TCSS 422 A — Spring 2024
School of Engineering and Technology

4/25/2024

TCSS 422: OPERATING SYSTEMS

Linux Thread API,

Lock Implementations, %
Lock-based data structures, m«

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2024]

Aprl 25,2024 School of Engineering and Technology, University of Washington

OBJECTIVES - 4/25

| = Questions from 4/23 |
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26
= Assignment 1 - Due Tue May 7
= Quiz 1 (Due Thur Apr 25) - Quiz 2 (Due Tue April 30)
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Spring 2024]
Gl vt School of Engineering and Technology, University of Washington - Tacoma L2

ONLINE DAILY FEEDBACK SURVEY

= Daily Feedback Quiz in Canvas - Available After Each Class
= Extra credit available for completing surveys ON TIME
= Tuesday surveys: due by ~ Wed @ 11:59p
= Thursday surveys: due ~ Mon @ 11:59p
= TC55422A > Assignments

Spring 2021

Home
Announcements
Joom * Upcoming Assignments
Syllzbus s TCSS422 - Online Daily Feedback Survey - 4/1
i ™ Avallable until Apr 5 at 11:5%pm | DueApr3 at 10pm | -/1pts
Dicuctinne Aun.r i
TCS5422: Computer Operating Systems [Spring 2024]
April 25,2024 School of Engineering and Technology, University of Washington - Tacoma L3

TCSS 422 - Online Daily Feedback Survey - 4/1

Quiz Instructions

Question 1 05 pes

On.a scale of 110 10, please classify your perspective on material covered in today's
el

1 2 3 4 5 s 7T 8 3 1
manly. et sty
i 10 e ol nevie o

Question 2 05pes

Piease rate the pace of today's class:

1 2 3 a4 s & 7 8 3 10

TCSS422: Computer Operating Systems [Spring 2024]

April28, 2024 School of Engineering and Technology, University of Washington - Tacoma L104

MATERIAL / PACE

= Please classify your perspective on material covered in today’s
class (31 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - 6.45 (| - previous 6.58)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.06 ({ - previous 5.10)

April 25, 2024 TCS5422: Computer Operating Systems [Spring 2024] 05

School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK FROM 4/23

= Why does pthread_mutex_lock() function call return an Integer
which is assigned to variable rc?
it rc = pthread mutex_init (slock, NULL);
assert (rc 0y 7

= We capture the function’s return code into int rc

= Why does rc have to be asserted that it is equal to O right
after the inltlalization?

= The assert function throws an error (and stops the program) when rc
is non-zero

= Receiving a non-zero return indicates a critical error, and the
program should likely not continue to run
= Calling assert() is optional and not required

TCS3422: Operating Systems [Spring 2024] 06
School of Engineering and Technology, University of Washington - Tacoma

‘ April 25,2024

Slides by Wes J. Lloyd

L10.1

TCSS 422 A — Spring 2024
School of Engineering and Technology

OBJECTIVES - 4/25

= Questions from 4/23
| = C Tutorlal - Polnters, Strings, Exec In C - Due Frl Apr 26 |
= Assignment 1 - Due Tue May 7
= Quiz 1 (Due Thur Apr 25) - Quiz 2 (Due Tue April 30)
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2024]
‘ Lk School of Engineering and Technology, University of Washington - Tacoma L7

OBJECTIVES - 4/25

= Questions from 4/23
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26
= Assignment 1 - Due Tue May 7
| = Quiz 1 (Due Thur Apr 25) - Quiz 2 (Due Tue April 30)|
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table

TCSS422: Operating Systems [Spring 2024]
‘ April 25,2024 School of Engineering and Technology, University of Washington - Tacoma. Lo

4/25/2024

OBJECTIVES - 4/25

= Questions from 4/23
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26
| = Assignment 1 - Due Tue May 7
= Quiz 1 (Due Thur Apr 25) - Quiz 2 (Due Tue April 30)
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table

TCS5422: Operating Systems [Spring 2024]
‘ Gl vt School of Engineering and Technology, University of Washington - Tacoma Lo

QuIZ 1

= Active reading on Chapter 9 - Proportional Share Schedulers

= Posted in Canvas
= Due Thursday April 25" at 11:59pm

= Link:

= https://faculty.washington.edu/wlloyd/courses/tcss422
qulz/TCSS422_s2024_qulz_1.pdf

TCS5422: Operating Systems [Spring 2024]
‘ An 25,2028 School of Engineering and Technology, University of Washington - Tacoma oo

= Canvas Quiz - Practice CPU Scheduling Problems

= Posted in Canvas

= Unlimited attempts permitted

= Provides CPU scheduling practice problems
= FIFO, SJF, STCF, RR, MLFQ (Ch. 7 & 8)

= Multiple choice and fill-in the blank

= Quiz automatically scored by Canvas
= Please report any grading problems

= Due Tuesday April 30" at 11:59pm

10

OBJECTIVES - 4/25

= Questions from 4/23
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26
= Assignment 1 - Due Tue May 7
= Quiz 1 (Due Thur Apr 25) - Quiz 2 (Due Tue April 30)
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table

7CS5422: Operating Systems [Spring 2024]
‘ CEDeRpr) School of Engineering and Technology, University of Washington - Tacoma Lo

= Link:
= https://canvas.uw.edu/courses/1728244/ /2030525
TCS5422: Operating Systems [Spring 2024]
‘ e School of Engineering and Technology, University of Washington - Tacoma Lot

Slides by Wes J. Lloyd

12

L10.2

http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_s2024_quiz_1.pdf
http://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_s2024_quiz_1.pdf
http://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_s2024_quiz_1.pdf
https://canvas.uw.edu/courses/1728244/quizzes/2030525

TCSS 422 A — Spring 2024 4/25/2024
School of Engineering and Technology

|
= Ensure critical section(s) are executed atomically-as a unit
= Only one thread is allowed to execute a critical section at any given
time
= Ensures the code snippets are “mutually exclusive”

CHAPTER 28 -

= Protect a global counter:

[balance — balance + 1;

= A “critical section”:

lock t mutex;

balance = balance + 1;

1

2 -

3 lock (smutex) ;

3

5 unlock (smutex) ;

AP 2542028 gshscso‘?ﬁ?ﬁ;i’:ﬁ:ﬁgsﬁfgiﬁﬁﬁégyzﬁiﬂe.suy of Washington - ‘ Ll ey g:geir:eﬂe’:?n?:‘r.ed";'sec[imfg\ioﬁ:!vers‘w of Washington - Tacoma Loas
= Lock variables are called “MUTEX” " pthread mutex_lock (&lock)
= Short for mutual exclusion (that’s what they guarantee) = Try to acquire lock
= If lock is free, calling thread will acquire the lock
" Lock variables store the state of the lock =Thread with lock enters critical section
Thread “owns” the lock
= States
=Locked (acquired or held) = No other thread can acquire the lock before the owner
= Unlocked (available or free) releases it.
= Only 1 thread can hold a lock
TCSS422: Oy ing Sy [Spring 2024] TCSS422: Oy ing Sy [Spring 2024]
‘ Apr|25;2028 School of E:::e“e’:‘\gngy::ﬁm:::fgv, University of Washington - Tacoma L1 ‘ April 25,2024 School of E:gei’::e’:?ngy;ed"}sech:ollfgy, University of Washington - Tacoma o8

15 16

OBJECTIVES - 4/25 LOCKS - 4

= Questions from 4/23
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26
= Assignment 1 - Due Tue May 7

= Program can have many mutex (lock) variables to
“serialize” many critical sections

= Quiz 1 (Due Thur Apr 25) - Quiz 2 (Due Tue April 30) = Locks are also used to protect data structures

= Chapter 27: Linux Thread API = Prevent multiple threads from changing the same data
= pthread_cond_wait/_signal/_broadcast simultaneously

= Chapter 28: Locks = Programmer can make sections of code “granular”

= Introduction,/Lock Granularlty Fine gralned - means just one grain of sand at a time through an

= Spin Locks, Test and Set, Compare and Swap hour glass
= Chapter 29: Lock Based Data Structures = Similar to relational database transactions
= Approximate Counter (Sloppy Counter) DB transactions prevent multiple users from modifying a table,
= Concurrent Structures: Linked List, Queue, Hash Table row, field
TCSS422: Oy ating Syste [Spring 2024] TCSS422: Operating Syste & 2024]
[seumame | o e ey rwrtn - T uosr [roumame | o e rwanrn o uoss

17 18

Slides by Wes J. Lloyd L10.3

TCSS 422 A — Spring 2024
School of Engineering and Technology

4/25/2024

FINE GRAINED?

= |s this code a good example of “flne gralned parallellsm”?

pthread_mutex_lock (&lock);

a = b++;

*c

*d =a + b +c;

FILE * fp = fopen ("file.txt", “r");

fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);

ListNode *node = mylist->head;

Int i=0

while (node) {
node->title = strl;
node->subheading = str2;
node->desc str3;

node->end e;
node = node->next;
++
} .
e=e-1;
pthread_mutex_unlock(&lock);
‘ Lk ;gg;\zi%gr?;’::e’:\gnzy:‘r;"}seg\:gifg\:ulzl:!versilvafWashing(onrTacnma L1

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);

a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock(&lock_a);

pthread_mutex_lock (&lock_b);
b=a=*c;

pthread_ml’Jtex_unhck(&] ock_b);

pthread_mutex_Tlock (&lock_d);
* a+ b +c;
pthread_mutex_unlock (&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock (&lock_e);

fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);
pthread_mutex_unlock (&lock_e);

ListNode *node = mylist->head;

int i=0 .
TCS5422: Operating Systems [Spring 2024] 110.20
School of Engineering and Technology, University of Washington - Tacoma

‘ April 25,2024

19

20

LOCK GRANULARITY TRADE-OFF SPACE

FINE-GRAINED
Many Lock (kernel) calls

COARSE-GRAINED
Few Lock (kernel) calls

Low overhead from
minimal locking

More overhead from
excessive locking

More parallelism
Higher code complexity

Less parallelism
Low code complexity

& debugging & simpler debugging
Every program
implementation
lies someplace along
the trade-off space...
TCSS422: Operating Systems [Spring 2024]
‘ April 25,2024 School of Engineering and Technology, University of Washington - Tacoma w21

EVALUATING LOCK IMPLEMENTATIONS

What makes a
= Correctness 903‘! lock?
= Does the lock work?
= Are critical sections mutually exclusive?

(atomic-as a unit?)

= Fairness
= Do all threads that compete for a lock have a fair chance
of acquiring it?

= Overhead

TCS5422: Operating Systems [Spring 2024]
‘ April 25,2024 School of Engineering and Technology, University of Washington - Tacoma o022

21

BUILDING LOCKS

= Locks require hardware support
=To minimize overhead, ensure fairness and correctness

= Special “atomic-as a unit” instructions to support lock
implementation

= Atomic-as a unit exchange instruction
XCHG

= Compare and exchange instruction

CMPXCHG
CMPXCHGS8B
CMPXCHG16B
TCS5422: Operating Systems [Spring 2024]
‘ (D) School of Engineering and Technology, University of Washington -Tacoma Loz

22

HISTORICAL IMPLEMENTATION

= To implement mutual exclusion
= Disable interrupts upon entering critical sections

lock() |
DisableInterrupts(}s

unlock ()} {
EnableInterrupts();

B

}

= Any thread could disable system-wide interrupt
= What if lock is never released?

= On a multiprocessor processor each CPU has its own interrupts
= Do we disable interrupts for all cores simultaneously?

= While interrupts are disabled, they could be lost
= If not queued...

7CS5422: Operating Systems [Spring 2024]
‘ CEDeRpr) School of Engineering and Technology, University of Washington - Tacoma o2

23

Slides by Wes J. Lloyd

24

L10.4

TCSS 422 A — Spring 2024
School of Engineering and Technology

OBJECTIVES - 4/25

= Questions from 4/23
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26
= Assignment 1 - Due Tue May 7
= Quiz 1 (Due Thur Apr 25) - Quiz 2 (Due Tue April 30)
= Chapter 27: Linux Thread API

= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks

= Introduction, Lock Granularity

Test and Set, Compare and Swap

= Chapter 29: Lock Based Data Structures

= Approximate Counter (Sloppy Counter)

= Concurrent Structures: Linked List, Queue, Hash Table

‘ April 25,2024

TCSS422: Operating Systems [Spring 2024] 11025
School of Engineering and Technology, University of Washington - Tacoma

25

BASIC SPIN LOCK: CORRECT?

= |f both threads can run at the same time, then correctness
requires luck... (e.g. basic spin lock is incorrect)

Threadl Thread2
call lock()

while (flag == 1)

interrupt: switch to Thread 2

call 1ock()
while (flag == 1)
flag = 1;

interrupt: switch to Thread 1
flag =

= Here both threads have “acquired” the lock simultaneously

‘ April 25,2024

TCSS422: Operating Systems [Spring 2024] 11027
School of Engineering and Technology, University of Washington - Tacoma

27

OBJECTIVES - 4/25

= Questions from 4/23
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26
= Assignment 1 - Due Tue May 7
= Quiz 1 (Due Thur Apr 25) - Quiz 2 (Due Tue April 30)
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin LocksCompare and Swap
= Chapter 29: Lock Based Data Structures
= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table

‘ April 25, 2024

TCS5422: Operating Systems [Spring 2024] 11029
School of Engineering and Technology, University of Washington - Tacoma

29

Slides by Wes J. Lloyd

4/25/2024

BASIC SPIN LOCK IMPLEMENTATION

= Demonstration of lock implementation using C code
= C code is compiled to assembly, instructions are not atomic
= |dea is to imagine “what if” the lock code were atomic

1 __lock t | flags | lock_ti
2
3 init(lock t *mutex) {
3 3
5 mitex->flag = 07
6
= Is this lock 8 lock t *mutex) {
implementation: L] [E ->flag == 1)
10 :
(1)Correct? 11 mutex->flag = 17
5 1z)
(2)Fair? 12
(3!Performant? 14 unlock{lock_t *mutex) |
15 mutex->flag = 07
16)
TCS5422: Operating Systems [Spring 2024]
‘ Gl vt School of Engineering and Technology, University of Washington - Tacoma o026

26

BASIC SPIN LOCK: PERFORMANCE ?

void Tock(lock_t *mutex)

// while Tock is unavailable, wait..
mutex->flag = 1;

= What is wrong with while(<cond>); ?

= Spin-waiting wastes time actively waiting for another thread
= while (1); will “peg” a CPU core at 100%
= Continuously loops, and

mutex->flag value...
= If multiple threads wait for the CPU, more CPU capacity is wasted
= Generates heat...

TCS5422: Operating Systems [Spring 2024] 11028
School of Engineering and Technology, University of Washington - Tacoma

‘ April 25,2024

28

TEST-AND-SET INSTRUCTION

= Hardware support required for working locks

= Book presents pseudo code of C implementation for
TEST-AND-SET instruction that needs to be atomic
= TEST-and-SET checks old value improving on basic spin lock
= TEST-and-SET returns the old value so it can be checked
= Comparison is made in the caller
= Assumption is the TEST-AND-SET routine runs atomically on the CPU
= Here is the C-pseudo code:

TestandSet (int *ptr, new) {
old trs
ptr =

‘ April 25,2024

TCS3422: Operating Systems [Spring 2024] 11030
School of Engineering and Technology, University of Washington - Tacoma

30

L10.5

TCSS 422 A — Spring 2024

4/25/2024
School of Engineering and Technology

TEST-AND-SET - 2 SPIN LOCK EVALUATION

" lock() method checks that TestAndSet doesn’t return 1 = Correctness:
= If TestAndSet returns 1: = Spin locks with atomic Test-and-Set:

= This indicates someone else has the lock Critical sections won’t be executed simultaneously by (2) threads

1 f t _lock t (
2 t flag: .
31 lock_ts = Fairness:
5 init (lock_t Tlock) = No fairness guarantee. Once a thread has a lock, nothing forces it to
N relinquish it... lock distribution is random
8 lock->flag = 0
E
10 = Performance:
1 Lock{lock_t *lock) N .
12 (TestAndset (slock->flag, 1) == 1} = Spin locks perform “busy waiting”
13 s
g = Spin locks are best for short periods of waiting (< 1 time quantum)
15 B .
16 void unlockileck_t *lock) { = Performance is slow when multiple threads share a CPU
7 lock->flag = 0 . NN .
-:B) ek “ Especially if “spinning” for long periods
TCSS422: Operating Systems [Spring 2024} TCSS422: Operating Systems [Spring 2024]
‘ LAl i School of Engineering and Technology, University of Washington - Tacoma Lot ‘ Gl vt School of Engineering and Technology, University of Washington - Tacoma o3z

31 32

OBJECTIVES - 4/25 COMPARE AND SWAP

= Questions from 4/23

= Checks that the lock variable has the expected value FIRST,
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26 before changing its value
= Assignment 1 - Due Tue May 7 = If so, make assignment

= Quiz 1 (Due Thur Apr 25) - Quiz 2 (Due Tue April 30) ghaettiniaivelaiccation
= Chapter 27: Linux Thread API

= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks

= Introduction, Lock Granularit

= Adds a comparison to TestAndSet method
= Textbook presents C pseudo code
= Assumption is that the compare-and-swap method runs atomically

= Useful for wait-free synchronization
* Spin Locks, Test and Set{ Compare and Swap = Supports implementation of shared data structures which can be
= Chapter 29: Lock Based Data Structures updated atomically (as a unit) !Jsing Hardware support:
= Approximate Counter (Sloppy Counter) x86 CompareAndSwap instructions
pp R y . = Shared data structure updates become “wait-free”
= Concurrent Structures: Linked List, Queue, Hash Table

= Upcoming in Chapter 32

School of Engineering and Technology, University of Washington - Tacoma

5422: Operating Systems [Spring 2024 TCS5422: Operating Systems (Spring 2024]
‘ Apr|25;2028 School of Engineering and Technology, University of Washington - Tacoma. L33 April 25,2024 1034

33 34

[| |
"When implementing locks in a high-level Ianguage'
COMPARE AND SWAP s
(e.g. C), what is missing that prevents
implementation of CORRECT locks?
= Compare and Swap
expected, int new) |
Shared state variable
WM C implementation on 1-core VM: Condition variables
Count is correct, no deadlock) .
: ATOMIC instructions
}
= x86 CPU provides “cmpxchgl” compare-and-exchange instructions Fairness
= cmpxchg8b
* cmpxchgl6b None of the above
[romsmame |10 oot 20 ssinon s o -~ — _ . .

35 36

Slides by Wes J. Lloyd L10.6

TCSS 422 A — Spring 2024
School of Engineering and Technology

“LOCK BUILDING” CPU INSTRUCTIONS

ON ARM PROCESSORS

= Cooperative instructions used together to support
synchronization on RISC systems

= No support on x86 processors

= Supported by RISC: Alpha, PowerPC, ARM
® Load-linked (LL)

= Loads value into register

= Same as typical load

= Used as a mechanism to track competition

= Store-conditional (SC)
= Performs “mutually exclusive” store
= Allows only one thread to store value

TCSS422: Operating Systems [Spring 2024] 11037
School of Engineering and Technology, University of Washington - Tacoma

l April 25,2024

37

LL/SC LOCK - 2

1 1 lock(lock_t *lock) |

2 [$8]

3 (LoadLinked (slock->flag) == 1)
4 H ’

5 (StoreConditional (&lock->flag, 1)
7

8 1

L]

10

11 vold unlock(lock_t *lock) (

12 lock->flag = 0

13}

= Two instruction lock

TCSS422: Operating Systems [Spring 2024]
l April 25,2024 School of Engineering and Technology, University of Washington - Tacoma tio.39

4/25/2024

LL/SC LOCK

1 © LoadLinked (int *ptr) (

2 *ptr;

3 I

4

5 1t StoreConditional (int *ptr, int value) {
6 (no one has updated *ptr since the Loadlinked to this address) |
7 *ptr = walue;

8 1z

9 I t

10

11)

12z}

= LL instruction loads pointer value (ptr)
= SC only stores if the load link pointer has not changed
= Requires HW support

= C code is psuedo code

l April 25, 2024

TCS5422: Operating Systems [Spring 2024] 11038
School of Engineering and Technology, University of Washington - Tacoma

38

39

WE WILL RETURN AT
5:10PM

April 25, 2024 TCSS422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - L10.40

OBJECTIVES - 4/25

= Questions from 4/23
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26
= Assignment 1 - Due Tue May 7
= Quiz 1 (Due Thur Apr 25) - Quiz 2 (Due Tue April 30)
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity

I- Chapter 29: Lock Based Data Structures i

= Approximate Counter (Sloppy Counter)
= Concurrent Structures: Linked List, Queue, Hash Table

l April 25, 2024

TCS5422: Operating Systems [Spring 2024] 1041
School of Engineering and Technology, University of Washington - Tacoma

41

Slides by Wes J. Lloyd

CHAPTER 29 -
LOCK BASED
DATA STRUCTURES

. TCSS422: Operating Systems [Spring 2024]
eriize 20 School of Engineering and Technology. University of Washington -

L10.42

42

L10.7

TCSS 422 A — Spring 2024 4/25/2024
School of Engineering and Technology

LOCK-BASED

CONCURRENT DATA STRUCTURES COUNTER STRUCTURE W/0 LOCK

= Adding locks to data structures make them

= Synchronization weary --- not thread safe
thread safe.

1 __counter t {
2 value;
3 } counter_t;
4
. . 5 init (counter_t *c) {
= Considerations: 6 c->value = 07

7 i

=Correctness ¢
10

=Performance 11)
12

= Lock granulanty 13 decrement) [
1 c-»valn
15 1
16
17 get{counter_t *c) |
18 c->value;
19]

TCSS422: Operating Systems [Spring 2024] TCSS422: Operating Systems [Spring 2024]
‘ Lk School of Engineering and Technology, University of Washington - Tacoma L3 ‘ Gl vt

School of Engineering and Technology, University of Washington - Tacoma s

43 44

1 _counter ¢ = Decrease counter
2 int value;
i read lock t lock: = Get value
6 X 1 (cont.)
7 lue = 0; 17
8 _mutex_init({sc->lock, NULL); 18
s) 19
10 20
11 21)
12 22
13 23 {
14 24 x_lock(&c->lock) 7
15] 25 =->value:
16 26 ad_mutex_unlock(&c->lock) ;
21 res
= Add lock to the counter 28 1
= Require lock to change data
TCSS422: Operating Systems [Spring 2024] TCSS422: Operating Systems [Spring 2024]
‘ April 25,2024 School of Engineering and Technology, University of Washington - Tacoma Li4s ‘ April 25,2024 School of Engineering and Technology, University of Washington - Tacoma tioae

45 46

CONCURRENT COUNTERS - PERFORMANCE PERFECT SCALING
= Concurrent counter is considered a “precise counter” = Achieve (N) performance gain with (N) additional resources
= iMac: four core Intel 2.7 GHz i5 CPU
= Each thread increments counter 1,000,000 times = Throughput:
. = Transactions per second (tps)
3 N
Fo = 1 core
§ g =N =100 tps
= 10 cores (x10)
ol =N =1000 tps (x10)
! : lmsaﬂsJ ¢
= Is parallel counting with a shared counter an embarrassingly
scales poorly parallel problem?
I IR . uess

47 48

Slides by Wes J. Lloyd L10.8

TCSS 422 A — Spring 2024 4/25/2024
School of Engineering and Technology

OBJECTIVES - 4/25 APPROXIMATE (SLOPPY) COUNTER

= Questions from 4/23
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26
= Assignment 1 - Due Tue May 7
= Quiz 1 (Due Thur Apr 25) - Quiz 2 (Due Tue April 30)
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks

= Provides single logical shared counter
= Implemented using local counters for each ~CPU core
4 CPU cores = 4 local counters & 1 global counter
Local counters are synchronized via local locks
= Global counter is updated periodically
Global counter has lock to protect global counter value

. N Update threshold (S) - referred to as sloppiness threshold:
- Int.mduc“on' Lock Granularity How often to push local values to global counter
= Spin Locks, Test and Set, Compare and Swap Small (S): more updates, more overhead

= Chapter 29: Lock Based Data Structures Large (S): fewer updates, more performant, less synchronized
. C
I Appr c PPy 'I = Why this implementation?

= Concurrent Structures: Linked List, Queue, Hash Table Why do we want counters local to each CPU Core?

TCS5422: Operating Systems [Spring 2024] TCS5422: Operating Systems (Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L1049 Gl vt School of Engineering and Technology, University of Washington - Tacoma oso

‘ April 25,2024

49 50

APPROXIMATE COUNTER - MAIN POINTS APPROXIMATE COUNTER - 2
= |dea of the Approximate Counter is to RELAX the = Update threshold (S) = 5
synchronization requirement for counting = Synchronized across four CPU cores
= Instead of synchronizing global count variable each time: = Threads update local CPU counters
counter=counter+1l
mime | 1, | oL | | o G
= Synchronization occurs only every so often: 0 o 0 [0 0
e.g. every 1000 counts 1 0 0 1 1 0
. o . 2 1 0 2 1 0
= Relaxing the synchronization requirement drastically 3 5 o 2 1 0
reduces locking APl overhead by trading-off split-second a 3 o 3 2 0
accuracy of the counter 5 4 1 3 3 0
6 520 1 3 4 5 (from L,)
= Approximate counter: trade-off accuracy for speed 7 0 2 N 530 10 (from L)
= It's approximate because it's not so accurate (until the end)
\ April 25,2024 St o egaamg s s Unhrdty of Washingion - Trcomal anst \ Apil 25, 2024 St o egem an st Uiy of Washingion Tacona tios2

51 52

THRESHOLD VALUE S APPROXIMATE COUNTER - EXAMPLE

= Consider 4 threads increment a counter 1000000 times each = Example implementation - sloppybasic.c
= Low S &> What is the consequence?
= High S - What is the consequence? = Also with CPU affinity
15
gﬂ] '\\
RN
E
'
PO -

12 4 8 16 32 64 128 266 5121024
Approximation Factor (S)

TCS5422: Operating Systems [Spring 2024] 11053 el TCS3422: Operating Systems [Spring 2024] 1054
School of Engineering and Technology, University of Washington - Tacoma e School of Engineering and Technology, University of Washington - Tacoma

‘ April 25, 2024

53 54

Slides by Wes J. Lloyd L10.9

TCSS 422 A — Spring 2024
School of Engineering and Technology

= Text WESLEYLLOYD641 to 22333 once to join

approximate counter (Sloppy Counter)
threshold?

The caunter overhe:

ry high,

The counter implementation performsa very
large number of LOCK/UNLOCK AP| calls.

The global counter value is highly accurate,

The caunter perfarms very few lacal to global
counter updates,

Nene of the above

& When poll is active, respond at pollev.com/wesleylloyd641

Which of the following is NOT a problem as a
result of having a low S-value for the

u For seveen share software, i Gethel

55

CONCURRENT LINKED LIST - 1

= Simplification - only basic list operations shown
® Structs and initialization:

2 __node_t |

3 cay
4 struct _node_t *next;

TCSS422: Operating Systems [Spring 2024]

‘ April 25,2024 School of Engineering and Technology, University of Washington - Tacoma

L1057

57

CONCURRENT LINKED LIST - 3

= Lookup - checks list for existence of item with key
= Once again everything is critical
= Note - there are also two unlocks

(Cont.)
3

{curr->key == key) {
pthread_mutex_unlock {sL->10ck) ;

CUrY = CUrr->next;

1
pthread mutex_unlock(sL->lock);
EN

TCS5422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

April 25, 2024

L1059

59

Slides by Wes J. Lloyd

4/25/2024

OBJECTIVES - 4/25

= Questions from 4/23
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26
= Assignment 1 - Due Tue May 7
= Quiz 1 (Due Thur Apr 25) - Quiz 2 (Due Tue April 30)
= Chapter 27: Linux Thread API

= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks

= Introduction, Lock Granularity

= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures

= Sloppy Counter

| = Concurrent Structures: Linked List| Queue, Hash Table

TCS5422: Operating Systems [Spring 2024]

‘ Gl vt School of Engineering and Technology, University of Washington - Tacoma

11056

56

CONCURRENT LINKED LIST - 2

= Insert - adds item to list
= Everything is critical!
= There are two unlocks

(Cont.)
18
19
20
21
22

23

new->key = key:
new->next = >head;

ae

ont.)

TCS5422: Operating Systems [Spring 2024]

‘ An 25,2028 School of Engineering and Technology, University of Washington - Tacoma

11058

58

CONCURRENT LINKED LIST

= First Implementation:
= Lock everything inside Insert() and Lookup()
= If malloc() fails lock must be released

Research has shown “exceptlon-based control flow” to be error
prone

40% of Linux OS bugs occur in rarely taken code paths

Unlocking in an exception handler is considered a poor coding
practice

There is nothing specifically wrong with this example however

= Second Implementation ...

TC55422: Operating Systems [Spring 2024]

‘ CEDeRpr) School of Engineering and Technology, University of Washington - Tacoma

11060

60

L10.10

TCSS 422 A — Spring 2024
School of Engineering and Technology

CCL - SECOND IMPLEMENTATION

= Init and Insert

1 List_Init(list_t *L) {

2 L-he:

3 pthre:)i
4 |

5

E id List Insert(list_t *L, int key) {

i

8 node_t *n izeof (nade_t}) s
s (new

10 alloc™)

12)
13 new->key =

16 pthread mutex_lock (¢L->lock) ;
17 u - a:
16
19 pthread mutex unlock(sL->lack) f
20 !
21

‘ ori| 25,2024 TCS5422: Operating Systems [Spring 2024]

School of Engineering and Technology, University of Washington - Tacoma

L1061

61

CONCURRENT LINKED LIST PERFORMANCE

= Using a single lock for entire list is not very performant

= Users must “wait” in line for a single lock to access/modify
any item

= Hand-over-hand-locking (lock coupling)
= Introduce a lock for each node of a list

= Traversal involves handing over previous node’s lock,
acquiring the next node’s lock...

= Improves lock granularity
= Degrades traversal performance

= Consider hybrid approach
= Fewer locks, but more than 1
= Best lock-to-node distribution?

TCSS422: Operating Systems [Spring 2024]

‘ April 25,2024 School of Engineering and Technology, University of Washington - Tacoma

63

MICHAEL AND SCOTT CONCURRENT QUEUES

= Improvement beyond a single master lock for a queue (FIFO)
= Two locks:

= One for the head of the queue

= One for the tall
= Synchronize enqueue and dequeue operations

= Add a dummy node
= Allocated in the queue initialization routine

= Supports separation of head and tail operations

= [tems can be added and removed by separate threads at the
same time

TCS5422: Operating Systems [Spring 2024]

‘ (D) School of Engineering and Technology, University of Washington -Tacoma

L1065

65

Slides by Wes J. Lloyd

4/25/2024

CCL - SECOND IMPLEMENTATION - 2

= Lookup

2
25
27 t
30
31
33 pthread_mutex_unlock (sL->lock) ;
B v .
35 1

‘ Ao 252024 TC55422: Operating Systems [Spring 2024]

11062

School of Engineering and Technology, University of Washington - Tacoma

62

OBJECTIVES - 4/25

= Questions from 4/23
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26
= Assignment 1 - Due Tue May 7
= Quiz 1 (Due Thur Apr 25) - Quiz 2 (Due Tue April 30)
= Chapter 27: Linux Thread API
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Sloppy Counter

= Concurrent Structures: Linked List Hash Table

TCS5422: Operating Systems [Spring 2024]

An 25,2028 School of Engineering and Technology, University of Washington - Tacoma

11064

64

CONCURRENT QUEUE

= Remove from queue

(node_t))

TC55422: Operating Systems [Spring 2024]

CEDeRpr) School of Engineering and Technology, University of Washington - Tacoma

11066

66

L10.11

TCSS 422 A — Spring 2024 4/25/2024
School of Engineering and Technology

CONCURRENT QUEUE - 2 OBJECTIVES - 4/25

= Add to queue = Questions from 4/23
= C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26
e value) | = Assignment 1 - Due Tue May 7
= trode 1) = Quiz 1 (Due Thur Apr 25) - Quiz 2 (Due Tue April 30)
i novalue - vaiuer = Chapter 27: Linux Thread API
2 tmp->value = value;
26 tmp->next = = pthread_cond_wait/_signal/_broadcast
28 = Chapter 28: Locks
% = Introduction, Lock Granularity
'} | = Spin Locks, Test and Set, Compare and Swap
(Cont.) = Chapter 29: Lock Based Data Structures

= Sloppy Counter

= Concurrent Structures: Linked List, Queue,|Hash Table,

TCS5422: Operating Systems [Spring 2024] TCS5422: Operating Systems (Spring 2024]
‘ Lk School of Engineering and Technology, University of Washington - Tacoma L0687 Gl vt Lo.68

School of Engineering and Technology, University of Washington - Tacoma

67 68

INSERT PERFORMANCE -
CONCURRENT HASH TABLE CONCURRENT HASH TABLE

= Consider a simple hash table = Four threads - 10,000 to 50,000 inserts
- - q = iMac with four-core Intel 2.7 GHz CPU
=Fixed (static) size -
=Hash maps to a bucket S Sontintent i Tabte

Bucket is implemented using a concurrent linked list
One lock per hash (bucket)
Hash bucket is a linked lists

Time (seconds]
=]

0 10 20 30 40
Inserts (Thousands)

scales
magnificently

TCS5422: Operating Systems [(Spring 2024] ystems [pring
‘ April 25,2024 School of Engineering and Technology, University of Washington - Tacoma L1069 April 25,2024 and Technology, University of Washington - Tacoma

69 70

[| |
Whichisa major advantage of using concurrent data
structures in your programs?

CONCURRENT HASH TABLE

] for { 7 i < BUCKETS; i++) {
10 List_Init (sH->lists[i]):

1 BUCKETS (101)

z . . . Locks are encapsulated within data
1 List_t Tists| UCKETS] 7 structure code ensuring thread safety.
5) hash_t:

i Hash_Tnit (hash_t *H} [Lock granularity tradeoff already
8 i

optimized inside data structurew

Multiple threads can more easily

71

Slides by Wes J. Lloyd

13 share data
1
15
16 s [bucket], key):
17) All of the above
18
18 Hash_Lookup (hash_t =H, key) |
20 bucket = key % BUCK
21 List_Lookup(sH->lists[bucket], key)s None of the above
22]
TCS5422: Operating Systems [Spring 2024]
‘ e School of Engineering and Technology, University of Washington - Tacoma o - v comtert - el ™

72

L10.12

TCSS 422 A — Spring 2024
School of Engineering and Technology

LOCK-FREE DATA STRUCTURES

Lock-free data structures in Java

Java.util.concurrent.atomic package
Classes:

= AtomicBoolean

= Atomicinteger

= AtomicintegerArray

= AtomicintegerFieldUpdater

= AtomicLong

= AtomicLongArray

= AtomicLongFieldUpdater

= AtomicReference

ee: https://docs.oracle.com/en/java/javase/11/docs/api/
ey "

i, ncurren mi ki -summ

TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

April 25,2024

.htm

4/25/2024

73

Slides by Wes J. Lloyd

QUESTIONS

74

L10.13

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 4/25
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 4/23
	Slide 7: OBJECTIVES – 4/25
	Slide 8: OBJECTIVES – 4/25
	Slide 9: OBJECTIVES – 4/25
	Slide 10: Quiz 1
	Slide 11: Quiz 2
	Slide 12: OBJECTIVES – 4/25
	Slide 13: Chapter 28 – LOCKS
	Slide 14: Locks
	Slide 15: Locks - 2
	Slide 16: Locks - 3
	Slide 17: OBJECTIVES – 4/25
	Slide 18: Locks - 4
	Slide 19: Fine grained?
	Slide 20: Fine grained parallelism
	Slide 21: Lock granularity trade-off space
	Slide 22: Evaluating lock implementations
	Slide 23: Building locks
	Slide 24: Historical implementation
	Slide 25: OBJECTIVES – 4/25
	Slide 26: Basic Spin lock implementation
	Slide 27: Basic Spin lock: Correct?
	Slide 28: Basic Spin lock: performance ?
	Slide 29: OBJECTIVES – 4/25
	Slide 30: Test-and-set instruction
	Slide 31: Test-and-set - 2
	Slide 32: Spin Lock evaluation
	Slide 33: OBJECTIVES – 4/25
	Slide 34: Compare and Swap
	Slide 35: Compare and swap
	Slide 36
	Slide 37: “lock Building” CPU instructions on arm processors
	Slide 38: LL/SC Lock
	Slide 39: LL/SC lock - 2
	Slide 40: We will return at 5:10pm
	Slide 41: OBJECTIVES – 4/25
	Slide 42: Chapter 29 – LOCK Based data structures
	Slide 43: Lock-based concurrent data structures
	Slide 44: Counter structure w/o lock
	Slide 45: concurrent counter
	Slide 46: Concurrent counter - 2
	Slide 47: Concurrent counters - Performance
	Slide 48: Perfect scaling
	Slide 49: OBJECTIVES – 4/25
	Slide 50: approximate (sloppy) counter
	Slide 51: approximate counter – main points
	Slide 52: approximate counter - 2
	Slide 53: Threshold value S
	Slide 54: approximate counter - example
	Slide 55
	Slide 56: OBJECTIVES – 4/25
	Slide 57: Concurrent linked list - 1
	Slide 58: Concurrent linked list - 2
	Slide 59: Concurrent linked list - 3
	Slide 60: Concurrent linked list
	Slide 61: Ccl – second implementation
	Slide 62: Ccl – second implementation - 2
	Slide 63: Concurrent Linked list performance
	Slide 64: OBJECTIVES – 4/25
	Slide 65: Michael and scott concurrent queues
	Slide 66: Concurrent queue
	Slide 67: Concurrent queue - 2
	Slide 68: OBJECTIVES – 4/25
	Slide 69: Concurrent hash table
	Slide 70: Insert performance – concurrent hash table
	Slide 71: Concurrent hash table
	Slide 72
	Slide 73: Lock-free data structures
	Slide 74: Questions

