
TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.1Slides by Wes J. Lloyd

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

Lock-based data structures,

Midterm Review

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 4/27

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apr 30)

 Chapter 28: Locks

 Chapter 29: Lock Based Data Structures

▪ Approximate Counter (Sloppy Counter)

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Practice Midterm – 2nd hour

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.2

OBJECTIVES – 4/30

1

2

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.2Slides by Wes J. Lloyd

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

April 30, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.3

ONLINE DAILY FEEDBACK SURVEY

April 30, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L11.4

3

4

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.3Slides by Wes J. Lloyd

 Please classify your perspective on material covered in today’s

class (29 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.98 (- previous 6.45)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.52 (- previous 5.10)

April 30, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.5

MATERIAL / PACE

 Which APIs are user calls, and which are kernel calls?

 From Chapter 29:

▪ pthread_create()

▪ pthread_join()

▪ pthread_mutex_lock()

▪ pthread_mutex_unlock()

▪ pthread_mutex_trylock()

▪ pthread_mutex_timelock()

▪ pthread_cond_wait()

▪ pthread_cond_wait_signal()

▪ pthread_cond_wait_broadcast()

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.6

FEEDBACK FROM 4/25

5

6

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.4Slides by Wes J. Lloyd

 Questions from 4/27

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apr 30)

 Chapter 28: Locks

 Chapter 29: Lock Based Data Structures

▪ Approximate Counter (Sloppy Counter)

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Practice Midterm – 2nd hour

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.7

OBJECTIVES – 4/30

 Questions from 4/27

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apr 30)

 Chapter 28: Locks

 Chapter 29: Lock Based Data Structures

▪ Approximate Counter (Sloppy Counter)

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Practice Midterm – 2nd hour

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.8

OBJECTIVES – 4/30

7

8

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.5Slides by Wes J. Lloyd

 Questions from 4/27

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apr 30)

 Chapter 28: Locks

 Chapter 29: Lock Based Data Structures

▪ Approximate Counter (Sloppy Counter)

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Practice Midterm – 2nd hour

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.9

OBJECTIVES – 4/30

 Canvas Quiz – Practice CPU Scheduling Problems

 Posted in Canvas

 Unlimited attempts permitted

 Provides CPU scheduling practice problems

▪ FIFO, SJF, STCF, RR, MLFQ (Ch. 7 & 8)

 Multiple choice and fill - in the blank

 Quiz automatically scored by Canvas

▪ Please report any grading problems

 Due Tuesday April 30 th at 11:59pm

 Link:

 https://canvas.uw.edu/courses/1728244/quizzes/2030525

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.10

QUIZ 2

9

10

https://canvas.uw.edu/courses/1728244/quizzes/2030525

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.6Slides by Wes J. Lloyd

CHAPTER 29 –

LOCK BASED

DATA STRUCTURES

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L11.11

 Questions from 4/27

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apr 30)

 Chapter 28: Locks

 Chapter 29: Lock Based Data Structures

▪ Approximate Counter (Sloppy Counter)

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Practice Midterm – 2nd hour

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.12

OBJECTIVES – 4/30

11

12

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.7Slides by Wes J. Lloyd

 Provides single logical shared counter

▪ Implemented using local counters for each ~CPU core

▪ 4 CPU cores = 4 local counters & 1 global counter

▪ Local counters are synchronized via local locks

▪ Global counter is updated periodically

▪ Global counter has lock to protect global counter value

▪ Update threshold (S) – referred to as sloppiness threshold:

How often to push local values to global counter

▪ Small (S): more updates, more overhead

▪ Large (S): fewer updates, more performant, less synchronized

 Why this implementation?

Why do we want counters local to each CPU Core?

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.13

APPROXIMATE (SLOPPY) COUNTER

 Idea of the Approximate Counter is to RELAX the

synchronization requirement for counting

▪ Instead of synchronizing global count variable each time:

counter=counter+1

▪ Synchronization occurs only every so often:

e.g. every 1000 counts

 Relaxing the synchronization requirement drastically

reduces locking API overhead by trading-off split-second

accuracy of the counter

 Approximate counter: trade-off accuracy for speed

▪ It’s approximate because it’s not so accurate (until the end)

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.14

APPROXIMATE COUNTER – MAIN POINTS

13

14

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.8Slides by Wes J. Lloyd

 Update threshold (S) = 5

 Synchronized across four CPU cores

 Threads update local CPU counters

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.15

APPROXIMATE COUNTER - 2

 Consider 4 threads increment a counter 1000000 times each

 Low S → What is the consequence?

 High S → What is the consequence?

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.16

THRESHOLD VALUE S

15

16

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.9Slides by Wes J. Lloyd

 Example implementation – sloppybasic.c

 Also with CPU affinity

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.17

APPROXIMATE COUNTER - EXAMPLE

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.1
8

17

18

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.10Slides by Wes J. Lloyd

 Questions from 4/27

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apr 30)

 Chapter 28: Locks

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List , Queue, Hash Table

 Practice Midterm – 2nd hour

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.19

OBJECTIVES – 4/30

 Simplification - only basic list operations shown

 Structs and initialization:

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.20

CONCURRENT LINKED LIST - 1

19

20

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.11Slides by Wes J. Lloyd

 Insert – adds item to list

 Everything is critical!

▪ There are two unlocks

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.21

CONCURRENT LINKED LIST - 2

}

 Lookup – checks list for existence of item with key

 Once again everything is critical

▪ Note - there are also two unlocks

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.22

CONCURRENT LINKED LIST - 3

21

22

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.12Slides by Wes J. Lloyd

 First Implementation:

▪ Lock everything inside Insert() and Lookup()

▪ If malloc() fails lock must be released

▪ Research has shown “exception-based control f low” to be error

prone

▪ 40% of Linux OS bugs occur in rarely taken code paths

▪ Unlocking in an exception handler is considered a poor coding

practice

▪ There is nothing specifically wrong with this example however

 Second Implementation …

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.23

CONCURRENT LINKED LIST

 Init and Insert

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.24

CCL – SECOND IMPLEMENTATION

23

24

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.13Slides by Wes J. Lloyd

 Lookup

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.25

CCL – SECOND IMPLEMENTATION - 2

 Using a single lock for entire list is not very performant

 Users must “wait” in line for a single lock to access/modify

any item

 Hand-over-hand-locking (lock coupling)

▪ Introduce a lock for each node of a list

▪ Traversal involves handing over previous node’s lock,

acquiring the next node’s lock…

▪ Improves lock granularity

▪ Degrades traversal performance

 Consider hybrid approach

▪ Fewer locks, but more than 1

▪ Best lock-to-node distribution?

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.26

CONCURRENT LINKED LIST PERFORMANCE

25

26

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.14Slides by Wes J. Lloyd

 Questions from 4/27

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apr 30)

 Chapter 28: Locks

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Practice Midterm – 2nd hour

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.27

OBJECTIVES – 4/30

 Improvement beyond a single master lock for a queue (FIFO)

 Two locks:

▪ One for the head of the queue

▪ One for the tail

 Synchronize enqueue and dequeue operations

 Add a dummy node

▪ Allocated in the queue initialization routine

▪ Supports separation of head and tail operations

 Items can be added and removed by separate threads at the

same time

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.28

MICHAEL AND SCOTT CONCURRENT QUEUES

27

28

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.15Slides by Wes J. Lloyd

 Remove from queue

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.29

CONCURRENT QUEUE

 Add to queue

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.30

CONCURRENT QUEUE - 2

29

30

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.16Slides by Wes J. Lloyd

 Questions from 4/27

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apr 30)

 Chapter 28: Locks

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Practice Midterm – 2nd hour

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.31

OBJECTIVES – 4/30

Consider a simple hash table

▪Fixed (static) size

▪Hash maps to a bucket

▪ Bucket is implemented using a concurrent linked list

▪ One lock per hash (bucket)

▪ Hash bucket is a linked lists

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.32

CONCURRENT HASH TABLE

31

32

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.17Slides by Wes J. Lloyd

 Four threads – 10,000 to 50,000 inserts

▪ iMac with four-core Intel 2.7 GHz CPU

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.33

INSERT PERFORMANCE –

CONCURRENT HASH TABLE

The simple concurrent hash table scales
magnificently.

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.34

CONCURRENT HASH TABLE

33

34

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.18Slides by Wes J. Lloyd

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.3
5

 Lock-free data structures in Java

 Java.util.concurrent.atomic package

 Classes:

▪ AtomicBoolean

▪ AtomicInteger

▪ AtomicIntegerArray

▪ AtomicIntegerFieldUpdater

▪ AtomicLong

▪ AtomicLongArray

▪ AtomicLongFieldUpdater

▪ AtomicReference

 See: https://docs.oracle.com/en/java/javase/11/docs/api/

java.base/java/uti l/concurrent/atomic/package -summary.html

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.36

LOCK-FREE DATA STRUCTURES

35

36

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.19Slides by Wes J. Lloyd

WE WILL RETURN AT

5:00PM

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L11.37

 Questions from 4/27

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue Apr 30)

 Chapter 28: Locks

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

 Practice Midterm – 2nd hour

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.38

OBJECTIVES – 4/30

37

38

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.20Slides by Wes J. Lloyd

MIDTERM

REVIEW

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.3
9

 Thursday May 2nd

 In Class in BHS 106 (2.0 hrs 3:40 – 5:40p)

 Test designed to take less than 2 hours

 Two pages of notes, double-sided, any-size paper permitted

 No book, other notes, cell phones, or internet

 Basic calculators OK

 Individual work

 Coverage: all content up through Chapter 29

 Preparation:

 Practice quiz: Quiz 2: CPU scheduling (posted)

▪ Auto grading w/ multiple attempts allowed as study aid

 Practice– second hour of lecture

▪ Series of problems presented with some time to solve

▪ Will then work through solutions

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.40

MIDTERM

39

40

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.21Slides by Wes J. Lloyd

 Operation of CPU schedulers can be visualized with timing

graphs.

 The graph below depicts a FIFO scheduler where three jobs

arrive in the sequence A, B, C, where job A runs for 10 time

slices, job B for 5 time slices, and job C for 10 time slices.

 |

FIFO |AAAAAAAAAABBBBBCCCCCCCCC

 |___________________________________

 0 10 15 25

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.41

FIFO EXAMPLE

 Draw a scheduling graph for the SJF scheduler without

preemption for the following jobs. Draw vertical lines for key

events and be sure to label the X-axis times as in the example.

Job Arrival Time Job Length

A T=0 25

B T=5 10

C T=10 15

 |

 |

SJF |

 |

 |__

 0

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.42

Q1- SHORTEST JOB FIRST (SJF)

SCHEDULER

41

42

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.22Slides by Wes J. Lloyd

What is the response time (RT) and turnaround time (TT) for
jobs A, B, and C?

RT Job A: ________________ TT Job A: ________________

RT Job B: ________________ TT Job B: ________________

RT Job C: ________________ TT Job C: ________________

What is the average response time for all jobs? _____________

What is the average turnaround time for all jobs? ___________

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.43

Q1 – SJF - 2

Draw a scheduling graph for the STCF scheduler with preemption for
the following jobs.

Draw vertical lines for key events and be sure to label the X -axis
times as in the example.

Job Arrival Time Job Length

A T=0 25

B T=5 10

C T=10 15

 |

 |

CPU |

 |

 |__

 0

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.44

Q2 – SHORTEST TIME TO COMPLETION

FIRST (STCF) SCHEDULER

43

44

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.23Slides by Wes J. Lloyd

 What is the response time (RT) and turnaround time (TT)
for jobs A, B, and C?

RT Job A: ________________ TT Job A: ________________

RT Job B: ________________ TT Job B: ________________

RT Job C: ________________ TT Job C: ________________

 What is the average response time for all jobs? ___________

 What is the average turnaround time for all jobs? __________

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.45

Q2 – STCF - 2

1. Provide a definition for what is a blocking API call

2. Provide a definition for a non-blocking API call

3. Provide an example of a blocking API call.

Consider APIs used to manage processes and/or threads.

4. Provide an example of a non-blocking API call.

Consider APIs used to manage processes and/or threads.

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.46

Q3 - OPERATING SYSTEM APIs

45

46

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.24Slides by Wes J. Lloyd

1. When implementing memory synchronization for a

multi-threaded program list one advantage of combining the use

of a condition variable with a lock variable via the Linux C

thread API calls: pthread_mutex_lock() and pthread_cond_wait()

2. When implementing memory synchronization for a

multi-threaded program using locks, list one disadvantage of

using blocking thread API calls such as the Linux C thread API

calls for: pthread_mutex_lock()and pthread_cond_wait()

3. List (2) factors that cause Linux blocking API calls to

introduce overhead into programs:

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.47

Q4 – OPERATING SYSTEM APIs - II

In a perfect-multi-tasking operating system, every process of the

same priority will always receive exactly 1/n th of the available CPU

time. Important CPU improvements for multi -tasking include: (1) fast

context switching to enable jobs to be swapped in -and-out of the CPU

very quickly, and (2) the use of a timer interrupt to preempt running

jobs without the user voluntarily yielding the CPU. These innovations

have enabled major improvements towards achieving a coveted

“Perfect Multi -Tasking System”.

List and describe two challenges that remain complicating the full

realization of a Perfect Multi -Tasking Operating System. In other

words, what makes it very dif ficult for all jobs (for example, 10 jobs)

of the same priority to receive EXACTLY the same runtime on the

CPU? Your description must explain why the challenge is a problem

for achieving perfect multi -tasking.

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.48

Q5 – PERFECT MULTITASKING

OPERATING SYSTEM

47

48

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.25Slides by Wes J. Lloyd

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.4
9

Show a scheduling graph for a Round-Robin (RR) scheduler with job
preemption where newly arriving jobs will immediately run. Assume a
time slice of 3 timer units. Draw vertical lines for key events and be
sure to label the X-axis times as in the example.

Job Arrival Time Job Length

A T=0 25

B T=5 10

C T=10 15

 |

 |

RR |

 |

 |___

 0

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.50

Q6 – ROUND-ROBIN SCHEDULER

49

50

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.26Slides by Wes J. Lloyd

Using the graph, from time t=10 until all jobs complete at t=50,

evaluate Jain’s Fairness Index:

Jain’s fairness index is expressed as:

Where n is the number of jobs, and x i is the time share of each

process Jain’s fairness index=1 for best case fairness, and 1/n for

worst case fairness.

For the time window from t=10 to t=50, what percentage of the CPU

time is allocated to each of the jobs A, B, and C?

Job A: ________ Job B: ________ Job C: ________

With these values, calculate Jain’s fairness index from t=10 to t=50.

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.51

Q6 – RR SCHEDULER - 2

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.5
2

Q6 - II

51

52

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.27Slides by Wes J. Lloyd

Below is a tradeoff space graph similar to those we’ve shown in

class. Based on the sloppy counter threshold (S), add numbers

on the lef t or right side of the graph for each of the following

tradeoffs:

1. High number of Global Updates 2. High Performance

3. High Overhead 4. High Accuracy

5. Low number of Global Updates 6. Low Performance

7. Low Overhead 8. Low Accuracy

Low sloppy threshold (S) High sloppy threshold (S)

| ___ |

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.53

Q7 – SLOPPY COUNTER

 Review the bonus lecture for scheduling examples

including several Multi -level-feedback-queue problems (MLFQ)

https://tinyurl.com/422s24-practice

April 30, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L11.54

MULTI-LEVEL FEEDBACK QUEUE

53

54

https://tinyurl.com/422s24-practice

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/30/2024

L11.28Slides by Wes J. Lloyd

QUESTIONS

69

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 4/30
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 4/25
	Slide 7: OBJECTIVES – 4/30
	Slide 8: OBJECTIVES – 4/30
	Slide 9: OBJECTIVES – 4/30
	Slide 10: Quiz 2
	Slide 11: Chapter 29 – LOCK Based data structures
	Slide 12: OBJECTIVES – 4/30
	Slide 13: approximate (sloppy) counter
	Slide 14: approximate counter – main points
	Slide 15: approximate counter - 2
	Slide 16: Threshold value S
	Slide 17: approximate counter - example
	Slide 18
	Slide 19: OBJECTIVES – 4/30
	Slide 20: Concurrent linked list - 1
	Slide 21: Concurrent linked list - 2
	Slide 22: Concurrent linked list - 3
	Slide 23: Concurrent linked list
	Slide 24: Ccl – second implementation
	Slide 25: Ccl – second implementation - 2
	Slide 26: Concurrent Linked list performance
	Slide 27: OBJECTIVES – 4/30
	Slide 28: Michael and scott concurrent queues
	Slide 29: Concurrent queue
	Slide 30: Concurrent queue - 2
	Slide 31: OBJECTIVES – 4/30
	Slide 32: Concurrent hash table
	Slide 33: Insert performance – concurrent hash table
	Slide 34: Concurrent hash table
	Slide 35
	Slide 36: Lock-free data structures
	Slide 37: We will return at 5:00pm
	Slide 38: OBJECTIVES – 4/30
	Slide 39: Midterm review
	Slide 40: Midterm
	Slide 41: Fifo example
	Slide 42: Q1- shortest job first (SJF) scheduler
	Slide 43: Q1 – sjf - 2
	Slide 44: Q2 – shortest time to completion first (STCF) scheduler
	Slide 45: Q2 – stcf - 2
	Slide 46: Q3 - Operating system apis
	Slide 47: Q4 – operating system apis - II
	Slide 48: Q5 – perfect multitasking operating system
	Slide 49
	Slide 50: Q6 – round-robin scheduler
	Slide 51: Q6 – rr scheduler - 2
	Slide 52: Q6 - II
	Slide 53: Q7 – sloppy counter
	Slide 54: Multi-level feedback queue
	Slide 69: Questions

