TCSS 422 A — Spring 2025 5/6/2025
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Lock-based data structures, &8
Midterm Review

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2025]

iavjeq2025 School of Engineering and Technology, University of Washington jll Tacoma

OBJECTIVES - 5/6

|l Questions from 5/1 |

® C Tutorial - Pointers, Strings, Exec in C - Close May 4 AOE
® Assignment 1 - Due Tue May 13 AOE
® Quiz 1 (Close May 5 AOE) - Quiz 2 (Due Tue May 6 AOE)
= Chapter 28: Locks
= Chapter 29: Lock Based Data Structures

= Approximate Counter (Sloppy Counter)

= Concurrent Structures: Linked List, Queue, Hash Table
® Practice Midterm - 2" hour

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L11.2

May 6, 2025

Slides by Wes J. Lloyd L11.1

TCSS 422 A — Spring 2025 5/6/2025
School of Engineering and Technology

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
® Thursday surveys: due ~ Mon @ 11:59p
— TCSS 422 A » Assignments

Spring 2021
Home

Announcements

* Upcoming Assignments

Zoom
Syllabus TCSS 422 - Online Dai
- - Online Daily Feedback Survey - 4/1
Available until Apr 5 at 11:59pm | Due Apr 5 at 10pm | -/1pts
Nicriiscinng Piiiz O - hael [BT
TCSS422: Computer Operating Systems [Spring 2025]
Mayl62025 School of Engineering and Technology, University of Washington - Tacoma L3
3
TCSS 422 - Online Daily Feedback Survey - 4/1
Quiz Instructions
[Z| Question 1 0.5 pts
On a scale of 1 to 10, please classify your perspective on material covered in today's
class:
1 2 3 4 5 6 7 8 9 16
Mostly Equal Mostly
Review To Me New and Review NeWw to Me
[| Question 2 0.5 pts
Please rate the pace of today’s class:
el 2 3 4 5 6 7 9 10
slow Just Right Fast
TCSS422: Computer Operating Systems [Spring 2025]
ilavie2n2y School of Engineering and Technology, University of Washington - Tacoma L11.4
4

Slides by Wes J. Lloyd L11.2

TCSS 422 A — Spring 2025 5/6/2025
School of Engineering and Technology

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (46 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.70 (T - previous 5.73)

= Please rate the pace of today’s class:
m 1-slow, 5-just right, 10-fast
= Average - 5.24 (T - previous 4.80)

TCSS422: Computer Operating Systems [Spring 2025]

Mayl62025 School of Engineering and Technology, University of Washington - Tacoma

L11.5

FEEDBACK FROM 5/1

= How do we guarantee in "test and set"” that the set value is
different from the original value?

L

11 vwvoid lock(lock_t *lock) {

12 (TestAndset (&lock->flag, 1) == 1)
13 ; // spin-wait

14}

15

® Atomic TestAndSet() is called within lock()
= The output from TestAndSet is inspected

® Only if the returned ‘old’ value from TestAndSet() is ZERO,
do we acquire the lock

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L11.6

May 6, 2025

Slides by Wes J. Lloyd L11.3

TCSS 422 A — Spring 2025 5/6/2025
School of Engineering and Technology

TEST AND SET

= C pseudo code

1 int TestAndSet (int *ptr, int new) {
2 int old = *ptr; I

3 *ptr = new; /

4 old; // return th
5 }

® Chat GPT can provide the assembly code for x86 “TestAndSet”

mov eax, 1
lock xchg eax, [lock_var] ; Atomically set [lock_var] to 1, get old value in eax

= 1 is loaded into eax register

m ‘lock’ forces the xchg instruction to be atomic
= xchg swaps the values eax < - [lock_var]

= Old lock_var is in eax, can be checked

TCSS422: Operating Systems [Spring 2025]

Mayl62025 School of Engineering and Technology, University of Washington - Tacoma

L11.7

X86 ASSEMBLY LOCK

= Chat GPT can provide the assembly spinlock using xchg

acquire lock:
mov eax, 1 ; Value to set
.spin:
lock xchg eax, [lock_var] ; Atomically swap eax and lock var
test eax, eax ; Was the previous value 0?
jnz .spin ; If not, spin (someone else has the lock)
ret

= Notice the use of a ‘goto’ =)
= jnz is a conditional jump (or goto)

TCSS422: Operating Systems [Spring 2025]

Lk 6 2 School of Engineering and Technology, University of Washington - Tacoma

L11.8

Slides by Wes J. Lloyd L11.4

TCSS 422 A — Spring 2025
School of Engineering and Technology

REVIEW QUESTION

= Which APIs are non-blocking API calls?
= From Chapter 27:

= pthread_create()

= pthread_join()

= pthread_mutex_lock()

= pthread_mutex_unlock()

= pthread_mutex_trylock()

= pthread_mutex_timelock()

= pthread_cond_wait()

= pthread_cond_signal()

= pthread_cond_broadcast()

May 6, 2025 TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma

L11.9

OBJECTIVES - 5/6

® Questions from 5/1

| = C Tutorial - Pointers, Strings, Exec in C - Close May 4 AOE

® Assignment 1 - Due Tue May 13 AOE

® Quiz 1 (Close May 5 AOE) - Quiz 2 (Due Tue May 6 AOE)

® Chapter 28: Locks
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)

= Concurrent Structures: Linked List, Queue, Hash Table

= Practice Midterm - 2" hour

May 6, 2025 TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma

L11.10

10

Slides by Wes J. Lloyd

5/6/2025

L11.5

TCSS 422 A — Spring 2025
School of Engineering and Technology

OBJECTIVES - 5/6

® Questions from 5/1
® C Tutorial - Pointers, Strings, Exec in C - Close May 4 AOE
|- Assignment 1 - Due Tue May 13 AOE
® Quiz 1 (Close May 5 AOE) - Quiz 2 (Due Tue May 6 AOE)
® Chapter 28: Locks
® Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table
® Practice Midterm - 2" hour

TCSS422: Operating Systems [Spring 2025]

L11.11
School of Engineering and Technology, University of Washington - Tacoma

May 6, 2025

11

OBJECTIVES - 5/6

® Questions from 5/1
® C Tutorial - Pointers, Strings, Exec in C - Close May 4 AOE
® Assignment 1 - Due Tue May 13 AOE
| " Quiz 1 (Close May 5 AOE) - Quiz 2 (Due Tue May 6|AOE)
® Chapter 28: Locks
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table
® Practice Midterm - 2" hour

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma L1112

May 6, 2025

12

Slides by Wes J. Lloyd

5/6/2025

L11.6

TCSS 422 A — Spring 2025 5/6/2025
School of Engineering and Technology

QuIZ 2

Canvas Quiz - Practice CPU Scheduling Problems

Posted in Canvas

Unlimited attempts permitted

Provides CPU scheduling practice problems
= FIFO, SJF, STCF, RR, MLFQ (Ch. 7 & 8)

= Multiple choice and fill-in the blank

= Quiz automatically scored by Canvas

= Please report any grading problems

= Due Tuesday May 6t" AOE

= Link:
https://canvas.uw.edu/courses/1809484/assignments/103290641

TCSS422: Operating Systems [Spring 2025]

Mayl62025 School of Engineering and Technology, University of Washington - Tacoma

L11.13

13

CATCH UP FROM LECTURE 10

= Switch to Lecture 10 Slides

= Slides L10.44 to L10.50
(Chapter 29 -Lock Based Data Structures)

TCSS422: Operating Systems [Spring 2025]

QRLILZR0Z School of Engineering and Technology, University of Washington - Tacoma

L6.14

14

Slides by Wes J. Lloyd L11.7

https://canvas.uw.edu/courses/1809484/assignments/10329061

TCSS 422 A — Spring 2025 5/6/2025
School of Engineering and Technology

CHAPTER 29 -
LOCK BASED
DATA STRUCTURES

TCSS422: Operating Systems [Spring 2025]

L) & A School of Engineering and Technology, University of Washington -

OBJECTIVES - 5/6

® Questions from 5/1
® C Tutorial - Pointers, Strings, Exec in C - Close May 4 AOE
® Assignment 1 - Due Tue May 13 AOE
® Quiz 1 (Close May 5 AOE) - Quiz 2 (Due Tue May 6 AOE)
= Chapter 28: Locks
® Chapter 29: Lock Based Data Structures
I = Approximate Counter (Sloppy Counter) I
= Concurrent Structures: Linked List, Queue, Hash Table
= Practice Midterm - 2"d hour

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L11.16

May 6, 2025

16

Slides by Wes J. Lloyd L11.8

TCSS 422 A — Spring 2025 5/6/2025
School of Engineering and Technology

APPROXIMATE (SLOPPY) COUNTER

® Provides single logical shared counter
= Implemented using local counters for each ~CPU core
4 CPU cores = 4 local counters & 1 global counter
Local counters are synchronized via local locks
= Global counter is updated periodically

Global counter has lock to protect global counter value

Update threshold (S) - referred to as sloppiness threshold:
How often to push local values to global counter

Small (S): more updates, more overhead
Large (S): fewer updates, more performant, less synchronized
® Why this implementation?
Why do we want counters local to each CPU Core?

TCSS422: Operating Systems [Spring 2025]

Mayl62025 School of Engineering and Technology, University of Washington - Tacoma

L11.17

17

APPROXIMATE COUNTER - MAIN POINTS

® |dea of the Approximate Counter is to RELAX the
synchronization requirement for counting

= Instead of synchronizing global count variable each time:
counter=counter+l

= Synchronization occurs only every so often:
e.g. every 1000 counts

® Relaxing the synchronization requirement drastically
reduces locking APl overhead by trading-off split-second
accuracy of the counter

= Approximate counter: trade-off accuracy for speed
= |t's approximate because it’s not so accurate (until the end)

TCSS422: Operating Systems [Spring 2025]

Lk 6 2 School of Engineering and Technology, University of Washington - Tacoma

L11.18

18

Slides by Wes J. Lloyd L11.9

TCSS 422 A — Spring 2025 5/6/2025
School of Engineering and Technology

APPROXIMATE COUNTER - 2

= Update threshold (S) = 5
®m Synchronized across four CPU cores
= Threads update local CPU counters

Time Ly Ly | P Ly G
0 0 0 0 0 0
1 0 0 1 1 0
2 1 o] 2 1 0
3 2 o] 3 1 0
4 3 o] 3 2 0
5 4 1 3 3 0
6 520 1 3 4 5 (from L,)
7 0 2 4 5=2>0 10 (from L)

May 6,202 ;Eﬁzzfgf (E):gei:;:enrignsgyas:\ednjliEi?\ﬂ?oggi%i]iversity of Washington - Tacoma L1119

19

THRESHOLD VALUE S

® Consider 4 threads increment a counter 1000000 times each
= Low S > What is the consequence?
= High S > What is the consequence?

151

0 T T T T T X
1 2 4 8 16 32 64 128 256 5121024

Approximation Factor (S)

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma L11.20

May 6, 2025

20

Slides by Wes J. Lloyd L11.10

TCSS 422 A — Spring 2025

5/6/2025
School of Engineering and Technology

APPROXIMATE COUNTER - EXAMPLE

= Example implementation - sloppybasic.c

m Also with CPU affinity

May 6, 2025 TCSS422: Operating Systems [Spring 2025]

111.21
School of Engineering and Technology, University of Washington - Tacoma

21

“n "

@& When poll is active, respond at pollev.com/wesleylloyd641
% Text WESLEYLLOYDG641 to 22333 once to join

Which of the following is NOT a problem as a
result of having a low S-value for the

approximate counter (Sloppy Counter)
threshold?

The counter overhead is very high.

The counterimplementation performs a very
large number of LOCK/UNLOCK API calls.

The global counter value is highly accurate.

The counter performs very few local to global
counter updates.

None of the above

.. Startthe presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

22

Slides by Wes J. Lloyd L11.11

TCSS 422 A — Spring 2025
School of Engineering and Technology

OBJECTIVES - 5/6

® Questions from 5/1

® C Tutorial - Pointers, Strings, Exec in C - Close May 4 AOE

m Assignment 1 - Due Tue May 13 AOE

® Quiz 1 (Close May 5 AOE) - Quiz 2 (Due Tue May 6 AOE)

® Chapter 28: Locks
® Chapter 29: Lock Based Data Structures
= Sloppy Counter

|- Concurrent Structures: Linked ListlQueue, Hash Table

= Practice Midterm - 2" hour

May 6, 2025 TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma

L11.23

23

CONCURRENT LINKED LIST - 1

= Simplification - only basic list operations shown
= Structs and initialization:

1 // basi node structure
2 typ struct _ node t {
3 int keys
4 struct _ node t *next;
5 } node_t;
3
7 VAR list structure (one used per list)
8 typedef struct _ 1list_t {
9 node_t *head;
10 pthread mutex_t lock;
11 } list_t;
12
13 vold List_Init(list_t *L) {
14 L->head = NULL;
15 pthread mutex init (&L->lock, NULL);
16 }
17
(Cont.)
May 6, 2025 TCSS422: Operating Systems [Spring 2025] L1124

School of Engineering and Technology, University of Washington - Tacoma

24

Slides by Wes J. Lloyd

5/6/2025

L11.12

TCSS 422 A — Spring 2025

School of Engineering and Technology

CONCURRENT LINKED LIST - 2

® |[nsert - adds item to list
m Everything is critical!
= There are two unlocks

(Cont.)

int List Imsert(list t *L, int key) {
pthread mutex lock(&L->lock);
node_t *new = malloc(sizeof(nodeit)):
if (new == NULL) {
perror ("malloc™);
pthread mutex unlock(&L->lock);
return -1; // fail }
new->key = key;
new->next = L->head;
L->head = new;
pthread mutex unlock(&L->lock);

return 0; // success

May 6, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L11.25

25

CONCURRENT LINKED LIST - 3

= Lookup - checks list for existence of item with key
® Once again everything is critical
= Note - there are also two unlocks

(Cont.)

int List Lookup(list t *L, int key) {
pthread mutex lock(sL->lock);
node_t *curr = L->head;
while {(curr) {

if (curr->key == key) {
pthread mutex unlock(&L->lock);
return 0; // success

}

curr = curr->next;
}
pthread mutex unlock(&L->1ock);
return -1; // failure

May 6, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L11.26

26

Slides by Wes J. Lloyd

5/6/2025

L11.13

TCSS 422 A — Spring 2025
School of Engineering and Technology

CONCURRENT LINKED LIST

® First Implementation:
= Lock everything inside Insert() and Lookup()

= |f malloc() fails lock must be released

Research has shown “exception-based control flow” to be error
prone

40% of Linux OS bugs occur in rarely taken code paths

Unlocking in an exception handler is considered a poor coding
practice

There is nothing specifically wrong with this example however

® Second Implementation ...

TCSS422: Operating Systems [Spring 2025]

Mayl62025 School of Engineering and Technology, University of Washington - Tacoma

L11.27

27

CCL - SECOND IMPLEMENTATION

® |nit and Insert

1 void List_Init(list_t *L) {
2 L->head = NULL?
3 pthread mutex init (&L->lock, NULL);
4 }
5
[3 vold List_Insert(list_t *L, int key) {
7 // synchronization not needed
8 node_t *new = malloc(sizeof (node_t)):
9 if (new == NULL) {
10 perror ("malloc");
11 return;
12 }
13 new->key = key;
14
15 // just lock critical section
16 pthread mutex lock(&L->lock):
17 new->next = L->head;
18 L->head = new;
19 pthread mutex unlock (&L->1ock);
20 1
21
TCSS422: Operating Systems [Spring 2025]
Lk 6 2 School of Er?gineerigngyand Tech':\ologgy, University of Washington - Tacoma t11.28

28

Slides by Wes J. Lloyd

5/6/2025

L11.14

TCSS 422 A — Spring 2025
School of Engineering and Technology

CCL - SECOND IMPLEMENTATION - 2

= L ookup
(cont.)
22 int List Lookup(list t *L, int key) {
23 int rv = -1;
24 pthread mutex lock(&L—>lock);
25 node t *curr = L->head;
26 while (curr) {
27 if (curr-skey == key) {
28 rv = 07
29 break;
30 }
31 curr = curr->next;
32 }
33 pthread mutex unlock(&L->lock);
34 return rv; // now both success and failure
35 1
TCSS422: Operating Systems [Spring 2025
May 6,202 School of E:gineerigngyand Te£h':\ologgy, Un]iversity of Washington - Tacoma L11.29

29

CONCURRENT LINKED LIST PERFORMANCE

m Using a single lock for entire list is not very performant

= Users must “wait” in line for a single lock to access/modify
any item

® Hand-over-hand-locking (lock coupling)
= Introduce a lock for each node of a list

= Traversal involves handing over previous node’s lock,
acquiring the next node’s lock...

= Improves lock granularity
= Degrades traversal performance

= Consider hybrid approach
= Fewer locks, but more than 1
= Best lock-to-node distribution?

TCSS422: Operating Systems [Spring 2025]

Lk 6 2 School of Engineering and Technology, University of Washington - Tacoma

30

Slides by Wes J. Lloyd

5/6/2025

L11.15

TCSS 422 A — Spring 2025 5/6/2025
School of Engineering and Technology

OBJECTIVES - 5/6

® Questions from 5/1
® C Tutorial - Pointers, Strings, Exec in C - Close May 4 AOE
m Assignment 1 - Due Tue May 13 AOE
® Quiz 1 (Close May 5 AOE) - Quiz 2 (Due Tue May 6 AOE)
® Chapter 28: Locks
® Chapter 29: Lock Based Data Structures

= Sloppy Counter

= Concurrent Structures: Linked List, Hash Table

= Practice Midterm - 2" hour

TCSS422: Operating Systems [Spring 2025]

Mayl62025 School of Engineering and Technology, University of Washington - Tacoma

L11.31

31

MICHAEL AND SCOTT CONCURRENT QUEUES

= Improvement beyond a single master lock for a queue (FIFO)
= Two locks:

= One for the head of the queue

= One for the tail
®m Synchronize enqueue and dequeue operations

= Add a dummy node
= Allocated in the queue initialization routine
= Supports separation of head and tail operations

= |[tems can be added and removed by separate threads at the
same time

TCSS422: Operating Systems [Spring 2025]

Lk 6 2 School of Engineering and Technology, University of Washington - Tacoma

L11.32

32

Slides by Wes J. Lloyd L11.16

TCSS 422 A — Spring 2025
School of Engineering and Technology

CONCURRENT QUEUE

= Remove from queue

£ struct _ node t {
int value;
struct _ node t *next:
} node_t;

struct _ queue_t {

node t *head;

node_t *tail;

pthread mutex t headLock;
pthread mutex_t tailLock;
} queue t;

void Queue Init (queue t *q) {
node t *tmp = malloc(sizeof (node t));:
tmp->next = NULL;
g->head = g->tail = tmp:
pthread_mutex_inlt(&q7>headLock, NULL) ;
pthread mutex init(&g->taillock, NULL);

May 6, 2025

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma

L11.33

33

CONCURRENT QUEUE - 2

= Add to queue

d Queue Enqueue(queue t *g, int value) {
node t *tmp = malloc(sizeof (node t));
assert (tmp != NULL);

tmp->value = value;
tmp->next = NULL;

pthread mutex lock(ag->taillock);
g->tail->next = tmp;

g->tail = tmp;

pthread mutex unlock(&ag->tailLock);

May 6, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L11.34

34

Slides by Wes J. Lloyd

5/6/2025

L11.17

TCSS 422 A — Spring 2025 5/6/2025
School of Engineering and Technology

OBJECTIVES - 5/6

® Questions from 5/1
® C Tutorial - Pointers, Strings, Exec in C - Close May 4 AOE
m Assignment 1 - Due Tue May 13 AOE
® Quiz 1 (Close May 5 AOE) - Quiz 2 (Due Tue May 6 AOE)
® Chapter 28: Locks
® Chapter 29: Lock Based Data Structures

= Sloppy Counter

= Concurrent Structures: Linked List, Queue,[Hash Table

= Practice Midterm - 2" hour

TCSS422: Operating Systems [Spring 2025]

Mayl62025 School of Engineering and Technology, University of Washington - Tacoma

L11.35

35

CONCURRENT HASH TABLE

mConsider a simple hash table
=Fixed (static) size
=Hash maps to a bucket
Bucket is implemented using a concurrent linked list

One lock per hash (bucket)
Hash bucket is a linked lists

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L11.36

May 6, 2025

36

Slides by Wes J. Lloyd L11.18

TCSS 422 A — Spring 2025
School of Engineering and Technology

INSERT PERFORMANCE -

CONCURRENT HASH TABLE

® Four threads - 10,000 to 50,000 inserts
= iMac with four-core Intel 2.7 GHz CPU

15 1
O Simple Concurrent List
X Concurrent Hash Table
o
© 10+
Q
o
@
&
]
E 51
=
U T T

I ol
0 10 20 30 40
Inserts (Thousands)

scales
magnificently

TCSS422: Operating Systems [Spring 2025]

Mayl62025 School of Engineering and Technology, University of Washington - Tacoma

CONCURRENT HASH TABLE

1 #define BUCKETS (101)
2
3 struct _ hash t {
4 list_t 1ists[BUCKETS];
5 } hash_t;
3
7 void Hash Init(hash t *H) {
8 int i;
9 for (i = 0; 1 < BUCKETS; i++) {
10 List Init (&H->1ists[i])s
11 }
12 }
13
14 int Hash Insert(hash t *H, int key) {
15 int bucket = key % BUCKETS;
16 return List_Insert(&H->lists[bucket], key):
17 }
18
19 int Hash Lookup(hash t *H, int key) {
20 int bucket = key % BUCKETS;
21 return List_Lookup (sH->lists([bucket], key):
22 }
May 6, 2025 TCSS422: Operating Systems [Spring 2025] 11138

School of Engineering and Technology, University of Washington - Tacoma

38

Slides by Wes J. Lloyd

5/6/2025

L11.19

TCSS 422 A — Spring 2025 5/6/2025
School of Engineering and Technology

.'Which is a major advantage of using concurrent data'.
structures in your programs?

Locks are encapsulated within data
structure code ensuring thread safety.

Lock granularity tradeoff already
optimized inside data structurew

Multiple threads can more easily
share data

All of the above

None of the above

.. Start the presentation to see live content. For sereen share software, share the entire screen. Get help at pollev.com/app -

39

LOCK-FREE DATA STRUCTURES

® Lock-free data structures in Java

= Java.util.concurrent.atomic package
= Classes:

= AtomicBoolean

= Atomiclnteger

= AtomiclntegerArray

= AtomicintegerFieldUpdater

= AtomicLong

= AtomicLongArray

= AtomicLongFieldUpdater

= AtomicReference

= See: https://docs.oracle. com/en/Javazwvase[ii[docs[aplz
java.base/java/util/concurrent/atomic/package-summary.

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

May 6, 2025

40

Slides by Wes J. Lloyd L11.20

TCSS 422 A — Spring 2025 5/6/2025
School of Engineering and Technology

WE WILL RETURN AT
5:14PM

TCSS422: Operating Systems [Spring 2025]

L) & A School of Engineering and Technology, University of Washington -

OBJECTIVES - 5/6

® Questions from 5/1
® C Tutorial - Pointers, Strings, Exec in C - Close May 4 AOE
® Assignment 1 - Due Tue May 13 AOE
® Quiz 1 (Close May 5 AOE) - Quiz 2 (Due Tue May 6 AOE)
= Chapter 28: Locks
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
= Concurrent Structures: Linked List, Queue, Hash Table
= Practice Midterm - 2nd hour|

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma L11.42

| May 6, 2025

42

Slides by Wes J. Lloyd L11.21

TCSS 422 A — Spring 2025
School of Engineering and Technology

? & 2
'..
- PP
"? ?'*}"l
'y
7

? ? |

MIDTERM
REVIEW

TCSS422: Operating Systems [Spring 2025]

L) & A School of Engineering and Technology, University of Washington -

MIDTERM

= Thursday May 8th

= Meet in BHS 106 (2.0 hrs 3:40 - 5:40p)

= Test designed to take less than 2 hours

= Three pages of notes, double-sided, any-size paper permitted
= No book, other notes, cell phones, or internet

= Basic calculators OK

® |ndividual work

m Coverage: up through Chapter 29

= Preparation:
= Practice quiz: Quiz 2: CPU scheduling (posted)

= Auto grading w/ multiple attempts allowed as study aid
= Practice Midterm Questions- second hour of lecture

= Series of problems presented with some time to solve

= Will then work through solutions

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma L1144

May 6, 2025

44

Slides by Wes J. Lloyd

5/6/2025

L11.22

TCSS 422 A — Spring 2025

5/6/2025
School of Engineering and Technology

FIFO EXAMPLE

= Operation of CPU schedulers can be visualized with timing
graphs.

= The graph below depicts a FIFO scheduler where three jobs
arrive in the sequence A, B, C, where job A runs for 10 time
slices, job B for 5 time slices, and job C for 10 time slices.

I
FIFO |AAAAAAAAAABBBBBCCCCCCCCC
I
0 10 15 25

May 6, 2025 TCSS422: Operating Systems [Spring 2025]

L11.4!
School of Engineering and Technology, University of Washington - Tacoma >

45

Q1- SHORTEST JOB FIRST (SJF)

SCHEDULER

= Draw a scheduling graph for the SJF scheduler without
preemption for the following jobs. Draw vertical lines for key
events and be sure to label the X-axis times as in the example.

Job Arrival Time Job Length
A T=0 25
B T=5 10
C T=10 15

|

|
SJF |

|

|

0

May 6, 2025 TCSS422: Operating Systems [Spring 2025] L11.46

School of Engineering and Technology, University of Washington - Tacoma

46

Slides by Wes J. Lloyd L11.23

TCSS 422 A — Spring 2025
School of Engineering and Technology

Q1 - SJF-2

What is the response time (RT) and turnaround time (TT) for
jobs A, B, and C?

RT Job A: TT Job A:
RT Job B: TT Job B:
RT Job C: TT Job C:

What is the average response time for all jobs?

What is the average turnaround time for all jobs? ___________

TCSS422: Operating Systems [Spring 2025]

L11.47
School of Engineering and Technology, University of Washington - Tacoma

May 6, 2025

47

Q2 - SHORTEST TIME TO COMPLETION

FIRST (STCF) SCHEDULER

Draw a scheduling graph for the STCF scheduler with preemption for
the following jobs.

Draw vertical lines for key events and be sure to label the X-axis
times as in the example.

Job Arrival Time Job Length
A T=0 25
B T=5 10
Cc T=10 15

|

|
CPU |

|

|

0

TCSS422: Operating Systems [Spring 2025]
Lk 6 2 School of Engineering and Technology, University of Washington - Tacoma L1148

48

Slides by Wes J. Lloyd

5/6/2025

L11.24

TCSS 422 A — Spring 2025
School of Engineering and Technology

Q2 - STCF - 2

® What is the response time (RT) and turnaround time (TT)
for jobs A, B, and C?

RT Job A: TT Job A:
RT Job B: TT Job B:
RT Job C: TT Job C:

® What is the average response time for all jobs?

® What is the average turnaround time for all jobs?

TCSS422: Operating Systems [Spring 2025]

Mayl62025 School of Engineering and Technology, University of Washington - Tacoma

49

Q3 - OPERATING SYSTEM APIs

1. Provide a definition for what is a blocking API call

2. Provide a definition for a non-blocking API call

3. Provide an example of a blocking API call.
Consider APIs used to manage processes and/or threads.

4. Provide an example of a non-blocking API call.
Consider APIs used to manage processes and/or threads.

TCSS422: Operating Systems [Spring 2025]

Lk 6 2 School of Engineering and Technology, University of Washington - Tacoma

L11.50

50

Slides by Wes J. Lloyd

5/6/2025

L11.25

TCSS 422 A — Spring 2025
School of Engineering and Technology

Q4 - OPERATING SYSTEM APIs - 1l

1. When implementing memory synchronization for a
multi-threaded program list one advantage of combining the use
of a condition variable with a lock variable via the Linux C
thread API calls: pthread mutex_lock () and pthread_cond_wait ()

2. When implementing memory synchronization for a
multi-threaded program using locks, list one disadvantage of
using blocking thread API calls such as the Linux C thread API
calls for: pthread_mutex_lock()and pthread cond_wait ()

3. List (2) factors that cause Linux blocking API calls to
introduce overhead into programs:

TCSS422: Operating Systems [Spring 2025]

L11.51
School of Engineering and Technology, University of Washington - Tacoma 5

May 6, 2025

51

Q5 - PERFECT MULTITASKING

OPERATING SYSTEM

In a perfect-multi-tasking operating system, every process of the
same priority will always receive exactly 1/nth of the available CPU
time. Important CPU improvements for multi-tasking include: (1) fast
context switching to enable jobs to be swapped in-and-out of the CPU
very quickly, and (2) the use of a timer interrupt to preempt running
jobs without the user voluntarily yielding the CPU. These innovations
have enabled major improvements towards achieving a coveted
“Perfect Multi-Tasking System”.

List and describe two challenges that remain complicating the full
realization of a Perfect Multi-Tasking Operating System. In other
words, what makes it very difficult for all jobs (for example, 10 jobs)
of the same priority to receive EXACTLY the same runtime on the
CPU? Your description must explain why the challenge is a problem
for achieving perfect multi-tasking.

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma L11.52

May 6, 2025

52

Slides by Wes J. Lloyd

5/6/2025

L11.26

TCSS 422 A — Spring 2025 5/6/2025
School of Engineering and Technology

TCSS422: Operating Systems [Spring 2025]

May 6, 2025 School of Engineering and Technology, University of Washington - Tacoma L11.53

53

Q6 - ROUND-ROBIN SCHEDULER

Show a scheduling graph for a Round-Robin (RR) scheduler with job
preemption where newly arriving jobs will immediately run. Assume a
time slice of 3 timer units. Draw vertical lines for key events and be
sure to label the X-axis times as in the example.

Job Arrival Time Job Length
A T=0 25
B T=5 10
Cc T=10 15
|
I
RR I
I
|
0

TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma L1154

May 6, 2025

54

Slides by Wes J. Lloyd L11.27

TCSS 422 A — Spring 2025
School of Engineering and Technology

Q6 - RR SCHEDULER - 2

Using the graph, from time t=10 until all jobs complete at t=50,
evaluate Jain’s Fairness Index:

Jain’s fairness index is expressed as:

(X =)’

n-Ele;Q

Where n is the number of jobs, and x; is the time share of each

process Jain’s fairness index=1 for best case fairness, and 1/n for
worst case fairness.

J(a"l:xZa"-:xn):

For the time window from t=10 to t=50, what percentage of the CPU
time is allocated to each of the jobs A, B, and C?

Job A: Job B: Job C:

With these values, calculate Jain’s fairness index from t=10 to t=50.

TCSS422: Operating Systems [Spring 2025]

L11.
School of Engineering and Technology, University of Washington - Tacoma 55

May 6, 2025

55

Q6 - I

0 32
j(mI,an---,xn):M

n-3 0zl

TCSS422: Operating Systems [Spring 2025] L11.5

ilavie2n2y School of Engineering and Technology, University of Washington - Tacoma 6

56

Slides by Wes J. Lloyd

5/6/2025

L11.28

TCSS 422 A — Spring 2025 5/6/2025
School of Engineering and Technology

Q7 - SLOPPY COUNTER

Below is a tradeoff space graph similar to those we’ve shown in
class. Based on the sloppy counter threshold (S), add numbers
on the left or right side of the graph for each of the following

tradeoffs:

1. High number of Global Updates 2. High Performance

3. High Overhead 4. High Accuracy

5. Low number of Global Updates 6. Low Performance

7. Low Overhead 8. Low Accuracy

Low sloppy threshold (S) High sloppy threshold (S)

I I

Mayl62025 gg:csazlzg;g:geif;:enrignsgyas:\edn]rseEi?\%?oggi%i]iversity of Washington - Tacoma L1157

57

Q8 - ROUND ROBIN SCHEDULER

= Consider a round-robin (RR) scheduler where upon new job
arrival, the scheduler does not perform a context switch, but
places the new job at the back of the RR queue.
When the current job finishes its time quantum, a context
switch is performed to execute the next job in the RR queue.

= The RR-scheduler has a 3-sec time slice.
= Draw a scheduling graph for the following jobs.

JobArrival Time Job Length
A T=0 10 seconds
B T=2 12 seconds
C T=10 8 seconds
D T=16 6 seconds

TCSS422: Operating Systems [Spring 2025]

Lk 6 2 School of Engineering and Technology, University of Washington - Tacoma

L11.58

58

Slides by Wes J. Lloyd L11.29

TCSS 422 A — Spring 2025
School of Engineering and Technology

JobArrival Time Job Length

A T=0 10 seconds

B T=2 12 seconds

c T=10 8 seconds

D T=16 6 seconds
Starting Graph:

I I
I I
cpu | AAABBB | AAAB
I I
I I

0 6
TCSS422: Operating Systems [Spring 2025]
Mavicia2y School of Engineering and Technology, University of Washington - Tacoma L11.59
59
JobArrival Time Job Length
A T=0 10 seconds
B T=2 12 seconds
c T=10 8 seconds
D T=16 6 seconds
Starting Graph:
I I
I I
CPU |AAABBB |AAAB
I I
I I
0 6
Solution:
| | I I I
I I I I I
CPU | AAABBB | AAABBBCCC | AAABBBCCCDDD | ABBBCCDDD |
I I I I I
I I I I I
0 6 15 27 36
TCSS422: Operating Systems [Spring 2025]
avic 2025 School of Engineering and Technology, University of Washington - Tacoma L11.60

60

Slides by Wes J. Lloyd

5/6/2025

L11.30

TCSS 422 A — Spring 2025 5/6/2025
School of Engineering and Technology

Q8 PART B - ROUND ROBIN SCHEDULER

= Using the graph, calculate the turnaround time for each job,
and the average turnaround time

=TT Job A: AVG TT:

=TT Job B:

=TT Job C:

= TT Job D:

® Calculate the response time for each job, and the average
response time
RT Job A: AVGRT: ________

RT Job B:

RT Job C:

RT Job D:

TCSS422: Operating Systems [Spring 2025]

L11.61
School of Engineering and Technology, University of Washington - Tacoma 6

May 6, 2025

61

Q8 PART B - ROUND ROBIN SCHEDULER

= Using the graph, calculate the turnaround time for each job,
and the average turnaround time

=TT Job A: _28-0=28 AVG TT: 100/4=25

=TT Job B: _31-2=29

=TT Job C: 33-10=23

=TT Job D: 36-16=20

® Calculate the response time for each job, and the average

response time

RTJobA: ___ O ___ AVG RT: 11/3=3.66
RT Job B: _3-2 =1

RT Job C: 12-10=2

RT Job D: 24-16=8

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L11.62

May 6, 2025

62

Slides by Wes J. Lloyd L11.31

TCSS 422 A — Spring 2025
School of Engineering and Technology

MULTI-LEVEL FEEDBACK QUEUE

= Review the bonus lecture for scheduling examples
including several Multi-level-feedback-queue problems (MLFQ)

= Shortcut to Zoom recording of practice session:

=https://tinyurl.com/422s25-practice

TCSS422: Operating Systems [Spring 2025]

Mayl62025 School of Engineering and Technology, University of Washington - Tacoma

L11.63

63

SOLUTIONS

TCSS422: Operating Systems [Spring 2025]
School of Engir ing and University of i - Tacoma

May 6, 2025 L11.64

64

Slides by Wes J. Lloyd

5/6/2025

L11.32

https://tinyurl.com/422s25-practice

TCSS 422 A — Spring 2025

5/6/2025
School of Engineering and Technology

Q1- SHORTEST JOB FIRST (SJF)

SCHEDULER

= Draw a scheduling graph for the SJF scheduler without
preemption for the following jobs. Draw vertical lines for key
events and be sure to label the X-axis times as in the example.

Job Arrival Time Job Length
A T=0 25
B T=5 10
C T=10 15
|
I
SJF | (6]
|
|
0 5 35 50
TCSS422: Operating Systems [Spring 2025]
| Mayl62025 School of Engineering and Technology, University of Washington - Tacoma L11.65

65

Q1 - SJF-2

What is the response time (RT) and turnaround time (TT) for
jobs A, B, and C?

RT Job A: O TT Job A: ?—6

rr gob B: (5 -5=20 ot gob B: 35-567:30

RT Job C: 9 - lo = 25 TT Job c: 90-[0=Yd

What is the average response time for all jobs? 3 3 -

What is the average turnaround time for all jobs? _ 3 —_

May 6, 2025 TCSS422: Operating Systems [Spring 2025]

School of Engineering and Technology, University of Washington - Tacoma L11.66

66

Slides by Wes J. Lloyd L11.33

TCSS 422 A — Spring 2025
School of Engineering and Technology

Q2 - SHORTEST TIME TO COMPLETION

FIRST (STCF) SCHEDULER

Draw a scheduling graph for the STCF scheduler with preemption for
the following jobs.

Draw vertical lines for key events and be sure to label the X-axis
times as in the example.

Job Arrival Time Job Length
A T=0 %5 20

B T=5 20 %’ O

c T=10 15

CPU [['y
& 2 S 30 50
TCSS422: Operating Systems [Spring 2025]
Mayl62025 School of Engineering and Technology, University of Washington - Tacoma L11.67

67

Q2 - STCF - 2

® What is the response time (RT) and turnaround time (TT)
for jobs A, B, and C?

RT Job A: O TT Job A: 60
RT Job B: O TT Job B: 5-5<10
T gob c: 1510 = S T gob c: 30 =10 =20
= What is the average response time for all jobs? > ____ 3 ——
- (i 50—!150 t .
= What is the average turnaround time for all Jobs” __________ -‘*
TCSS422: Operating Systems [Spring 2025]
Lk 6 2 School of Engineering and Technology, University of Washington - Tacoma L1168

68

Slides by Wes J. Lloyd

5/6/2025

L11.34

TCSS 422 A — Spring 2025 5/6/2025
School of Engineering and Technology

Q3 - OPERATING SYSTEM APIs

1. P?oYlIid{\e)fa dSefi it_i}&n(for wlg_atkis a blocking API call
An AL Call thet SUSpends Al e ThkeaD 1o wall for 2 sy 54
Yl wWheN ap/ €VouT ':ccctr,eS. tﬂ.ﬂmj Thiedd foes +°‘Sle¢p, f‘f‘ 7o
2. Provide a definition for a non-blocking API call
o peL CALL Ahet Dops N6T SUSpent> dhe calling 'TL\.r,._J’ but fC’*'WV‘I.Ser‘C‘\"/v
AND 90¢3 NOT WAIT FoR AN \JTeRRUPT To 0€ LR (g euo\J‘rj

3. Provide an example of a blocking API call.

Consider APIs used to manage processes and/or threads. OT“MST

phre s d_mutex_lockeC) et) wa.i-FFcJ(_)
4. Provide an example of a non-blocking API call. MSZ
Consider APIs used to manage processes and/or threads.
pihread_mukeX —toy lodeCd Fork()

TCSS422: Operating Systems [Spring 2025]

L11.
School of Engineering and Technology, University of Washington - Tacoma 69

May 6, 2025

69

Q4 - OPERATING SYSTEM APIs - 11

1. When implementing memory synchronization for a
multi-threaded program list one advantage of combining the use
of a condition variable with a lock variable via the Linux C

thread API calls: pthread_mutex_lock() and pthread_cond_wait ()
The combinehon ensUres dhe o rdym thet blocked Thread s Witting (o dhe lock wil] be

wokenw VP amd GV AeceSS fo the LOW. Threwds Witk (v FIFD o Mg
2. When implementing memory synchronization for a :

multi-threaded program using locks, list one disadvantage of
using blocking thread API calls such as the Linux read API
calls for: pthread_mutex_lock ()and pthread cond_wait ()
wowf pdnen) oy _locir ahe lock may never I’D¢£M\Q_' avallable fesulTing W
Dé?‘tfs?d(sg)Iﬁréigssafﬁaﬁkga% SESnds ﬁ%ckiﬁ'é"’m Tl to Peastacc
introduce overhead into programs}_lnmH FINC-CRANED LA b man'T (qULs TO

- blltwh ApgS WV St Trep + contexd switdh AUt b?tf fﬁé o S"L&éﬁ% eRW eal SCTI6MS
ton N eAgel INTRONON (ol oVerhea) e

TCSS422: Operating Systems [SpringJ 2025]
School of Engineering and Technology, University of Washington - Tacoma

May 6, 2025 111.70

70

Slides by Wes J. Lloyd L11.35

TCSS 422 A — Spring 2025 5/6/2025
School of Engineering and Technology

Q5 - PERFECT MULTITASKING

OPERATING SYSTEM

In a perfect-multi-tasking operating system, every process of the
same priority will always receive exactly il._/__nth of the available CPU
time. Important CPU improvements for multi-tasking include: (1) fast
context switching to enable jobs to be swapped in-and-out of the CPU
very quickly, and (2) the use of a timer interrupt to preempt running
jobs without the user voluntarily yielding the CPU. These innovations
have enabled major improvements towards achieving a coveted
“Perfect Multi-Tasking System”.

List and describe two challenges that remain complicating the full
realization of a Perfect Multi-Tasking Operating System. In other
words, what makes it very difficult for all jobs (for example, 10 jobs)
of the same priority to receive EXACTLY the same runtime on the
CPU? Your description must explain why the challenge is a problem
for achieving perfect multi-tasking.

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

May 6, 2025 111.71 |

71

3 ch&*“‘)w cots Pt Mu\.’ﬁfmﬁ’i—/\)é__

085 athwe A1 DVFR@ST TS o Run FBR i FerenT Leaghs
AAKIWE 1T MoRE DVEFLLT T PeRfecTlay baLAN® Bynnmg_ Fo2T065
W AWE 56N PAIGRYTY QU eV
- 'Sb?) D:LLOUN‘TW‘- (f(g_ﬂC'lC\!J(’-_rlmB INVOLY €5 6\}((‘\&&5 B MMSJEMM‘S
Wiay NOT o€ prec\sSt (Vguu’\'\m&s

— converd s o R s f tontid sw lvehes

nveonSisteAcled (o) Teb Ruvmone

TCSS422: Operating Systems [Spring 2025]

ilavie2n2y School of Engineering and Technology, University of Washington - Tacoma

L11.72

72

Slides by Wes J. Lloyd L11.36

TCSS 422 A — Spring 2025
School of Engineering and Technology

(0]5)

5% AR CCC|8AA fradl e MANIBBBICC | B “"““}Eﬂ }At{AAA

- ROUND-ROBIN SCHEDULER

Show a scheduling graph for a Round-Robin (RR) scheduler with job
preemption where newly arriving jobs will immediately run. Assume a
time slice of 3 timer units. Draw vertical lines for key events and be
sure to label the X-axis times as in the example.

PR M- TobS ARe ppoe>
WALL 3Ump 10 Ahe m0ST Rett Tl aohes BB —Anbd

Job Arrival Time Job Length c
A =0 26 WIBLY ¢y - ppC
B T=5 \30 A4 0
c T=10 152 6
10 4p 50 A [5{40
: b: 1w
RR IBAp ‘5[0
|

DA o€ 1he Ruvgueut A wd1he Job PTR
CoNTIMVES W RR F4 914w

0 35%m Wy N g3 NBF 4 7

May 6, 2025

- N
TCSSAZZ Operating Systems [Spring 2025]

L11.7.
School of Engineering and Technology, University of Washington - Tacoma 3

73

Jain’s fairness

Where n is the

worst case fair

Q6 - RR SCHEDULER - 2

Using the graph, from time t=10 until all jobs complete at t=50,
evaluate Jain’

s Fairness Index:
index is expressed as:

2
(i)

n-30 il

number of jobs, and x; is the time share of each

J(x1,22,...,8n) =

process Jain’s fairness index=1 for best case fairness, and 1/n for

ness.

For the time window from t=10 to t=50, what percentage of the CPU
time is allocated to each of the jobs A, B, and C?

Job B: 7Mo= .S

With these values, calculate Jain’s fairness index from t=10 to t=50.

| May 6, 2025

TCSS422: Operating Systems [Spring 2025]
School of Engineering and Technology, University of Washington - Tacoma

L11.74

74

Slides by Wes J. Lloyd

5/6/2025

L11.37

TCSS 422 A — Spring 2025 5/6/2025

School of Engineering and Technology

Q6 - 11

(Ci @) weesT Lo 3%

Tlwisma;iiag) = ST cA%e D
meg} =3 E.DL = l—-—-—-' pafer |

N
“\'2\..\\’!' "’3-((.%3% (.\75}%[37%3@ |

= e
3. (s 03025t s - 12129

- F.(q
~ d
R VAVASS 7.2,
May 6, 2025 ‘Srgt?o%?gf:E(ggﬁr:éiﬂggsg:}je'giﬁglrl)rz;%/,zgﬁis\/]ersity of Washington - Tacoma L11.75

75

Q7 - SLOPPY COUNTER

Below is a tradeoff space graph similar to those we’ve shown in
class. Based on the sloppy counter threshold (S), add numbers
on the left or right side of the graph for each of the following

tradeoffs:
/1. High number of Global Updates v 2. High Performance
v'3. High Overhead /4. High Accuracy
v' 5. Low number of Global Updates v 6. Low Performance
J/ 7. Low Overhead /8. Low Accuracy
Low sloppy threshold (S) High sloppy threshold (S)
1264 5728
| |
| Lk 6 2 ;gszzlzgégr?gei':etier:ignsgy::\ednig\iirlfgi?ailiversity of Washington - Tacoma L1176

76

Slides by Wes J. Lloyd L11.38

TCSS 422 A — Spring 2025 5/6/2025
School of Engineering and Technology

QUESTIONS

77

Slides by Wes J. Lloyd L11.39

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 5/6
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 5/1
	Slide 7: Test and set
	Slide 8: X86 Assembly lock
	Slide 9: Review question
	Slide 10: OBJECTIVES – 5/6
	Slide 11: OBJECTIVES – 5/6
	Slide 12: OBJECTIVES – 5/6
	Slide 13: Quiz 2
	Slide 14: Catch up from lecture 10
	Slide 15: Chapter 29 – LOCK Based data structures
	Slide 16: OBJECTIVES – 5/6
	Slide 17: approximate (sloppy) counter
	Slide 18: approximate counter – main points
	Slide 19: approximate counter - 2
	Slide 20: Threshold value S
	Slide 21: approximate counter - example
	Slide 22
	Slide 23: OBJECTIVES – 5/6
	Slide 24: Concurrent linked list - 1
	Slide 25: Concurrent linked list - 2
	Slide 26: Concurrent linked list - 3
	Slide 27: Concurrent linked list
	Slide 28: Ccl – second implementation
	Slide 29: Ccl – second implementation - 2
	Slide 30: Concurrent Linked list performance
	Slide 31: OBJECTIVES – 5/6
	Slide 32: Michael and scott concurrent queues
	Slide 33: Concurrent queue
	Slide 34: Concurrent queue - 2
	Slide 35: OBJECTIVES – 5/6
	Slide 36: Concurrent hash table
	Slide 37: Insert performance – concurrent hash table
	Slide 38: Concurrent hash table
	Slide 39
	Slide 40: Lock-free data structures
	Slide 41: We will return at 5:14pm
	Slide 42: OBJECTIVES – 5/6
	Slide 43: Midterm review
	Slide 44: Midterm
	Slide 45: Fifo example
	Slide 46: Q1- shortest job first (SJF) scheduler
	Slide 47: Q1 – sjf - 2
	Slide 48: Q2 – shortest time to completion first (STCF) scheduler
	Slide 49: Q2 – stcf - 2
	Slide 50: Q3 - Operating system apis
	Slide 51: Q4 – operating system apis - II
	Slide 52: Q5 – perfect multitasking operating system
	Slide 53
	Slide 54: Q6 – round-robin scheduler
	Slide 55: Q6 – rr scheduler - 2
	Slide 56: Q6 - II
	Slide 57: Q7 – sloppy counter
	Slide 58: Q8 – round robin scheduler
	Slide 59
	Slide 60
	Slide 61: Q8 part b – round robin scheduler
	Slide 62: Q8 part b – round robin scheduler
	Slide 63: Multi-level feedback queue
	Slide 64: solutions
	Slide 65: Q1- shortest job first (SJF) scheduler
	Slide 66: Q1 – sjf - 2
	Slide 67: Q2 – shortest time to completion first (STCF) scheduler
	Slide 68: Q2 – stcf - 2
	Slide 69: Q3 - Operating system apis
	Slide 70: Q4 – operating system apis - II
	Slide 71: Q5 – perfect multitasking operating system
	Slide 72
	Slide 73: Q6 – round-robin scheduler
	Slide 74: Q6 – rr scheduler - 2
	Slide 75: Q6 - II
	Slide 76: Q7 – sloppy counter
	Slide 77: Questions

