generation example

Chapter 30
signal.c

TC55422: Operating Systems [Spring 2024]

‘ L School of Engineering and Technology, University of Washington - Tacoma

18

Slides by

Wes J. Lloyd

219

19

L12.3

TCSS 422 A — Spring 2024 5/9/2024
School of Engineering and Technology

OBJECTIVES - 5/7 MATRIX GENERATOR

= Questions from 4/30 & Midterm Distribution

= Assignment O Grades Posted

= Assignment 1 - May 9

= Tutorial 2: Pthread Tutorial - to be posted

= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table

= Chapter 30: Condition Variables

| = Producer/Consumer

= Covering Conditions

= Chapter 32: Concurrency Problems = Example program: “nosignal.c”
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCS5422: Operating Systems [Spring 2024] TCS5422: Operating Systems (Spring 2024]
‘ LA Lk School of Engineering and Technology, University of Washington - Tacoma 220 Ly et School of Engineering and Technology, University of Washington - Tacoma t221

= The worker thread produces a matrix
= Matrix stored using shared global pointer
= The main thread consumes the matrix
= Calculates the average element
= Display the matrix

= What would happen if we don’t use a condition variable to
coordinate exchange of the lock?

20 21

ATTEMPT TO USE CONDITION VARIABLE PRODUCER / CONSUMER

WITHOUT A WHILE STATEMENT

l € Child calls

3 ond_signal (sc) 7

4

5

& thr_jeint) { € Parent calls

7 (done = 0) Work Queue
8 Pthread_cond_waiti&c);

5

= Subtle race condition introduced

= Parent thread calls thr_JoIn() and executes comparison (line 7)

= Context switches to the child

= The child runs thr_exit() and signals the parent, but the parent
is not waiting yet. (parent has not reached line 8)

" The signal Is lost !

= The parent deadlocks

TCS5422: Operating Systems [Spring 2024] TCSS422: Operating Systems [Spring 2024]
‘ N ayzz2024 School of Engineering and Technology, University of Washington - Tacoma L1222 EhEE School of Engineering and Technology, University of Washington - Tacoma wes

a1l

22 23

PRODUCER / CONSUMER PRODUCER / CONSUMER - 2
= Producer = Producer / Consumer is also known as Bounded Buffer
= Produces items - e.g. child the makes matricies
= Places them in a buffer = Bounded buffer
Example: the buffer size is only 1 element (single array pointer) = Similar to piping output from one Linux process to another
= Consumer = grep pthread signal.c | wc -1
= Grabs data out of the buffer = Synchronized access:

= Our example: parent thread receives dynamically sends output from grep = wc as it is produced
generated matrices and performs an operation on them = File stream
Example: calculates average value of every element (integer)
= Multithreaded web server example

= Http requests placed into work queue; threads process

TCS5422: Operating Systems [Spring 2024] 2 TCS5422: Operating Systems [Spring 2024] s
‘ e School of Engineering and Technology, University of Washington - Tacoma e L School of Engineering and Technology, University of Washington - Tacoma 22

24 25

Slides by Wes J. Lloyd L12.4

TCSS 422 A — Spring 2024
School of Engineering and Technology

May 7,

WE WILL RETURN AT

5:00PM

o TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington -

26

= Produ

PRODUCER / CONSUMER - 3

cer adds data

= Consumer removes data (busy waiting)

= Witho

ut synchronization:

1. Producer Function 2. Consumer Function

1 =prad rarg) (

2
3 {int) args
4 It i < loopss i+l {
5 putiin;
B .
7 }
8
3 *consumer (void *arg) [
10 i i
1 o
12 int tmp = get{):
13 printf("sd\n”, tmp):
11)
15 }

l R TCS5422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma

L1228

28

PRODUCER/CONSUMER - 4

20 (count 0)

21 Pthread _cond wait(scond, &mutex);

22 int tmp = get();

23 Pthread_cond_signal (&cond) ;

24 Pthread_mutex_unlock (smutex) ;

25 printf ("$d\n", tmp);

26) Consumer
27 }

= This code as-is works with just:

(1) Producer
(1) Consumer

= PROBLEM: no while. If thread wakes up it MUST execute
= |f we scale to (2+) consumer’s it fails

= How can it be fixed ?

May 7, 2024

TCS5422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L1230

5/9/2024

PUT/GET ROUTINES

= Buffer is a one element shared data structure (int)

= Producer “puts” data, Consumer “gets” data

= “Bounded Buffer” shared data structure requires

nchronization
1 int buffer;
2 int count = 07 .
3
1 void put(int value)
5 assert (count == 0);
6 count = 1;
7 buffer = value;
8 }
9
10 At get() |
1 assert (count == 1);
12 count = 0;
13 butfer;
11 }
TCS5422: Operating Systems [Spring 2024
l Ly et School of Enpgeineer?ngyand Tec[h:oluggy, University of Washington - Tacoma v227

27

PRODUCER / CO

= The shared data structure needs synchronization!

1 cond_t conds
2 muteX t mutexs
3
a i rarg) [
M Producer
& ¢ 1< loopar 1e41 |
7 utex_lock(smutex) ; pl
8]
s Pthread_cond_wait(acond, &mutex);
10 putiidy
1 Pthread_cond_signal (scond) :
12 Pthread_mutex_unlock {smitex):
13 }
1)
15
16 *consumer (rarg) |
17 nt i
18 (1=0s 1<2loops: i+4) |
13 9 Pthread_mutex_lock(smutex)
TCS5422: Operating Systems [Spring 2024
l May7,2024 School of E:geineer?ngyand Te(l:h:ologgy, Ur\!vers‘\tv of Washington - Tacoma 1229

29

EXECUTION TRACE:

NO WHILE, 1 PRODUCER, 2 CONSUMERS

T. | State [T, | State |7, | State |Count| Comment
Legend <l | Runing Ready Ready [}
C1/p1— lock €2 | Running Ready Ready 0
c2/p2- check var ‘ S| Seep Ready Ready 0 Nothing to get
c3/p3- wait Sleep Ready | pl | Runing 0
c4- put() Sleep Ready | p2 | Running 0
4- get Sleep Read: p4 | Running 1 Buffer now full
p4-ge () Ready Ready p5 | Running 1 7., awoken
c5/p5- signal Readly Ready | g6 | Runding 1
c6/p6- unlock Ready Ready | pl | Running 1
Resdy Ready | p2 | Runaing 1
No while can Ready Readh 3 | Sheep 1 Buffer ful: leep
e unl= e ont ReacyJPcL | Running Sleep 1 T,z sneaks in
consumer having Ready | 2 [Running Sleep 1
rescy Pt | Running Sleep 0 . and grabs data
no data to consume
Ready [<5 | Running Ready 0 T, awoken
ReacylP<6 | funning Ready 0
» <4 | Running Ready Ready 0 Oh oh! No data

l May 7, 2024

TC55422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

231

30

Slides by Wes J. Lloyd

31

L12.5

TCSS 422 A — Spring 2024
School of Engineering and Technology

PRODUCER/CONSUMER

SYNCHRONIZATION

= When producer threads awake, they do not check if there is
any data in the buffer...

= Need “while” statement, “if” statement is Insufficient ...
= What if T, puts a value, wakes T;; whom consumes the value
= Then T, has a value to put, but T;,’s signal on &cond wakes T,
= There is nothing for T,, consume, so T, sleeps

= Tcy, Teo, @and T, all sleep forever

= T, needs to wake T, to T,

TCSS422: Operating Systems [Spring 2024]
‘ LA Lk School of Engineering and Technology, University of Washington - Tacoma L1232

5/9/2024

32

EXECUTION TRACE:
WHILE, 1 CONDITION, 1 PRODUCER, 2

Le el‘ld T(V| State Ta State T' State Count Comment
cptlock | e |
c2/p2- Ch?Ck var 3| Sleep Ready 0 Nothing to get
¢3/p3- wait Sleep | <L Ready 0
c4- put() Seep | 2 Ready 0
p4- get() Sleep | c3 Ready 0 Nothing to get
05/95- signal Sleep Sleep pl | Running 0
6/p6- unlock Sleep Sleep | p2 | Ruming | 0
Sleep Sesp | p4 | Running 1 Butfar now full
One condltion ’ Ready Slesp 5 | Running 1 7., awoken
can result in Ready Sleep | p6 | Running 1
waking up wrong Ready. Sleep pl | Running 1
thread (consumer Ready Sleep | p2 | Running 1
Instead of producer) Ready Sleep p3 Sleep 1 Must sleep full)
€2 | Running Sleep Sleep 1 Recheck candition
<4 | Runing Sleep Sleep. 0 Ty grabs data
‘ <5 | Running Resdy Slesp 0 Oops! Woke T,

TCS5422: Operating Systems [Spring 2024]

‘ (b School of Engineering and Technology, University of Washington - Tacoma

1233

EXECUTION TRACE - 2

WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

= T, runs, no data to consume

T | sate |r,| sate |7, | sute |count Comment
6 | Rumning Ready Sleep.]
c2/p2- check var a | fuming Ready Sleep o
c3/p3- wait @ [Running Ready Sleep]
c4- put() =) Sleep Ready Sleep 0 MNothing to get
p4- get() ?Irrp ‘{ Running ?\ggp 0
¢5/p5- signal Steepily <3 | Sleep Steep 0 Everyone aslesp
c6/p6- unlock
EEE e e e

33

34

TWO CONDITIONS

= Required w/ multiple producer and consumer threads

= Use two condition variables: empty & full
= One condition handles the producer
= the other the consumer

1 cond_t empty, full;

2 mutex_t mutex;

3

4 o0id *producer (void *arg) |

5 i

6 i < loops; it++)

d_mutex_lock (&mutex) ;

(count.
9 Pthread_cond_wait (sempty, amutex);
10 put (i) ;
11 Pthread_cond_signal(sfull);
12 Pthread_mutex_unlock (smutex) ;
13 }
14 }
15
‘ R TCS5422: Operating Systems [Spring 2024] 235

School of Engineering and Technology, University of Washington - Tacoma

FINAL PRODUCER/CONSUMER

= Change buffer from int, to int buffer[MAX]
= Add indexing variables
= >> Becomes BOUNDED BUFFER, can store multiple matricies

1 © bufferiMax] s

2 t el =

3 £ use

4 t count =

& { put(int valuel (

7 117 = valuer

2 111 + 1) % MAX;

10 }

1

12 get 0 1

13 tmp = butfer(usels

1 S0 b MK

15

16

17 ¥

TCSS422: Operating Systems [Spring 2024]

‘ e Sl B e e o O G S T L6

35

FINAL P/C - 2

cond_signal (&full);
mutex_unlock (smutex);

*consumer (void *arg) {

loops; it4) |

TC55422: Operating Systems [Spring 2024]

L School of Engineering and Technology, University of Washington - Tacoma

1237

36

Slides by Wes J. Lloyd

37

L12.6

TCSS 422 A — Spring 2024

5/9/2024
School of Engineering and Technology

[| |
FINAL P/C - 3 - Using one condition variable, and no while loop is "
/€ - sufficient to synchronize access to a bounded buffer

shared by:

Pthread_cond_signal (Sempty);
Pthr utex_unlock (smutex)

25 ~ prinef("idn", wp); 1 Producer, 1
p y Consumer Thread
= Producer: only sleeps when buffer is full przofﬂr;:’:‘:rséé
re.
= Consumer: only sleeps if buffers are empty

2+ Producers, 2+
Consumer Threads

All of the above

None of the above

‘ LA Lk ;gts:;\zfrzf‘E):;r::e’:\gnzy:‘ned"}seg\:::‘ngg\j,ulzl:!versilvaf Washington - Tacoma 238 .. Ep— ¥ el l.
38 39
LB -
Using two condition variables, and a while loop is
. . OBJECTIVES - 5/7
sufficient to synchronize access to a bounded buffer
shared by: = Questions from 4/30 & Midterm Distribution
= Assignment O Grades Posted
1 Producer, 1 = Assignment 1 - May 9
Consumer Thread = Tutorial 2: Pthread Tutorial - to be posted
2 Consumers. 1 = Chapter 29: Lock Based Data Structures
Producer Thread - oy Einds:) ,
= Concurrent Structures: Linked List, Queue, Hash Table
2+ Producers, 2+ = Chapter 30: Condition Variables
Consumer Threads = Producer/Consumer
| = Cavering Conditlons |
All of the above = Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
None of the above = Deadlock prevention
- _— _ ; . [v [e i s vingen o wa
40 41

COVERING CONDITIONS

COVERING CONDITIONS - 2

= A condition that covers all cases (conditions):
= Excellent use case for pthread_cond_broadcast

bytesLeft = MAX HEAD STZE;

= Consider memory allocation:
=When a program deals with huge memory H
allocation/deallocation on the heap i

= Access to the heap must be managed when memory is 2
scarce

Check available memory

PREVENT: Out of memory: 1
- queue requests until memory is free 15

= Which thread should be woken up? 2

Broadcast

TCS5422: Operating Systems [Spring 2024] e TCS5422: Operating Systems [Spring 2024] e
‘ e School of Engineering and Technology, University of Washington - Tacoma - L School of Engineering and Technology, University of Washington - Tacoma L2

42 43

Slides by Wes J. Lloyd L12.7

TCSS 422 A — Spring 2024

5/9/2024
School of Engineering and Technology

COVER CONDITIONS - 3

= Broadcast awakens all blocked threads requesting memory

= Each thread evaluates if there’s enough memory:
(bytesLeft < size)
= Reject: requests that cannot be fulfilled- go back to sleep
Insufficient memory
= Run: requests which can be fulfilled
with newly available memory!

= Another use case: coordinate a group of busy threads to
gracefully end, to EXIT the program

= Overhead
= Many threads may be awoken which can’t execute
TCSS422: Operating Systems [Spring 2024]
‘ LA Lk School of Engineering and Technology, University of Washington - Tacoma 244

OBJECTIVES - 5/7

= Questions from 4/30 & Midterm Distribution
= Assignment O Grades Posted
= Assignment 1 - May 9
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
|= Chapter 32: Concurrency Problems |
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCSS422: Operating Systems [Spring 2024] 246
School of Engineering and Technology, University of Washington - Tacoma

‘ May7, 2024

46

CONCURRENCY BUGS IN
OPEN SOURCE SOFTWARE

= “Learning from Mistakes - A Comprehensive Study on
Real World Concurrency Bug Characteristics”
=Shan Lu et al.
= Architectural Support For Programming Languages and
Operating Systems (ASPLOS 2008), Seattle WA

Application What it does Non-Deadlock ~ Deadlock
MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Web Browser 41 16
Open Office Office Suite 6 2
Total 74 31
I e

48

Slides by Wes J. Lloyd

CHAPTER 31: SEMAPHORES

= Offers a combined C language construct that can assume the
role of a lock or a condition variable depending on usage

= Allows fewer concurrency related variables in your code
= Potentially makes code more ambiguous
= For this reason, with limited time in a

10-week quarter, we do not cover

= Ch. 31.6 - DIning Phllosophers Problem
= Classic computer science problem about 8/
sharing eating utensils)
= Each philosopher tries to obtain two forks G B
in order to eat N Al
L -~ ~
= Mimics deadlock as there are not enough forks "
= Solution is to have one left-handed philosopher = * =
that grabs forks in opposite order) .
TCSS422: Oy ling Sy [Spring 2024]
‘ e e e e 1245

45

CHAPTER 32 -
CONCURRENCY
PROBLEMS

e P TCSS422: Operating Systems [Spring 2024]
¥ School of Engineering and Technology, University of Washington -

47

OBJECTIVES - 5/7

= Questions from 4/30 & Midterm Distribution
= Assignment O Grades Posted
= Assignment 1 - May 9
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
| Non-deadlock concurrency bugs |
= Deadlock causes
= Deadlock prevention

7CS5422: Operating Systems [Spring 2024]
‘ L ‘ School of Engineering and Technology, University of Washington - Tacoma L1249

49

L12.8

TCSS 422 A — Spring 2024
School of Engineering and Technology

NON-DEADLOCK BUGS

= Majority of concurrency bugs

= Most common:
= Atomicity violation: forget to use locks

=Order violation: failure to initialize lock/condition
before use

TCSS422: Operating Systems [Spring 2024]
‘ LA Lk School of Engineering and Technology, University of Washington - Tacoma 250

50

ATOMICITY VIOLATION - SOLUTION

= Add locks for all uses of: thd->proc_info

1 pthread mutex t lock = PTHREAD MUTEX INITIALIZER:
2

3 Threadl::

4 pthread mutex_lock(slock);

5 (thd->pros o) [

& -

7 fputs(thd->proc_info , .)7

8 -

1
10 pthread_mutex_unlock (slock) i

12 Thread2::

TCSS422: Operating Systems [Spring 2024]
‘ N ayzz2024 School of Engineering and Technology, University of Washington - Tacoma L1252

52

ORDER VIOLATION - SOLUTION

= Use condition & signal to enforce order

1 pthread mutex_t mtLock = PTHREAD MUTEX_INITIALIZER:

2 pthread_c mtCond = PTHREAD_COND_INITIALIZER:
3 mtInit = 0
1
Thread 1::
€ init 0

mThread = PR_CreateThread (mMain,..):

_mutex_lock (émtLock) ;

iqnal (& i
itex_unlock (SmELock) &

Thread?: :
mMain () [

TCS5422: Operating Systems [Spring 2024]

L1254
School of Engineering and Technology, University of Washington - Tacoma

‘ May 7, 2024

ATOMICITY VIOLATION - MYSQL

= Two threads access the proc_info field in struct thd

" NULLisOinC

= Mutually exclusive access to shared memory among
separate threads is not enforced (e.g. non-atomic)

= Simple example: proc_Info deleted

1
3
. 4 fputs (thd->proc_info , .):
Programmer intended 5 N -
variable to be accessed ‘ € }
atomically... 7
]
E]
TCS5422: Operating Systems [Spring 2024]
‘ Ly et School of Engineering and Technology, University of Washington - Tacoma t2st

51

ORDER VIOLATION BUGS

= Desired order between memory accesses is flipped
= E.g. something is checked before it is set
= Example:

1 Threadl::

2 init0 [

3 mrthread = PR_CreateThread (mMain, .);
4

6 Thread2::

7 1 mMain..) {

8 mstate = mThread->State

9 1

= What if mThread is not initialized?

TCS5422: Operating Systems [Spring 2024]
[MayiZz2023 School of Engineering and Technology, University of Washington - Tacoma t2s3

53

ORDER VIOLATION - SOLUTION - 2

= Use condition & signal to enforce order

pthread mute:
(mtlgit

| o
pthread WOPEY

, antLock) |

mState = mThread-»State;

MR
GEERRILRR

54

Slides by Wes J. Lloyd

7CS5422: Operating Systems [Spring 2024] N
L School of Engineering and Technology, University of Washington - Tacoma s

55

5/9/2024

L12.9

TCSS 422 A — Spring 2024
School of Engineering and Technology

NON-DEADLOCK BUGS - 1

2 97% of Non-Deadlock Bugs were
= Atomicity
=Order violations

= Consider what is involved in “spotting” these
bugs in code
= >> no use of locking constructs to search for

= Desire for automated tool support (IDE)

TCSS422: Operating Systems [Spring 2024]

‘ avEaa28 School of Engineering and Technology, University of Washington - Tacoma

L1256

56

DEADLOCK BUGS

= Presence of a cycle in code
= Thread 1 acquires lock L1, waits for lock L2
= Thread 2 acquires lock L2, waits for lock L1

Thread 1: Thread

lock(L1); Llock(

lock (L2); lock (L1);

= Both threads can block, unless
one manages to acquire both locks

TCSS422: Operating Systems [Spring 2024]

‘ Rayiz028 School of Engineering and Technology, University of Washington - Tacoma.

58

REASONS FOR DEADLOCKS

= Complex code

= Must avoid circular dependencies - can be hard to find...
= Encapsulation hides potential locking conflicts

= Easy-to-use APIs embed locks inside

= Programmer doesn’t know they are there

= Consider the Java Vector class:

= Vector is thread safe (synchronized) by design

= If there is a v2.AddAll(v1); call at nearly the same time
deadlock could result

TCS5422: Operating Systems [Spring 2024]

‘ e School of Engineering and Technology, University of Washington - Tacoma

L1260

60

Slides by Wes J. Lloyd

NON-DEADLOCK BUGS - 2

= Atomicity
= How can we tell if a given variable is shared?
Can search the code for uses
= How do we know if all instances of its use are shared?
Can some non-synchronized, non-atomic uses be legal?
= Legal uses: before threads are created, after threads exit
Must verify the scope

= Order violation
= Must consider all variable accesses
= Must know desired order

TCS5422: Operating Systems [Spring 2024]
‘ Ly et School of Engineering and Technology, University of Washington - Tacoma 27

57

OBJECTIVES - 5/7

= Questions from 4/30 & Midterm Distribution
= Assignment O Grades Posted
= Assignment 1 - May 9
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency blE_S

| = Deadlock causes |

= Deadlock prevention

TCS5422: Operating Systems [Spring 2024]

‘ [MayiZz2023 School of Engineering and Technology, University of Washington - Tacoma 1259

59

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional

Held-and-wait resources

No preemption | Resources cannot be forcibly remeved from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Circular wait resources that are being requested by the next thread in the chain

7CS5422: Operating Systems [Spring 2024] Je
‘ L School of Engineering and Technology, University of Washington - Tacoma et

61

TCSS 422 A — Spring 2024
School of Engineering and Technology

5/9/2024

OBJECTIVES - 5/7

= Questions from 4/30 & Midterm Distribution
= Assignment O Grades Posted
= Assignment 1 - May 9
= Tutorial 2: Pthread Tutorial - to be posted
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes

| = Deadlock prevention |
TCSS422: Operating Systems [Spring 2024]
‘ LA Lk School of Engineering and Technology, University of Washington - Tacoma L1262

PREVENTION - MUTUAL EXCLUSION

= Build wait-free data structures
= Eliminate locks altogether

= Build structures using CompareAndSwap atomic CPU (HW)
instruction

= C pseudo code for CompareAndSwap
= Hardware executes this code atomically

1 CompareAndswap (int * expected, int new){
2 (*addres;
3 *a
1
5 b
3
1
[e S fEonani and Teketogy ey of Washingon Tocoma 26

62

PREVENTION - MUTUAL EXCLUSION - 2

= Recall atomic increment

1 AtomicIncrement (*value, amount)

*value;
wap(value, old, oldsamount)==0);

ol
{ Compare

= Compare and Swap tries over and over until
successful

= CompareAndSwap is guaranteed to be atomic
= When it runs it is ALWAYS atomic (at HW level)

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L1264

‘ May7, 2024

64

MUTUAL EXCLUSION - LIST INSERTION - 2

= Lock based implementation

1
3
¢
5
c
8
9]
TCS5422: Operating Systems [Spring 2024]
‘ e School of Engineering and Technology, University of Washington - Tacoma Lo

66

Slides by Wes J. Lloyd

63

MUTUAL EXCLUSION: LIST INSERTION

= Consider list insertion

1 insert(int value){
2 t=n-= (sizeof (node_t))
3 :
4
7 I
TCS5422: Operating Systems [Spring 2024]
‘ [MavZ2024 School of Engineering and Technology, University of Washington - Tacoma e

65

MUTUAL EXCLUSION - LIST INSERTION - 3

= Wait free (no lock) implementation

insert (int value) {

t *n = malloc(sizeof (node_t));
LL) ;
- value;

n->next = head;

1
2
3
4
5
7 } (CompareandSwap (shead, n->next, n));
8

}

= Assign &head to n (new node ptr)
= Only when head = n->next

TC55422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L1267

May 7, 2024

67

L12.11

TCSS 422 A — Spring 2024
School of Engineering and Technology

CONDITIONS FOR DEADLOCK

= Four condiltlons are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional

Held-and-wait resources

No preemption | Resources cannot be forcibly remeved from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Circular wait resources that are being requested by the next thread in the chain

‘ May7, 2024

TCSS422: Operating Systems [Spring 2024] L12.68
School of Engineering and Technology, University of Washington - Tacoma

68

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional

Held-and-wait resources

*No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Circular wait resources that are being requested by the next thread in the chain

TCSS422: Operating Systems [Spring 2024]
‘ N ayzz2024 School of Engineering and Technology, University of Washington - Tacoma t270

70

NO PREEMPTION - LIVELOCKS PROBLEM

= Can lead to livelock

top:

=Two threads execute code in parallel >
always fail to obtain both locks

= Fix: add random delay
=Allows one thread to win the
livelock race!

TCS5422: Operating Systems [Spring 2024] 1272
School of Engineering and Technology, University of Washington - Tacoma

‘ May 7, 2024

72

Slides by Wes J. Lloyd

5/9/2024

PREVENTION LOCK - HOLD AND WAIT

= Problem: acquire all locks atomically
= Solution: use a “lock” “lock”... (like a guard lock)

lock (prevention) §
lock (LL
lock (L2

unlock{prevention)

= Effective solution - guarantees no race conditions while
acquiring L1, L2, etc.

= Order doesn’t matter for L1, L2

= Prevention (GLOBAL) lock decreases concurrency of code
= Acts Lowers lock granularity

= Encapsulation: consider the Java Vector class...

TCS5422: Operating Systems [Spring 2024] 12,69
School of Engineering and Technology, University of Washington - Tacoma

‘ May7, 2024

69

PREVENTION - NO PREEMPTION

= When acquiring locks, don’t BLOCK forever if
unavailable...

= pthread_mutex_trylock() - try once
= pthread_mutex_timedlock() - try and wait awhile

s Mmoo NO
STOPPING
ANY

= Eliminates deadlocks TIME
TCS5422: Operating Systems [Spring 2024]
‘ [MayiZz2023 School of Engineering and Technology, University of Washington - Tacoma 1271

71

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Held-and-wait

No preemption | Resources cannot be forcibly remeved from threads that are holding them.

*Cuculal wait

There exists a circular chain of threads such that each thread holds one more
resources that are being requested by the next thread in the chain

7CS5422: Operating Systems [Spring 2024] .
‘ L School of Engineering and Technology, University of Washington - Tacoma 2

73

L12.12

TCSS 422 A — Spring 2024
School of Engineering and Technology

PREVENTION - CIRCULAR WAIT

=Provide total ordering of lock acquisition
throughout code
= Always acquire locks in same order
=L1, L2, L3, ..
=Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2....

=Must carry out same ordering through entire
program

‘ May7, 2024

TCSS422: Operating Systems [Spring 2024] 274
School of Engineering and Technology, University of Washington - Tacoma

74

" The dining philosophers problem where 5

philosophers compete for 5 forks, and where a
philosopher must hold two forks to eat involves
which deadlock condition(s)?

Mutual Exclusion
Hold-and-wait
No preemption

Circular wait

All of the above

e comtent hel |
™ o comten, . 1

76

INTELLIGENT SCHEDULING - 2

mScheduler produces schedule:

= No deadlock can occur

= Consider:
1 yes yes yes no
& v | v | ye [e]
TCS$422: Operating Systems [Spring 2024]
‘ LEpET School of Engineering and Technology, University of Washington - Tacoma Lrs

5/9/2024

CONDITIONS FOR DEADLOCK

= |f any of the followlng conditions DOES NOT
EXSIST, describe why deadlock can not occur?

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

“ Threads hold resources allocated to them while waiting for additional
Hold-and-wait y
resources

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Cireularwait resources that are being requested by the next thread in the chain

TCS5422: Operating Systems [Spring 2024]
‘ Ly et School of Engineering and Technology, University of Washington - Tacoma u27s

75

DEADLOCK AVOIDANCE

VIA INTELLIGENT SCHEDULING

= Consider a smart scheduler
=Scheduler knows which locks threads use

= Consider this scenario:
=4 Threads (T1, T2, T3, T4)
=2 Locks (L1, L2)

= Lock requirements of threads:

u yes yas o e
[Lz [yes yes | yes no |
TCS5422: Operating Systems [Spring 2024]
‘ [MavZ2024 School of Engineering and Technology, University of Washington - Tacoma w7

77

INTELLIGENT SCHEDULING - 3

= Scheduler produces schedule

= Scheduler must be conservative and not take risks
= Slows down execution - many threads

= There has been limited use of these approaches given the
difficulty having intimate lock knowledge about every
thread

7CS5422: Operating Systems [Spring 2024] 7s
‘ L School of Engineering and Technology, University of Washington - Tacoma 2

78

Slides by Wes J. Lloyd

79

L12.13

TCSS 422 A — Spring 2024 5/9/2024
School of Engineering and Technology

DETECT AND RECOVER

QUESTIONS

= Allow deadlock to occasionally occur and then take some
action.

= Example: When OS freezes, reboot...

= How often is this acceptable?
= Once per year
= Once per month
= Once per day
= Consider the effort tradeoff of finding every deadlock bug

= Many database systems employ deadlock detection and
recovery techniques.

TCSS422: Operating Systems [Spring 2024]
l LA Lk School of Engineering and Technology, University of Washington - Tacoma 280

80 81

Slides by Wes J. Lloyd L12.14

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 5/7
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 4/30
	Slide 8: OBJECTIVES – 5/7
	Slide 9: OBJECTIVES – 5/7
	Slide 10
	Slide 11: OBJECTIVES – 5/7
	Slide 12: Tutorial 2
	Slide 13: OBJECTIVES – 5/7
	Slide 14: Chapter 30 – condition variables
	Slide 15: Condition variables
	Slide 16: Condition variables - 2
	Slide 17: Condition variables - 3
	Slide 18: Condition variables - questions
	Slide 19: Matrix generator
	Slide 20: OBJECTIVES – 5/7
	Slide 21: Matrix generator
	Slide 22: attempt to use condition variable without a while statement
	Slide 23: Producer / consumer
	Slide 24: Producer / consumer
	Slide 25: Producer / consumer - 2
	Slide 26: We will return at 5:00pm
	Slide 27: Put/get routines
	Slide 28: Producer / consumer - 3
	Slide 29: Producer / consumer - 3
	Slide 30: Producer/consumer - 4
	Slide 31: Execution trace: no while, 1 producer, 2 consumers
	Slide 32: producer/consumer synchronization
	Slide 33: Execution trace: while, 1 condition, 1 producer, 2 consumers
	Slide 34: Execution trace – 2 while, 1 condition, 1 producer, 2 consumers
	Slide 35: Two conditions
	Slide 36: Final producer/consumer
	Slide 37: Final p/c - 2
	Slide 38: Final p/c - 3
	Slide 39
	Slide 40
	Slide 41: OBJECTIVES – 5/7
	Slide 42: Covering conditions
	Slide 43: Covering conditions - 2
	Slide 44: Cover conditions - 3
	Slide 45: Chapter 31: Semaphores
	Slide 46: OBJECTIVES – 5/7
	Slide 47: Chapter 32 – concurrency problems
	Slide 48: Concurrency bugs in open source software
	Slide 49: OBJECTIVES – 5/7
	Slide 50: Non-deadlock bugs
	Slide 51: Atomicity violation - mysql
	Slide 52: Atomicity violation - solution
	Slide 53: Order violation bugs
	Slide 54: Order violation - solution
	Slide 55: Order violation – solution - 2
	Slide 56: Non-deadlock bugs - 1
	Slide 57: Non-deadlock bugs - 2
	Slide 58: Deadlock bugs
	Slide 59: OBJECTIVES – 5/7
	Slide 60: Reasons for deadlocks
	Slide 61: Conditions for deadlock
	Slide 62: OBJECTIVES – 5/7
	Slide 63: Prevention – mutual exclusion
	Slide 64: Prevention – mutual exclusion - 2
	Slide 65: mutual exclusion: List insertion
	Slide 66: mutual exclusion – list insertion - 2
	Slide 67: Mutual exclusion – list insertion - 3
	Slide 68: Conditions for deadlock
	Slide 69: Prevention lock – hold and wait
	Slide 70: Conditions for deadlock
	Slide 71: Prevention – no preemption
	Slide 72: No preemption – livelocks problem
	Slide 73: Conditions for deadlock
	Slide 74: Prevention – circular wait
	Slide 75: Conditions for deadlock
	Slide 76
	Slide 77: Deadlock avoidance via intelligent scheduling
	Slide 78: Intelligent scheduling - 2
	Slide 79: Intelligent scheduling - 3
	Slide 80: Detect and recover
	Slide 81: Questions

