TCSS 422 A — Spring 2025
School of Engineering and Technology

5/6/2025

TCSS 422: OPERATING SYSTEMS

Lock-based data structures, &
Midterm Review

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2025

jiayler2025) School of Engineering and Technology,

versity of Washington

OBJECTIVES - 5/6

|- Questions from 5/1 |
= C Tutorial - Pointers, Strings, Exec in C - Close May 4 AOE
= Assignment 1 - Due Tue May 13 AOE
= Quiz 1 (Close May 5 AOE) - Quiz 2 (Due Tue May 6 AOE)
= Chapter 28: Locks
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table
= Practice Midterm - 2" hour

‘TCSS422: Operating Systems [Spring 2025]
‘ L School of Engineering and Technology, University of Washington - Tacoma Ltz

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TCS5422A > Assignments

Spring 2021
Home

Announcements

Zoom * Upcoming Assignments
Slabus s TCSS422 - Online Daily Feedback Survey - 4/1
: ¥ Avllabie unt e 3t 11:59pm | DueApr st 10pm | -/1pts
Dicruuccinne Aun.e e
TCS5422: Computer Operating Systems [Spring 2025]
‘ Playeizoz School of Engineering and Technology, University of Washington - Tacoma s

TCSS 422 - Online Daily Feedback Survey - 4/1

Quiz Instructions

Question 1 05ps

On.a scale of 1 10 10, please classify your perspective on material covered in today's
el

1 2 3 s s s 7 8 % 1
macly. el metly
mevien 18 e a0 nevien e e

Question 2 05pt

Piease rate the pace of today's class:

TCSS422: Computer Operating Systems [Spring 2025]

eylerenas) School of Engineering and Technology, University of Washington - Tacoma L114

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (46 respondents):
= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - 6.70 (T - previous 5.73)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.24 (T - previous 4.80)

TCS5422: Computer Operating Systems [Spring 2025]
‘ LR School of Engineering and Technology, University of Washington -Tacoma e

FEEDBACK FROM 5/1

= How do we guarantee in "test and set" that the set value is
different from the original value?

11 i lock(lock_t *lock) |

12 (TestAndset (slock->flag, 1) == 1)
13 i

14)

18

= Atomic TestAndSet() is called within lock()
= The output from TestAndSet is inspected

= Only if the returned ‘old’ value from TestAndSet() is ZERO,
do we acquire the lock

7CS5422: Operating Systems [Spring 2025]
‘ LD School of Engineering and Technology, University of Washington - Tacoma e

Slides by Wes J. Lloyd

L11.1

TCSS 422 A — Spring 2025
School of Engineering and Technology

TEST AND SET

= C pseudo code

t TestAndSet (int *ptr, int new) {
old = *ptrj
ptr =

old:

5]

= Chat GPT can provide the assembly code for x86 “TestAndSet”

mov eax, 1
lock xchg eax, [lock_var] ; Atomically set [lock _var] to 1, get old value in eax

= 1 is loaded into eax register

= ‘lock’ forces the xchg instruction to be atomic
= xchg swaps the values eax € - [lock_var]

= Old lock_var is in eax, can be checked

TCSS422: Operating Systems [Spring 2025]
‘ PAaY6I2025 School of Engineering and Technology, University of Washington - Tacoma L7

REVIEW QUESTION

= Which APIs are non-blocking API calls?
= From Chapter 27:

= pthread_create()

= pthread_join()

= pthread_mutex_lock()

= pthread_mutex_unlock()

= pthread_mutex_trylock()

= pthread_mutex_timelock()

= pthread_cond_wait()

= pthread_cond_signal()

= pthread_cond_broadcast()

TCSS422: Operating Systems [Spring 2025]
‘ [May 62025 School of Engineering and Technology, University of Washington - Tacoma. e

OBJECTIVES - 5/6

= Questions from 5/1
= C Tutorial - Pointers, Strings, Exec in C - Close May 4 AOE
|- Asslgnment 1 - Due Tue May 13 AOE
" Quiz 1 (Close May 5 AOE) - Quiz 2 (Due Tue May 6 AOE)
= Chapter 28: Locks
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table
= Practice Midterm - 2" hour

TCS5422: Operating Systems [Spring 2025]
‘ LR School of Engineering and Technology, University of Washington - Tacoma L

X86 ASSEMBLY LOCK

= Chat GPT can provide the assembly spinlock using xchg

acquire_lock:

mov eax, 1 ; Value to set
.spin:
lock xchg eax, [lock_var] ; Atomically swap eax and lock_var
test eax, eax T ; Was the previous value 0? -
jnz .spin ; If not, spin (someone else has the lock)
ret

= Notice the use of a ‘goto’ =)
= jnz is a conditional jump (or goto)

‘TCSS422: Operating Systems [Spring 2025)
‘ L School of Engineering and Technology, University of Washington - Tacoma e

OBJECTIVES - 5/6

= Questions from 5/1
|I C Tutorial - Pointers, Strings, Exec in C - Close May 4 AO'E
= Assignment 1 - Due Tue May 13 AOE
= Quiz 1 (Close May 5 AOE) - Quiz 2 (Due Tue May 6 AOE)
= Chapter 28: Locks
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table
= Practice Midterm - 2" hour

TCS5422: Operating Systems [Spring 2025]
‘ May 6,2025; School of Engineering and Technology, University of Washington - Tacoma tLio

10

OBJECTIVES - 5/6

= Questions from 5/1
= C Tutorial - Pointers, Strings, Exec in C - Close May 4 AOE
= Assignment 1 - Due Tue May 13 AOE
| ® Quiz 1 (Close May 5 AOE) - Quiz 2 (Due Tue May 6|{AOE)
= Chapter 28: Locks
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table
= Practice Midterm - 2" hour

11

Slides by Wes J. Lloyd

TCS5422: Operating Systems [Spring 2025]
‘ e School of Engineering and Technology, University of Washington - Tacoma .

12

TCSS 422 A — Spring 2025
School of Engineering and Technology

Quiz 2

= Canvas Quiz - Practice CPU Scheduling Problems

= Posted in Canvas

= Unlimited attempts permitted

= Provides CPU scheduling practice problems
= FIFO, SJF, STCF, RR, MLFQ (Ch. 7 & 8)

= Multiple choice and fill-in the blank

= Quiz automatically scored by Canvas
= Please report any grading problems

= Due Tuesday May 6" AOE

Link:
https://canvas.uw.edu/courses/1809484/

/10329061

TCSS422: Operating Systems [Spring 2025]

‘ RaavERze2S School of Engineering and Technology, University of Washington - Tacoma

1113

13

CHAPTER 29 -

LOCK BASED
DATA STRUCTURES

TCSS422: Operating Systems [Spring 2025]

RV uas) School of Engineering and Technology, University of Washington -

5/6/2025

CATCH UP FROM LECTURE 10

= Switch to Lecture 10 Slides

= Slides L10.44 to L10.50
(Chapter 29 -Lock Based Data Structures)

‘TCSS422: Operating Systems [Spring 2025)

il il School of Engineering and Technology, University of Washington - Tacoma

14

OBJECTIVES - 5/6

= Questions from 5/1

= C Tutorial - Pointers, Strings, Exec in C - Close May 4 AOE
= Assignment 1 - Due Tue May 13 AOE

= Quiz 1 (Close May 5 AOE) - Quiz 2 (Due Tue May 6 AOE)
= Chapter 28: Locks

= Chapter 29: Lock Based Data Structures

= Approximate Counter (Sloppy Counter) |

= Concurrent Structures: Linked List, Queue, Hash Table
= Practice Midterm - 2" hour

TCS5422: Operating Systems [Spring 2025]

Rayela0zs School of Engineering and Technology, University of Washington - Tacoma

116

15

= Provides single logical shared counter

4 CPU cores = 4 local counters & 1 global counter
Local counters are synchronized via local locks

= Global counter is updated periodically
Global counter has lock to protect global counter value

Update threshold (S) - referred to as sloppiness threshold:
How often to push local values to global counter
Small (S): more updates, more overhead

= Why this implementation?
Why do we want counters local to each CPU Core?

APPROXIMATE (SLOPPY) COUNTER

= Implemented using local counters for each ~CPU core

Large (S): fewer updates, more performant, less synchronized

TCS5422: Operating Systems [Spring 2025

‘ LR School of Engineering and Technology, University of Washington - Tacoma

1117

16

APPROXIMATE COUNTER - MAIN POINTS

= |dea of the Approximate Counter is to RELAX the
synchronization requirement for counting
= Instead of synchronizing global count variable each time:
counter=counter+l
= Synchronization occurs only every so often:
e.g. every 1000 counts

= Relaxing the synchronization requirement drastically
reduces locking APl overhead by trading-off split-second
accuracy of the counter

= Approximate counter: trade-off accuracy for speed
= It's approximate because it's not so accurate (until the end)

17

Slides by Wes J. Lloyd

TCS5422: Operating Systems [Spring 2025]

LD School of Engineering and Technology, University of Washington - Tacoma

u11s

18

L11.3

https://canvas.uw.edu/courses/1809484/assignments/10329061

TCSS 422 A — Spring 2025
School of Engineering and Technology

APPROXIMATE COUNTER - 2

= Update threshold (S) =5
= Synchronized across four CPU cores
= Threads update local CPU counters

Time | [

1, N 1. G
0]]]] [}
1 4] 4] 1 1 0
2 1] 2 1 [}
3 2 4] 3 1 0
4 3] 3 2 [}
5 4 1 3 3 0
& 520 1 3 4 5 (from L)
7 0 2 4 530 10 (from L)
‘ PAaY6I2025 S ‘E):;r::e’:\gnzy:‘rled"}seg\z::i:ulzlﬂversilv of Washington - Tacoma tivs

19

APPROXIMATE COUNTER - EXAMPLE

= Example implementation - sloppybasic.c

= Also with CPU affinity

TCSS422: Operating Systems [Spring 2025]
‘ [May 62025 School of Engineering and Technology, University of Washington - Tacoma 2

21

OBJECTIVES - 5/6

= Questions from 5/1
= C Tutorial - Pointers, Strings, Exec in C - Close May 4 AOE
= Assignment 1 - Due Tue May 13 AOE
= Quiz 1 (Close May 5 AOE) - Quiz 2 (Due Tue May 6 AOE)
= Chapter 28: Locks
= Chapter 29: Lock Based Data Structures
= Sloppy Counter
|- Concurrent Structures: Linked ListlQueue, Hash Table
= Practice Midterm - 2" hour

TCS5422: Operating Systems [Spring 2025]
‘ LR School of Engineering and Technology, University of Washington - Tacoma .23

THRESHOLD VALUE S

= Consider 4 threads increment a counter 1000000 times each
= Low S > What is the consequence?
= High S - What is the consequence?

—~—

0T ——
12 4 8 16 32 64 128266 5121024
Approximation Factor (S)

‘TCSS422: Operating Systems [Spring 2025]
‘ L ‘ School of Engineering and Technology, University of Washington - Tacoma tL20

20

& When poll is active, respond at pollev.com/wesleylloyd641 -
% Text WESLEYLLOYD641 to 22333 once to join

Which of the following is NOT a problem as a
result of having a low S-value for the

approximate counter (Sloppy Counter)
threshold?

The counter overhead is very high.

The counter implementation perfarms a very
large number of LOCK/UNLOCK AP calls.

The global counter value s highly accurate,

The counter perfarms very few lacal to global
counter updates.

Nene of the above

™) Start the presertation o see live content. For screen share suftware, share the entire screen, Get help at pellev.com/app L]

22

CONCURRENT LINKED LIST - 1

= Simplification - only basic list operations shown
= Structs and initialization:

23

Slides by Wes J. Lloyd

1
2 _ node_t |
1 node_t *next:
7
8 _list_t |
9 node 1 ;
10 pthread mutex t lock;
1) list_t;
12
13
14
15 nit(ai->lock, NULL):
16]
7
(cant.)
TCSS422: Operating Systems [Spring 2025
‘ e School of Engineering and Tec[h:oloxgy, Un{versww of Washington - Tacoma 2

24

TCSS 42

2 A — Spring 2025

School of Engineering and Technology

CONCURRENT LINKED LIST - 2

" Insert - adds item to list
= Everything is critical!
= There are two unlocks

(Cont.)

18 List_Insert (list_t *L, key) |
19 | mutex_lock (& ck):
20 w

zeof (node_t1)+

new->key = key:
new->next = >head;

TCSS422: Operating Systems [Spring 2025]

‘ RaavERze2S School of Engineering and Technology, University of Washington - Tacoma

1125

2

5

CONCURRENT LINKED LIST

= First Implementation:
= Lock everything inside Insert() and Lookup()
= If malloc() fails lock must be released

Research has shown “exceptlon-based control flow” to be error
prone

40% of Linux OS bugs occur in rarely taken code paths

Unlocking in an exception handler is considered a poor coding
practice

There is nothing specifically wrong with this example however

= Second Implementation ...

TCSS422: Operating Systems [Spring 2025]

‘ Playeizoz School of Engineering and Technology, University of Washington - Tacoma.

1127

27

CCL - SECOND IMPLEMENTATION - 2

= Lookup

{ t.)
22 List Lookup(list t *L, key) {
23 =15
2 pthread_mutex_lock(sL->lock) ;
2 node_t *curr = L->heads
2 teurs)
2 (cure->key == key) {
2 =
31 curr = curr->next;
3)
33 pthread_mutex_unlock(§L->lock) s
B Tvi .
35 |

‘ oD TCS5422: Operating Systems [Spring 2025]

1129

School of Engineering and Technology, University of Washington - Tacoma

CONCURRENT LINKED LIST - 3

= Lookup - checks list for existence of item with key
= Once again everything is critical
= Note - there are also two unlocks

(Cont.)

32

List_Lookup (list_t *L, int key) |
pthread_mutex_lock (sL->10ck) ¢

(curr->key == key)
MITex_Unlock (8L->10cK) i

CUrY = CUrr->next;

1
pthread mutex_unlock(sL->lock);

13

‘TCSS422: Operating Systems [Spring 2025]

‘ plavEIac2y School of Engineering and Technology, University of Washington - Tacoma

11126

26

CCL - SECOND IMPLEMENTATION

= Init and Insert

1 "L
2 5 -
3 pthread m nit(sL->lock, HUL
a
6 List_Insert(list_t *L, Kkey) (
] node_t *new - malloc(sizeof (node_t});
3 (new == W
10 perror (*malloc”) ;
1 '
12]
13 new->key = key:
11
15
16
17
18
19 pthread mutex unlock(sL->1ock)s
20
a1
May 6, 2025 TCS5422: Operating Systems [Spring 2025]

1128

School of Engineering and Technology, University of Washington - Tacoma

28

CONCURRENT LINKED LIST PERFORMANCE

= Using a single lock for entire list is not very performant

= Users must “wait” in line for a single lock to access/modify
any item

= Hand-over-hand-locking (lock coupling)
= Introduce a lock for each node of a list

= Traversal involves handing over previous node’s lock,
acquiring the next node’s lock...

= Improves lock granularity
= Degrades traversal performance

= Consider hybrid approach
= Fewer locks, but more than 1
= Best lock-to-node distribution?

TCS5422: Operating Systems [Spring 2025]

e School of Engineering and Technology, University of Washington -Tacoma

29

Slides by Wes J. Lloyd

30

5/6/2025

L11.5

TCSS 422 A — Spring 2025

5/6/2025
School of Engineering and Technology

OBJECTIVES - 5/6

= Questions from 5/1
= C Tutorial - Pointers, Strings, Exec in C - Close May 4 AOE
= Assignment 1 - Due Tue May 13 AOE
= Quiz 1 (Close May 5 AOE) - Quiz 2 (Due Tue May 6 AOE)
= Chapter 28: Locks
= Chapter 29: Lock Based Data Structures

= Sloppy Counter

= Concurrent Structures: Linked List Hash Table

= Practice Midterm - 2" hour

TCSS422: Operating Systems [Spring 2025]
‘ PAaY6I2025 School of Engineering and Technology, University of Washington - Tacoma L

31

CONCURRENT QUEUE

= Remove from queue

node_t |
wvalues

_ node T *next:

11 } queue
12
13
14 (node_t})
15
16
17)
18 Vi
s)
(cont.)
TCSS422: Operating Systems [Spring 2025]
‘ [May 62025 School of Engineering and Technology, University of Washington - Tacoma L3

33

OBJECTIVES - 5/6

= Questions from 5/1

= C Tutorial - Pointers, Strings, Exec in C - Close May 4 AOE
= Assignment 1 - Due Tue May 13 AOE

= Quiz 1 (Close May 5 AOE) - Quiz 2 (Due Tue May 6 AOE)
= Chapter 28: Locks

= Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List, Queue,|Hash Table

= Practice Midterm - 2" hour

TCS5422: Operating Systems [Spring 2025]
‘ LR School of Engineering and Technology, University of Washington - Tacoma L3s

35

Slides by Wes J. Lloyd

MICHAEL AND SCOTT CONCURRENT QUEUES

= Improvement beyond a single master lock for a queue (FIFO)
= Two locks:

= One for the head of the queue

= One for the tall

= Synchronize enqueue and dequeue operations

= Add a dummy node
= Allocated in the queue initialization routine
= Supports separation of head and tail operations

= |[tems can be added and removed by separate threads at the
same time

‘TCSS422: Operating Systems [Spring 2025]
‘ L School of Engineering and Technology, University of Washington - Tacoma 132

32

CONCURRENT QUEUE - 2

= Add to queue

(Cont.)

ue (quene_t g, value) {
*tmp = malloc((node_t))+
tmp 1= NULL):

tmp->value = value;
tmp->next =]

(sq->taillock) s
i

(Cont.)

TCS5422: Operating Systems [Spring 2025]
‘ May 6,2025; School of Engineering and Technology, University of Washington - Tacoma ti3e

34

CONCURRENT HASH TABLE

= Consider a simple hash table
=Fixed (static) size
=Hash maps to a bucket

Bucket is implemented using a concurrent linked list
One lock per hash (bucket)
Hash bucket is a linked lists

TCS5422: Operating Systems [Spring 2025]
‘ e School of Engineering and Technology, University of Washington - Tacoma 13

36

TCSS 422 A — Spring 2025
School of Engineering and Technology

INSERT PERFORMANCE -

CONCURRENT HASH TABLE

= Four threads - 10,000 to 50,000 inserts
= iMac with four-core Intel 2.7 GHz CPU

15
© Simpie Concunont Ls
¥ Cancurrent Hash Tabl
€10
8
&
2
Es
=
-~
04 ¢

0 10 20 30 40
Inserts (Thousands)

TCSS4: perating Systems [Spring
May 6, 2025 ngineering and Technolof

37

structures in your programs?

Locks are encapsulated within data
structure code ensuring thread safety.

Lock granularity tradeoff already
optimized inside data structurew

Multiple threads can more easily
share data

All of the above

None of the above

.1Nhich is a major advantage of using concurrent data'.

39

WE WILL RETURN AT
5:14PM

oG AT TCSS422: Operating Systems [Spring 2025]
I School of Engineering and Technology, University of Washington - fllcoma

41

Slides by Wes J. Lloyd

5/6/2025

1 BUCKETS (101)
2
3
4
5) hash_t:
7 Hash_Init(hash_t *H) [
8 int iy
] ri i < BUCKETS; it}
10 t_Init (sH->lists[i]):
11)
12)
13
14 Hash_Tnsert (hash_t *H, key) {
15 Tint bucket = key % BUCKETS:
16 1 List_Insert(sH->lists[bucket], key):
17)
18
13 t Hash_Lookup (hash_t *H, int key) |
20 Tint bucket = key % BUCKETS;
21 1 List_Lockup(sH->1ists[bucket], key):
22)
TC55422: Operating Systems [Spring 2025
l L School of E::ineerigngvand Te«[:h:alaggy, Un!vers\’ty of Washington - Tacoma tL3s

38

= Lock-free data structures in Java

= Java.util.concurrent.atomic package
= Classes:

= AtomicBoolean

= Atomicinteger

= AtomiclntegerArray

= AtomicintegerFieldUpdater

= AtomicLong

= AtomicLongArray

= AtomicLongFieldUpdater

= AtomicReference

= See: https://docs.oracle.com/en/java/javase/11/docs/api/
java.base/java/util/concurrent/atomic/package-summary.html
May 6, 2025 TCSS422: Operating Systems [Spring 2025]

LOCK-FREE DATA STRUCTURES

School of Engineering and Technology, University of Washington - Tacoma

40

= Questions from 5/1
= C Tutorial - Pointers, Strings, Exec in C - Close May 4 AOE
= Assignment 1 - Due Tue May 13 AOE
= Quiz 1 (Close May 5 AOE) - Quiz 2 (Due Tue May 6 AOE)
= Chapter 28: Locks
= Chapter 29: Lock Based Data Structures

= Sloppy Counter

= Concurrent Structures: Linked List, Queue, Hash Table

OBJECTIVES - 5/6

| = Practice Midterm - 2" hourl

TC55422: Operating Systems [Spring 2025]
LD School of Engineering and Technology, University of Washington - Tacoma e

42

L11.7

TCSS 422 A — Spring 2025
School of Engineering and Technology

MIDTERM

REVIEW

TCSS422: Operating Systems [Spring 2025]

payjeianzs) School of Engineering and Technology, University of Washington -

MIDTERM

= Thursday May 8t"

= Meet in BHS 106 (2.0 hrs 3:40 - 5:40p)

= Test designed to take less than 2 hours

= Three pages of notes, double-sided, any-size paper permitted
= No book, other notes, cell phones, or internet

= Basic calculators OK

= Individual work

= Coverage: up through Chapter 29

= Preparation:
= Practice quiz: Quiz 2: CPU scheduling (posted)

= Auto grading w/ multiple attempts allowed as study aid
= Practice Midterm Questions- second hour of lecture

= Series of problems presented with some time to solve

= Will then work through solutions

‘TCSS422: Operating Systems [Spring 2025] 140
School of Engineering and Technology, University of Washington - Tacoma

‘ May 6, 2025

43

FIFO EXAMPLE

= Operation of CPU schedulers can be visualized with timing
graphs.

= The graph below depicts a FIFO scheduler where three jobs
arrive in the sequence A, B, C, where job A runs for 10 time
slices, job B for 5 time slices, and job C for 10 time slices.

|
FIFO |AAAAAAAAAABBBBBCCCCCCCCC

0 10 15 25
TCSS422: Operating Systems [Spring 2025]
‘ Playeizoz School of Engineering and Technology, University of Washington - Tacoma. 1145

45

Q1 -SJF-2

What is the response time (RT) and turnaround time (TT) for
jobs A, B, and C?

RT Job A: TT Job A:
RT Job B: TT Job B:
RT Job C TT Job C:

What is the average response time for all jobs? _____________

What is the average turnaround time for all jobs?

TCS5422: Operating Systems [Spring 2025]
LR School of Engineering and Technology, University of Washington - Tacoma L

47

Slides by Wes J. Lloyd

44

Q1- SHORTEST JOB FIRST (SJF)

SCHEDULER

= Draw a scheduling graph for the SJF scheduler without
preemption for the following jobs. Draw vertical lines for key
events and be sure to label the X-axis times as in the example.

Job Arrival Time Job Length
A T=0 25
B T=5 10
C T=10 15
I
|
SIF |
I
I
0
TCS5422: Operating Systems [Spring 2025]
‘ Rayela0zs AN e e Ve M = D Lee

46

Q2 - SHORTEST TIME TO COMPLETION

FIRST (STCF) SCHEDULER

Draw a scheduling graph for the STCF scheduler with preemption for
the following jobs.

Draw vertical lines for key events and be sure to label the X-axis
times as in the example.

Job Arrival Time Job Length
A T=0 25
B T=5 10
Cc T=10 15
|
|
ceU |
|
|
[
TCS5422: Operating Systems [Spring 2025]
‘ LD School of Engineering and Technology, University of Washington - Tacoma e

48

5/6/2025

L11.8

TCSS 422 A — Spring 2025 5/6/2025
School of Engineering and Technology

Q2 - STCF -2

= What is the response time (RT) and turnaround time (TT)
for jobs A, B, and C?

RT Job A: ___ _ TT Job A: - _
RT Job B: TT Job B:
RT Job C: TT Job C

= What is the average response time for all jobs?

= What is the average turnaround time for all jobs? __________

TCSS422: Operating Systems [Spring 2025]
PAaY6I2025 School of Engineering and Technology, University of Washington - Tacoma Liras

Q3 - OPERATING SYSTEM APIs

1. Provide a definition for what is a blocking API call

2. Provide a definition for a non-blocking API call

3. Provide an example of a blocking API call.
Consider APIs used to manage processes and/or threads.

4. Provide an example of a non-blocking API call.
Consider APIs used to manage processes and/or threads.

‘TCSS422: Operating Systems [Spring 2025]
L School of Engineering and Technology, University of Washington - Tacoma Lso

49

50

Q4 - OPERATING SYSTEM APIs - Il

1. When implementing memory synchronization for a
multi-threaded program list one advantage of combining the use
of a condition variable with a lock variable via the Linux C
thread APl calls: pthread_mutex_lock () and pthread_cond_wait()

2. When implementing memory synchronization for a
multi-threaded program using locks, list one dlsadvantage of
using blocking thread API calls such as the Linux C thread API
calls for: pthread_mutex_lock()and pthread_cond_wait ()

3. List (2) factors that cause Linux blocking API calls to
introduce overhead into programs:

Q5 - PERFECT MULTITASKING
OPERATING SYSTEM

In a perfect-multi-tasking operating system, every process of the
same priority will always receive exactly 1/nt" of the available CPU
time. Important CPU improvements for multi-tasking include: (1) fast
context switching to enable jobs to be swapped in-and-out of the CPU
very quickly, and (2) the use of a timer interrupt to preempt running
jobs without the user voluntarily yielding the CPU. These innovations
have enabled major improvements towards achieving a coveted
“Perfect Multi-Tasking System”.

List and describe two challenges that remain complicating the full
realization of a Perfect Multi-Tasking Operating System. In other
words, what makes it very difficult for all jobs (for example, 10 jobs)
of the same priority to receive EXACTLY the same runtime on the
CPU? Your description must explain why the challenge is a problem
for achieving perfect multi-tasking.

TCS5422: Operating Systems [Spring 2025]
‘ May 6,2025; School of Engineering and Technology, University of Washington - Tacoma tLs2

TCSS422: Operating Systems [Spring 2025]
‘ [May 62025 School of Engineering and Technology, University of Washington - Tacoma. st
TCSS422: Operating Systems [Spring 2025]
paylEsees School of Engineering and Technology, University of Washington - Tacoma L11.53

53

Slides by Wes J. Lloyd

52

Q6 - ROUND-ROBIN SCHEDULER

Show a scheduling graph for a Round-Robin (RR) scheduler with job
preemption where newly arriving jobs will immediately run. Assume a
time slice of 3 timer units. Draw vertical lines for key events and be
sure to label the X-axis times as in the example.

Job Arrival Time Job Length
A T=0 25
B T=5 10
C T=10 15

|

|
RR |

|

|

[

TCS$422: Operating Systems [Spring 2025]
e School of Engineering and Technology, University of Washington - Tacoma s

54

TCSS 422 A — Spring 2025
School of Engineering and Technology

5/6/2025

Q6 - RR SCHEDULER - 2

Using the graph, from time t=10 until all jobs complete at t=50,
evaluate Jain’s Fairness Index:

Jain’s fairness index is expressed as:

=i
n- S ol
Where n is the number of jobs, and x; is the time share of each
process Jain’s fairness index=1 for best case fairness, and 1/n for
worst case fairness.

F(@1, 250 00,20) =

For the time window from t=10 to t=50, what percentage of the CPU
time is allocated to each of the jobs A, B, and C?

With these values, calculate Jain’s fairness index from t=10 to t=50.

TCSS422: Operating Systems [Spring 2025]
‘ PAaY6I2025 School of Engineering and Technology, University of Washington - Tacoma LiLss

Q6 - 11

F(@1, 250 00,20) =
n

May 6, 2025 TCSS422: Operating Systems [Spring 2025] Lits

School of Engineering and Technology, University of Washington - Tacoma

55

56

Q7 - SLOPPY COUNTER

Below is a tradeoff space graph similar to those we’ve shown in
class. Based on the sloppy counter threshold (S), add numbers
on the left or right side of the graph for each of the following
tradeoffs:

2. High Performance
4. High Accuracy
6. Low Performance
8. Low Accuracy

1. High number of Global Updates
3. High Overhead
5. Low number of Global Updates
7. Low Overhead

Low sloppy threshold (S) High sloppy threshold (S)

Q8 - ROUND ROBIN SCHEDULER

= Consider a round-robin (RR) scheduler where upon new job
arrival, the scheduler does not perform a context switch, but
places the new job at the back of the RR queue.
When the current job finishes its time quantum, a context
switch is performed to execute the next job in the RR queue.

= The RR-scheduler has a 3-sec time slice.

= Draw a scheduling graph for the following jobs.

e s
57
JobArrival Time Job Length
A 10 seconds
B 12 seconds
c T=10 8 seconds
D T=16 6 seconds

Starting Graph:

| |
| |
CPU | AAABEB | AAAB
| |
| |
0 6

TCSS422: Operating Systems [Spring 2025]

May 6, 2025 School of Engineering and Technology, University of Washington - Tacoma L11.59

59

Slides by Wes J. Lloyd

JobArrival Time Job Length
A T=0 10 seconds
B T=2 12 seconds
c T=10 8 seconds
D T=16 6 seconds
[wosas [fsumommsmantome i o - s s

58

JobArrival Time Job Length
A T=0 10 seconds
B T=2 12 seconds
c T=10 8 seconds
D T=16 6 seconds

Starting Graph:

Solution:

| | | | |
| |

CPU | AAABBB | AAABBBCCC | AAABBBCCCDDD | ABBBCCDDD |
| | | | |
| | | | |

0 6 15 27 36

TCSS422: Operating Systems [Spring 2025]

May 6, 2025 ‘School of Engineering and Technology, University of Washington - Tacoma L11.60

60

L11.10

TCSS 422 A — Spring 2025 5/6/2025

School of Engineering and Technology

Q8 PART B - ROUND ROBIN SCHEDULER

= Using the graph, calculate the turnaround time for each job,
and the average turnaround time

s TTJob A: ________ AVG TT:
=TT Job B:

=TT Job C: _
=TT Job D:

= Calculate the response time for each job, and the average
response time

“RTJobA:________ AVG RT:
= RT Job B:

= RT Job C: ____

= RT Job D: _

TCSS422: Operating Systems [Spring 2025]
‘ PAaY6I2025 School of Engineering and Technology, University of Washington - Tacoma Lt

61

MULTI-LEVEL FEEDBACK QUEUE

= Review the bonus lecture for scheduling examples
including several Multi-level-feedback-queue problems (MLFQ)

= Shortcut to Zoom recording of practice session:

shttps://tinyurl.com/422s25-practice

TCSS422: Operating Systems [Spring 2025]
‘ Playeizoz School of Engineering and Technology, University of Washington - Tacoma. L1163

Q8 PART B - ROUND ROBIN SCHEDULER

= Using the graph, calculate the turnaround time for each job,
and the average turnaround time

=TT Job A: _28-0=28

=TT Job B: _31-2=29

= TT Job C: 33-10=23

=TT Job D: 36-16=20

= Calculate the response time for each job, and the average
response time

=RTJobA: ___0____

= RT JobB: _3-2=1

= RT Job C: 12-10=2

= RT Job D: 24-16=8

‘TCSS422: Operating Systems [Spring 2025) uie2
School of Engineering and Technology, University of Washington - Tacoma

AVG TT: 100/4=25

AVG RT: 11/3=3.66

‘ May 6, 2025

62

SOLUTIONS

7C55422: Operating ystems [spring 2025]
‘ May 6, 2025 ‘

63

Q1- SHORTEST JOB FIRST (SJF)
SCHEDULER

= Draw a scheduling graph for the SJF scheduler without
preemption for the following jobs. Draw vertical lines for key
events and be sure to label the X-axis times as in the example.

Job Arrival Time Job Length
A T=0 25
B T=5 10
C T=10 15
|
I
sIF | 6]
|
|
0 5 35 50
[wmoams S fEngeerig and Tektegy, ey of Woshington - Tcoma Lz

What is the response time (RT) and turnaround time (TT) for
jobs A, B, and C?

TT Job A: 2.5

RT Job a: _O
Rr gob B: 25-5=20 o7 gop 3. 38-5r:30

RT Job c: 39 - lo = Zé_ TT Job c: 50-10=4D

What is the average response time for all jobs?

What is the average turnaround time for all jobs?

7CS3422: Operating Systems [Spring 2025]
‘ LD School of Engineering and Technology, University of Washington - Tacoma L6

65

Slides by Wes J. Lloyd

66

L11.11

https://tinyurl.com/422s25-practice

TCSS 422 A — Spring 2025
School of Engineering and Technology

Q2 - SHORTEST TIME TO COMPLETION

FIRST (STCF) SCHEDULER

Draw a scheduling graph for the STCF scheduler vxi_t_hJJLee_mptiﬂ for
the following jobs.

Draw vertical lines for key events and be sure to label the X-axis
times as in the example.

Job Arrival Time Job Length
A T=0 25 20
B T=5 30 % O
C T=10 15
cPU
° & =3 30 50
‘ PAaY6I2025 S ‘E):;r:eﬁe’:\gnzy:‘rle:}seg\:gifg\iulzlﬂversilv of Washington - Tacoma L7

67

Q3 - OPERATING SYSTEM APIs

1. ProYide a definition for what is a blocking API call
A AL Call dhat suspends the caliimi ThReaD To wark fs,

A K5y S
- Ci D

2. Provide a definition for a non-blocking API call
po prL (AL thed Oes T SUSpent> dhe calling Thicad) put retrns quickly
AND 0263 NET WAIT Fo AN |NTeRRUPT To o€ CUR, (pg ewd‘l’j

3. Provide an example of a blocking API call.

Consider APIs used to manage processes and/or threads.i‘l_“‘ﬁ'.?

Phheead_muder_lockeC) wiid C) u-.h‘pcjf)

4. Provide an example of a -blocking API call. mﬂ
Consider APIs used to manage processes and/or threads.
pthrend_mabeX —teplodeey Fark()

TCSS422: Operating Systems [Spring 2025]
‘ [May 62025 School of Engineering and Technology, University of Washington - Tacoma. L1169

69

Q5 - PERFECT MULTITASKING

OPERATING SYSTEM

In a perfect-multi-tasking operating system, every process of the
same priority will always receive exactly :l.Ln;‘" of the available CPU
time. Important CPU improvements for multi-tasking include: (1) fast
context switching to enable jobs to be swapped in-and-out of the CPU
very quickly, and (2) the use of a timer interrupt to preempt running
jobs without the user volumWPU. These innovations
have enabled major improvements towards achieving a coveted
“Perfect Multi-Tasking System”.

List and describe two challenges that remain complicating the full
realization of a Perfect Multi-Tasking Operating System. In other
words, what makes it very difficult for all jobs (for example, 10 jobs)
of the same priority to receive EXACTLY the same runtime on the
CPU? Your description must explain why the challenge is a problem
for achieving perfect multi-tasking.

TCS5422: Operating Systems [Spring 2025]
‘ LR School of Engineering and Technology, University of Washington - Tacoma L

71

Slides by Wes J. Lloyd

Q2 - STCF -2

= What is the response time (RT) and turnaround time (TT)
for jobs A, B, and C?

RT Job A: g _ TT Job A: 50

RT Job B: O TT Job B: 5-5 <10

TT Job C: &"_!D =20

RT Job C: 12

0+0+5 5

= What is the average response time for all jobs?

@D~

040 & . Y0
= What is the average turnaround time for all jobs? __ 3 _— =

‘TCSS422: Operating Systems [Spring 2025]
‘ L School of Engineering and Technology, University of Washington - Tacoma 68

68

Q4 - OPERATING SYSTEM APIs - 1l

1. When implementing memory synchronization for a

multi-threaded program list one advantage of combining the use

of a condition variable with a lock variable via the Linux C

thread API calls: pthread_mutex_lock() and pthread_cond_wait()
T combinedion easeres the o by~ et blocked thieadS Wiihing for dhe lock will be
withien UP amD GVer BeceSS fo the LOUC, Threads Witk 1 TIFD o rlee

2. When implementing memory synchronization for a °

multi-threaded program using locks, list one dlsadvantage of
using blocking thread API calls such as the Linux read API
calls for: pthread_mutex_lock()and pthread_cond_wait ()
=l plhead_mokex oot dhe ok may newer becomg avallable FeadlTing 1
D?HL'ST'?E)vati’t‘:atvt:f‘rZ SRt auEe S n Tl Sk 2 arrtals to S
introduce overhead into programs_]yﬂ"" FINC-ERaED LA, martt Lalls TO

B B Sk Tr<p 4+ canbed sk ante [LETARTS 1o sdiesite R cal semang
i n Kedgg SNTRONAN rolte aVerhend =3 s

+
TCS5422: Operating Systems [Spring 2025]
‘ May 6,2025; School of Engineering and Technology, University of Washington - Tacoma rL70

70

L oneeqen gob ferbed maTIAST A

_ JobS arpw A DVEREST TARES ann Rud PSR pif FeresT Leaghs
AW 1T moke DR el T "o\’«}zr.—vl_;j BALAME Rymiimg. 23065
W AW 56 PRIGRTTY QUL
= T8 DecounTwik («gﬁuchb-‘T‘N\ INVBLY es svehead — 'ﬂus:imwrj
whae] NET o€ precist (vaunTime

= comver uachey o W of contctd Satlies i
NR her d ofa cfs #in) Lead T
lgonsisteAcles (o) Tob Runmiang

TCSS422: Operating Systems [Spring 2025]

May 6, 2025 ‘School of Engineering and Technology, University of Washington - Tacoma Li1.72

72

TCSS 422 A — Spring 2025
School of Engineering and Technology

5/6/2025

Q6 - ROUND-ROBIN SCHEDULER

Show a scheduling graph for a Round-Robin (RR) scheduler with job
preemption where newly arriving jobs will immediately run. Assume a
time slice of 3 timer units. Draw vertical lines for key events and be
sure to label the X-axis tuwfs as in the example.

Prawt il TobS Ak 0ot T TN Bank of dhe Ruwgueute O athe Job PR
U\\E)L Sumy 10 Ane oS8T et ATl anben —AND QonTIVES W RR Fa gt

Jo Arrlval Time Job Length

A T=0 25 5\ 15 K 3 C (e, FWC
B T=5 YO0

® T=10 15z

- igl40
LRI
50

RR |hnfhﬁ® AB)CCC] A gl e |aan m{m}‘ﬂ 1ad Ann
|

o DAk By M B HNBY A ~ﬂ

Q6 - RR SCHEDULER - 2

Using the graph, from time t=10 until all jobs complete at t=50,
evaluate Jain’s Fairness Index:

Jain’s fairness index is expressed as:

T(@1, 22500, 20) =
n

Where n is the number of jobs, and x; is the time share of each
process Jain’s fairness index=1 for best case fairness, and 1/n for
worst case fairness.

For the time window from t=10 to t=50, what percentage of the CPU
time is allocated to each of the jobs A, B, and C?
Job A: f5lH0= 45 Job B: Zfw=_.15 Job c:/3he= . 375

With these values, calculate Jain’s fairness index from t=10 to t=50.

‘TCSS422: Operating Systems [Spring 2025] u17a
School of Engineering and Technology, University of Washington - Tacoma

‘ May 6, 2025

[wesas ;f:;:‘of::;:;;ﬁfnzvzzzwz&::r:ﬂ:!ma.WM.,",m
73
Q6 - Il
{
T(@13 2,00y T0) = '"':fl 3° 3%
Qf_f’jjl‘ﬂ&%) (0t -1 ot |
n-zn ¥i* -3 d z -
(S (gt 4 LB + (318)]
3. (ms+ D02t eas) 11228
r |
s (31919) 41517
RFIELS R FYSIN
May 6, 2025 s b R = T Lin7s

75

QUESTIONS

77

Slides by Wes J. Lloyd

74

Q7 - SLOPPY COUNTER

Below is a tradeoff space graph similar to those we’ve shown in
class. Based on the sloppy counter threshold (S), add numbers
on the left or right side of the graph for each of the following
tradeoffs:

v/ 2. High Performance
v’ 4. High Accuracy

v 6. Low Performance
" 8. Low Accuracy

/1. High number of Global Updates
/3. High Overhead
v 5. Low number of Global Updates
/ 7. Low Overhead

Low sloppy threshold (S) High sloppy threshold (S)

l’;(o‘fl 57L‘5|

TCS5422: Operating Systems [Spring 2025]
‘ Rayela0zs School of Engineering and Technology, University of Washington - Tacoma L1176

76

L11.13

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 5/6
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 5/1
	Slide 7: Test and set
	Slide 8: X86 Assembly lock
	Slide 9: Review question
	Slide 10: OBJECTIVES – 5/6
	Slide 11: OBJECTIVES – 5/6
	Slide 12: OBJECTIVES – 5/6
	Slide 13: Quiz 2
	Slide 14: Catch up from lecture 10
	Slide 15: Chapter 29 – LOCK Based data structures
	Slide 16: OBJECTIVES – 5/6
	Slide 17: approximate (sloppy) counter
	Slide 18: approximate counter – main points
	Slide 19: approximate counter - 2
	Slide 20: Threshold value S
	Slide 21: approximate counter - example
	Slide 22
	Slide 23: OBJECTIVES – 5/6
	Slide 24: Concurrent linked list - 1
	Slide 25: Concurrent linked list - 2
	Slide 26: Concurrent linked list - 3
	Slide 27: Concurrent linked list
	Slide 28: Ccl – second implementation
	Slide 29: Ccl – second implementation - 2
	Slide 30: Concurrent Linked list performance
	Slide 31: OBJECTIVES – 5/6
	Slide 32: Michael and scott concurrent queues
	Slide 33: Concurrent queue
	Slide 34: Concurrent queue - 2
	Slide 35: OBJECTIVES – 5/6
	Slide 36: Concurrent hash table
	Slide 37: Insert performance – concurrent hash table
	Slide 38: Concurrent hash table
	Slide 39
	Slide 40: Lock-free data structures
	Slide 41: We will return at 5:14pm
	Slide 42: OBJECTIVES – 5/6
	Slide 43: Midterm review
	Slide 44: Midterm
	Slide 45: Fifo example
	Slide 46: Q1- shortest job first (SJF) scheduler
	Slide 47: Q1 – sjf - 2
	Slide 48: Q2 – shortest time to completion first (STCF) scheduler
	Slide 49: Q2 – stcf - 2
	Slide 50: Q3 - Operating system apis
	Slide 51: Q4 – operating system apis - II
	Slide 52: Q5 – perfect multitasking operating system
	Slide 53
	Slide 54: Q6 – round-robin scheduler
	Slide 55: Q6 – rr scheduler - 2
	Slide 56: Q6 - II
	Slide 57: Q7 – sloppy counter
	Slide 58: Q8 – round robin scheduler
	Slide 59
	Slide 60
	Slide 61: Q8 part b – round robin scheduler
	Slide 62: Q8 part b – round robin scheduler
	Slide 63: Multi-level feedback queue
	Slide 64: solutions
	Slide 65: Q1- shortest job first (SJF) scheduler
	Slide 66: Q1 – sjf - 2
	Slide 67: Q2 – shortest time to completion first (STCF) scheduler
	Slide 68: Q2 – stcf - 2
	Slide 69: Q3 - Operating system apis
	Slide 70: Q4 – operating system apis - II
	Slide 71: Q5 – perfect multitasking operating system
	Slide 72
	Slide 73: Q6 – round-robin scheduler
	Slide 74: Q6 – rr scheduler - 2
	Slide 75: Q6 - II
	Slide 76: Q7 – sloppy counter
	Slide 77: Questions

