
TCSS 422 A – Spring 2024
School of Engineering and Technology

4/25/2024

L10.1Slides by Wes J. Lloyd

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

Linux Thread API,

Lock Implementations,
Lock-based data structures,

Wes J. Lloyd
School of Engineering and Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 4/23

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue April 30)

 Chapter 27: Linux Thread API

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Approximate Counter (Sloppy Counter)

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.2

OBJECTIVES – 4/25

 Daily Feedback Quiz in Canvas – Available After Each Class

 Extra credit available for completing surveys ON TIME

 Tuesday surveys: due by ~ Wed @ 11:59p

 Thursday surveys: due ~ Mon @ 11:59p

April 25, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.3

ONLINE DAILY FEEDBACK SURVEY

April 25, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L10.4

 Please classify your perspective on material covered in today’s

class (31 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.45 (- previous 6.58)

 Please rate the pace of today’s class:

 1-slow, 5-just r ight, 10-fast

 Average – 5.06 (- previous 5.10)

April 25, 2024
TCSS422: Computer Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.5

MATERIAL / PACE

 Why does pthread_mutex_lock() function call return an integer

which is assigned to variable rc?

▪ We capture the function’s return code into int rc

 Why does rc have to be asserted that it is equal to 0 r ight

af ter the initialization?

▪ The assert function throws an error (and stops the program) when rc

is non-zero

▪ Receiving a non-zero return indicates a critical error, and the

program should likely not continue to run

▪ Calling assert() is optional and not required

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.6

FEEDBACK FROM 4/23

1 2

3 4

5 6

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/25/2024

L10.2Slides by Wes J. Lloyd

 Questions from 4/23

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue April 30)

 Chapter 27: Linux Thread API

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Approximate Counter (Sloppy Counter)

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.7

OBJECTIVES – 4/25

 Questions from 4/23

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue April 30)

 Chapter 27: Linux Thread API

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Approximate Counter (Sloppy Counter)

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.8

OBJECTIVES – 4/25

 Questions from 4/23

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue April 30)

 Chapter 27: Linux Thread API

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Approximate Counter (Sloppy Counter)

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.9

OBJECTIVES – 4/25

 Active reading on Chapter 9 – Proportional Share Schedulers

 Posted in Canvas

 Due Thursday April 25 th at 11:59pm

 Link:

 https://faculty.washington.edu/wlloyd/courses/tcss422/

quiz/TCSS422_s2024_quiz_1.pdf

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.10

QUIZ 1

 Canvas Quiz – Pract ice CPU Scheduling Problems

 Posted in Canvas

 Unlimited attempts permitted

 Provides CPU scheduling practice problems

▪ FIFO, SJF, STCF, RR, MLFQ (Ch. 7 & 8)

 Multiple choice and fill - in the blank

 Quiz automatically scored by Canvas

▪ Please report any grading problems

 Due Tuesday Apri l 30 th at 11:59pm

 Link:

 ht tps://canvas.uw.edu/courses/1728244/quizzes/2030525

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.11

QUIZ 2

 Questions from 4/23

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue April 30)

 Chapter 27: Linux Thread API

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Approximate Counter (Sloppy Counter)

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.12

OBJECTIVES – 4/25

7 8

9 10

11 12

http://faculty.washington.edu/wlloyd/courses/tcss422/TCSS422_s2024_quiz_1.pdf
http://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_s2024_quiz_1.pdf
http://faculty.washington.edu/wlloyd/courses/tcss422/quiz/TCSS422_s2024_quiz_1.pdf
https://canvas.uw.edu/courses/1728244/quizzes/2030525

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/25/2024

L10.3Slides by Wes J. Lloyd

CHAPTER 28 –

LOCKS

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.1
3

 Ensure critical section(s) are executed atomically -as a unit

▪ Only one thread is allowed to execute a critical section at any given

time

▪ Ensures the code snippets are “mutually exclusive”

 Protect a global counter:

 A “critical section”:

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.14

LOCKS

 Lock variables are called “MUTEX”

▪ Short for mutual exclusion (that’s what they guarantee)

 Lock variables store the state of the lock

 States

▪ Locked (acquired or held)

▪ Unlocked (available or free)

 Only 1 thread can hold a lock

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.15

LOCKS - 2

 pthread_mutex_lock(&lock)

▪ Try to acquire lock

▪ If lock is free, calling thread will acquire the lock

▪ Thread with lock enters critical section

▪ Thread “owns” the lock

 No other thread can acquire the lock before the owner

releases it.

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.16

LOCKS - 3

 Questions from 4/23

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue April 30)

 Chapter 27: Linux Thread API

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Approximate Counter (Sloppy Counter)

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.17

OBJECTIVES – 4/25

 Program can have many mutex (lock) variables to

“serialize” many critical sections

 Locks are also used to protect data structures

▪ Prevent multiple threads from changing the same data

simultaneously

▪ Programmer can make sections of code “granular”

▪ Fine grained – means just one grain of sand at a time through an

hour glass

▪ Similar to relational database transactions

▪ DB transactions prevent multiple users from modifying a table,

row, field

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.18

LOCKS - 4

13 14

15 16

17 18

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/25/2024

L10.4Slides by Wes J. Lloyd

 Is this code a good example of “f ine grained parallelism”?

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.19

FINE GRAINED?

pthread_mutex_lock(&lock);
a = b++;
b = a * c;
*d = a + b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {
 node->title = str1;
 node->subheading = str2;
 node->desc = str3;
 node->end = *e;
 node = node->next;
 i++
}
e = e – i;
pthread_mutex_unlock(&lock);

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.20

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);
a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock(&lock_a);

pthread_mutex_lock(&lock_b);
b = a * c;
pthread_mutex_unlock(&lock_b);

pthread_mutex_lock(&lock_d);
*d = a + b +c;
pthread_mutex_unlock(&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
pthread_mutex_unlock(&lock_e);

ListNode *node = mylist->head;
int i=0 . . .

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L4.21

LOCK GRANULARITY TRADE-OFF SPACE

Many Lock (kernel) calls Few Lock (kernel) calls

More overhead from
excessive locking

Low overhead from
minimal locking

FINE-GRAINED COARSE-GRAINED

More parallelism Less parallelism

Higher code complexity
& debugging

Low code complexity
& simpler debugging

Every program
implementation

lies someplace along
the trade-off space…

 Correctness

▪ Does the lock work?

▪ Are critical sections mutually exclusive?

(atomic-as a unit?)

 Fairness

▪ Do all threads that compete for a lock have a fair chance

of acquiring it?

Overhead

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.22

EVALUATING LOCK IMPLEMENTATIONS

What makes a
good lock?

 Locks require hardware support

▪ To minimize overhead, ensure fairness and correctness

▪ Special “atomic-as a unit” instructions to support lock

implementation

▪ Atomic-as a unit exchange instruction

▪ XCHG

▪ Compare and exchange instruction

▪ CMPXCHG

▪ CMPXCHG8B

▪ CMPXCHG16B

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.23

BUILDING LOCKS

 To implement mutual exclusion

▪ Disable interrupts upon entering critical sections

 Any thread could disable system-wide interrupt

▪ What if lock is never released?

 On a mult iprocessor processor each CPU has its own interrupts

▪ Do we disable interrupts for all cores simultaneously?

 While interrupts are disabled, they could be lost

▪ If not queued…

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.24

HISTORICAL IMPLEMENTATION

19 20

21 22

23 24

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/25/2024

L10.5Slides by Wes J. Lloyd

 Questions from 4/23

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue April 30)

 Chapter 27: Linux Thread API

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Approximate Counter (Sloppy Counter)

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.25

OBJECTIVES – 4/25

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.26

BASIC SPIN LOCK IMPLEMENTATION

 Demonstration of lock implementation using C code

 C code is compiled to assembly, instructions are not atomic

 Idea is to imagine “what if” the lock code were atomic

 Is this lock

implementation:

(1)Correct?

(2)Fair?

(3)Performant?

 If both threads can run at the same time, then correctness

requires luck… (e.g. basic spin lock is incorrect)

 Here both threads have “acquired” the lock simultaneously

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.27

BASIC SPIN LOCK: CORRECT?

 What is wrong with while(<cond>); ?

 Spin-waiting wastes time actively waiting for another thread

 while (1); will “peg” a CPU core at 100%

▪ Continuously loops, and evaluates mutex->flag value…

▪ If multiple threads wait for the CPU, more CPU capacity is wasted

▪ Generates heat…

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.28

BASIC SPIN LOCK: PERFORMANCE ?

void lock(lock_t *mutex)
{
 while (mutex->flag == 1); // while lock is unavailable, wait…
 mutex->flag = 1;
}

 Questions from 4/23

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue April 30)

 Chapter 27: Linux Thread API

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Approximate Counter (Sloppy Counter)

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.29

OBJECTIVES – 4/25

 Hardware support required for working locks

 Book presents pseudo code of C implementation for

TEST-AND-SET instruction that needs to be atomic

▪ TEST-and-SET checks old value improving on basic spin lock

▪ TEST-and-SET returns the old value so it can be checked

▪ Comparison is made in the caller

▪ Assumption is the TEST-AND-SET routine runs atomically on the CPU

▪ Here is the C-pseudo code:

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.30

TEST-AND-SET INSTRUCTION

25 26

27 28

29 30

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/25/2024

L10.6Slides by Wes J. Lloyd

 lock() method checks that TestAndSet doesn’t return 1

 If TestAndSet returns 1:

▪ This indicates someone else has the lock

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.31

TEST-AND-SET - 2

 Correctness:

▪ Spin locks with atomic Test-and-Set:

Critical sections won’t be executed simultaneously by (2) threads

 Fairness:

▪ No fairness guarantee. Once a thread has a lock, nothing forces it to

relinquish it… lock distribution is random

 Performance:

▪ Spin locks perform “busy waiting”

▪ Spin locks are best for short periods of waiting (< 1 time quantum)

▪ Performance is slow when multiple threads share a CPU

▪ Especially if “spinning” for long periods

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.32

SPIN LOCK EVALUATION

 Questions from 4/23

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue April 30)

 Chapter 27: Linux Thread API

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Approximate Counter (Sloppy Counter)

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.33

OBJECTIVES – 4/25

 Checks that the lock variable has the expected value FIRST,
before changing its value

▪ If so, make assignment

▪ Return value at location

 Adds a comparison to TestAndSet method

▪ Textbook presents C pseudo code

▪ Assumption is that the compare-and-swap method runs atomically

 Useful for wait -free synchronization

▪ Supports implementation of shared data structures which can be
updated atomically (as a unit) using Hardware support:
x86 CompareAndSwap instructions

▪ Shared data structure updates become “wait -free”

▪ Upcoming in Chapter 32

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.34

COMPARE AND SWAP

 Compare and Swap

 Spin lock usage

 x86 CPU provides “cmpxchgl” compare -and-exchange instruct ions

▪ cmpxchg8b

▪ cmpxchg16b

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.35

COMPARE AND SWAP

C implementation on 1-core VM:
Count is correct, no deadlock

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.3
6

31 32

33 34

35 36

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/25/2024

L10.7Slides by Wes J. Lloyd

 Cooperative instructions used together to support
synchronization on RISC systems

 No support on x86 processors

▪ Supported by RISC: Alpha, PowerPC, ARM

 Load-linked (LL)

▪ Loads value into register

▪ Same as typical load

▪ Used as a mechanism to track competition

 Store-conditional (SC)

▪ Performs “mutually exclusive” store

▪ Allows only one thread to store value

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.37

“LOCK BUILDING” CPU INSTRUCTIONS

ON ARM PROCESSORS

 LL instruction loads pointer value (ptr)

 SC only stores if the load link pointer has not changed

 Requires HW support

▪ C code is psuedo code

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.38

LL/SC LOCK

 Two instruction lock

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.39

LL/SC LOCK - 2

WE WILL RETURN AT

5:10PM

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L10.40

 Questions from 4/23

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue April 30)

 Chapter 27: Linux Thread API

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Approximate Counter (Sloppy Counter)

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.41

OBJECTIVES – 4/25

CHAPTER 29 –

LOCK BASED

DATA STRUCTURES

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma L10.42

37 38

39 40

41 42

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/25/2024

L10.8Slides by Wes J. Lloyd

Adding locks to data structures make them

thread safe.

Considerations:

▪Correctness

▪Performance

▪Lock granularity

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.43

LOCK-BASED

CONCURRENT DATA STRUCTURES

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.44

COUNTER STRUCTURE W/O LOCK

 Synchronization weary -- - not thread safe

 Add lock to the counter

 Require lock to change data

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.45

CONCURRENT COUNTER

 Decrease counter

 Get value

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.46

CONCURRENT COUNTER - 2

 Concurrent counter is considered a “precise counter”

 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.47

CONCURRENT COUNTERS - PERFORMANCE

Precise counter scales poorly.

 Achieve (N) performance gain with (N) additional resources

 Throughput:

 Transactions per second (tps)

 1 core

 N = 100 tps

 10 cores (x10)

 N = 1000 tps (x10)

 Is parallel counting with a shared counter an embarrassingly
parallel problem?

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.48

PERFECT SCALING

43 44

45 46

47 48

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/25/2024

L10.9Slides by Wes J. Lloyd

 Questions from 4/23

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue April 30)

 Chapter 27: Linux Thread API

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Approximate Counter (Sloppy Counter)

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.49

OBJECTIVES – 4/25

 Provides single logical shared counter

▪ Implemented using local counters for each ~CPU core

▪ 4 CPU cores = 4 local counters & 1 global counter

▪ Local counters are synchronized via local locks

▪ Global counter is updated periodically

▪ Global counter has lock to protect global counter value

▪ Update threshold (S) – referred to as sloppiness threshold:

How often to push local values to global counter

▪ Small (S): more updates, more overhead

▪ Large (S): fewer updates, more performant, less synchronized

 Why this implementation?

Why do we want counters local to each CPU Core?

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.50

APPROXIMATE (SLOPPY) COUNTER

 Idea of the Approximate Counter is to RELAX the

synchronization requirement for counting

▪ Instead of synchronizing global count variable each time:

counter=counter+1

▪ Synchronization occurs only every so often:

e.g. every 1000 counts

 Relaxing the synchronization requirement drastically

reduces locking API overhead by trading -off split-second

accuracy of the counter

 Approximate counter: trade-off accuracy for speed

▪ It’s approximate because it’s not so accurate (until the end)

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.51

APPROXIMATE COUNTER – MAIN POINTS

 Update threshold (S) = 5

 Synchronized across four CPU cores

 Threads update local CPU counters

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.52

APPROXIMATE COUNTER - 2

 Consider 4 threads increment a counter 1000000 times each

 Low S → What is the consequence?

 High S → What is the consequence?

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.53

THRESHOLD VALUE S

 Example implementation – sloppybasic.c

 Also with CPU affinity

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.54

APPROXIMATE COUNTER - EXAMPLE

49 50

51 52

53 54

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/25/2024

L10.10Slides by Wes J. Lloyd

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.5
5

 Questions from 4/23

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue April 30)

 Chapter 27: Linux Thread API

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List , Queue, Hash Table

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.56

OBJECTIVES – 4/25

 Simplification - only basic list operations shown

 Structs and initialization:

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.57

CONCURRENT LINKED LIST - 1

 Insert – adds item to list

 Everything is critical!

▪ There are two unlocks

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.58

CONCURRENT LINKED LIST - 2

}

 Lookup – checks list for existence of item with key

 Once again everything is critical

▪ Note - there are also two unlocks

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.59

CONCURRENT LINKED LIST - 3

 First Implementation:

▪ Lock everything inside Insert() and Lookup()

▪ If malloc() fails lock must be released

▪ Research has shown “exception-based control flow” to be error

prone

▪ 40% of Linux OS bugs occur in rarely taken code paths

▪ Unlocking in an exception handler is considered a poor coding

practice

▪ There is nothing specifically wrong with this example however

 Second Implementation …

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.60

CONCURRENT LINKED LIST

55 56

57 58

59 60

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/25/2024

L10.11Slides by Wes J. Lloyd

 Init and Insert

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.61

CCL – SECOND IMPLEMENTATION

 Lookup

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.62

CCL – SECOND IMPLEMENTATION - 2

 Using a single lock for entire list is not very performant

 Users must “wait” in line for a single lock to access/modify

any item

 Hand-over-hand-locking (lock coupling)

▪ Introduce a lock for each node of a list

▪ Traversal involves handing over previous node’s lock,

acquiring the next node’s lock…

▪ Improves lock granularity

▪ Degrades traversal performance

 Consider hybrid approach

▪ Fewer locks, but more than 1

▪ Best lock-to-node distribution?

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.63

CONCURRENT LINKED LIST PERFORMANCE

 Questions from 4/23

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue April 30)

 Chapter 27: Linux Thread API

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.64

OBJECTIVES – 4/25

 Improvement beyond a single master lock for a queue (FIFO)

 Two locks:

▪ One for the head of the queue

▪ One for the tail

 Synchronize enqueue and dequeue operations

 Add a dummy node

▪ Allocated in the queue initialization routine

▪ Supports separation of head and tail operations

 Items can be added and removed by separate threads at the

same time

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.65

MICHAEL AND SCOTT CONCURRENT QUEUES

 Remove from queue

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.66

CONCURRENT QUEUE

61 62

63 64

65 66

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/25/2024

L10.12Slides by Wes J. Lloyd

 Add to queue

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.67

CONCURRENT QUEUE - 2

 Questions from 4/23

 C Tutorial - Pointers, Strings, Exec in C - Due Fri Apr 26

 Assignment 1 - Due Tue May 7

 Quiz 1 (Due Thur Apr 25) – Quiz 2 (Due Tue April 30)

 Chapter 27: Linux Thread API

▪ pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks

▪ Introduction, Lock Granularity

▪ Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures

▪ Sloppy Counter

▪ Concurrent Structures: Linked List, Queue, Hash Table

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.68

OBJECTIVES – 4/25

Consider a simple hash table

▪Fixed (static) size

▪Hash maps to a bucket

▪ Bucket is implemented using a concurrent linked list

▪ One lock per hash (bucket)

▪ Hash bucket is a linked lists

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.69

CONCURRENT HASH TABLE

 Four threads – 10,000 to 50,000 inserts

▪ iMac with four-core Intel 2.7 GHz CPU

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.70

INSERT PERFORMANCE –

CONCURRENT HASH TABLE

The simple concurrent hash table scales
magnificently.

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.71

CONCURRENT HASH TABLE

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.7
2

67 68

69 70

71 72

TCSS 422 A – Spring 2024
School of Engineering and Technology

4/25/2024

L10.13Slides by Wes J. Lloyd

 Lock-free data structures in Java

 Java.uti l .concurrent.atomic package

 Classes:

▪ AtomicBoolean

▪ AtomicInteger

▪ AtomicIntegerArray

▪ AtomicIntegerFieldUpdater

▪ AtomicLong

▪ AtomicLongArray

▪ AtomicLongFieldUpdater

▪ AtomicReference

 See: https://docs.oracle.com/en/java/javase/11/docs/api/

java.base/java/util/concurrent/atomic/package-summary.html

April 25, 2024
TCSS422: Operating Systems [Spring 2024]
School of Engineering and Technology, University of Washington - Tacoma

L10.73

LOCK-FREE DATA STRUCTURES QUESTIONS

73 74

	Slide 1: TCSS 422: Operating Systems
	Slide 2: OBJECTIVES – 4/25
	Slide 3: Online daily feedback survey
	Slide 4
	Slide 5: Material / pace
	Slide 6: Feedback from 4/23
	Slide 7: OBJECTIVES – 4/25
	Slide 8: OBJECTIVES – 4/25
	Slide 9: OBJECTIVES – 4/25
	Slide 10: Quiz 1
	Slide 11: Quiz 2
	Slide 12: OBJECTIVES – 4/25
	Slide 13: Chapter 28 – LOCKS
	Slide 14: Locks
	Slide 15: Locks - 2
	Slide 16: Locks - 3
	Slide 17: OBJECTIVES – 4/25
	Slide 18: Locks - 4
	Slide 19: Fine grained?
	Slide 20: Fine grained parallelism
	Slide 21: Lock granularity trade-off space
	Slide 22: Evaluating lock implementations
	Slide 23: Building locks
	Slide 24: Historical implementation
	Slide 25: OBJECTIVES – 4/25
	Slide 26: Basic Spin lock implementation
	Slide 27: Basic Spin lock: Correct?
	Slide 28: Basic Spin lock: performance ?
	Slide 29: OBJECTIVES – 4/25
	Slide 30: Test-and-set instruction
	Slide 31: Test-and-set - 2
	Slide 32: Spin Lock evaluation
	Slide 33: OBJECTIVES – 4/25
	Slide 34: Compare and Swap
	Slide 35: Compare and swap
	Slide 36
	Slide 37: “lock Building” CPU instructions on arm processors
	Slide 38: LL/SC Lock
	Slide 39: LL/SC lock - 2
	Slide 40: We will return at 5:10pm
	Slide 41: OBJECTIVES – 4/25
	Slide 42: Chapter 29 – LOCK Based data structures
	Slide 43: Lock-based concurrent data structures
	Slide 44: Counter structure w/o lock
	Slide 45: concurrent counter
	Slide 46: Concurrent counter - 2
	Slide 47: Concurrent counters - Performance
	Slide 48: Perfect scaling
	Slide 49: OBJECTIVES – 4/25
	Slide 50: approximate (sloppy) counter
	Slide 51: approximate counter – main points
	Slide 52: approximate counter - 2
	Slide 53: Threshold value S
	Slide 54: approximate counter - example
	Slide 55
	Slide 56: OBJECTIVES – 4/25
	Slide 57: Concurrent linked list - 1
	Slide 58: Concurrent linked list - 2
	Slide 59: Concurrent linked list - 3
	Slide 60: Concurrent linked list
	Slide 61: Ccl – second implementation
	Slide 62: Ccl – second implementation - 2
	Slide 63: Concurrent Linked list performance
	Slide 64: OBJECTIVES – 4/25
	Slide 65: Michael and scott concurrent queues
	Slide 66: Concurrent queue
	Slide 67: Concurrent queue - 2
	Slide 68: OBJECTIVES – 4/25
	Slide 69: Concurrent hash table
	Slide 70: Insert performance – concurrent hash table
	Slide 71: Concurrent hash table
	Slide 72
	Slide 73: Lock-free data structures
	Slide 74: Questions

