
Page 1 of 10

TCSS 422: Operating Systems School of Engineering and Technology
Spring 2024 University of Washington – Tacoma
http://faculty.washington.edu/wlloyd/courses/tcss422 Instructor: Wes Lloyd

Assignment 2
Multi-threaded Parallel Matrix Multiplier

Due Date: Thursday May 31, 2024 @ 11:59 pm, tentative
Version: 0.11

Objective
The purpose of this assignment is to implement a multi-threaded C program that uses a shared bounded
buffer to coordinate production of NxN matrices for use in matrix multiplication. To multiply two
matrices, the number of columns of M1 must equal the number of rows of M2.

The program will perform parallel work using multiple types of threads:
Producer threads: will add NxN matrices and place them into a shared bounded buffer.
Consumer threads: will remove NxN matrices from the bounder buffer to pair with another matrix for
multiplication when there are a valid number of rows and columns.

The consumer threads discard matrices removed from the bounded buffer that have an invalid number
of elements for matrix multiplication.

Producer algorithm:

One or more producer threads work together to produce a specified number of matrices described by
the “LOOPS” compiler directive in pcmatrix.h and place them in the shared bounded buffer. The
producer calls Matrix * GenMatrixRandom() to generate an NxN matrix where the number of rows
and columns is random between 1 and 3.

Consumer algorithm:

One or more consumer threads perform matrix multiplication. Each consumer thread gets a matrix
from the bounded buffer (M1). Then the consumer thread gets a second matrix from the bounded
buffer (M2). Calling the matrix.c routine Matrix * MatrixMultiply(Matrix * m1, Matrix *
m2) will return a pointer with a result of the matrix multiplication (M3), or a NULL if matrix
multiplication fails due to a mismatch of the number of elements. If a NULL is received, then the
consumer thread discards the matrix and memory is free’d by calling void FreeMatrix(Matrix *
mat). The consumer thread retains M1, and grabs the next available matrix from the bounded buffer as
M2. When a valid matrix M2 is found that pairs with M1, the matrix multiplication operation is
performed and the result in M3 is printed using the void DisplayMatrix(Matrix * mat, FILE
*stream) routine.

Starter code is provided to help jumpstart implementing the parallel matrix multiplier with the
synchronized bounded buffer. Much of this starter code is based on Chapter 30 of the Three Easy Pieces

http://faculty.washington.edu/wlloyd/courses/tcss422

Page 2 of 10

textbook. The goal of the project is to focus on synchronization and pthreads, not implementing matrix
functions and operations as this code is already provided.

Starter code is online at:
http://faculty.washington.edu/wlloyd/courses/tcss422/assignments/pcmultiply.tar.gz

Optionally this program can be completed in Java.
Java starter code is online at:
http://faculty.washington.edu/wlloyd/courses/tcss422/assignments/pcmultiply_java.tar.gz

To encourage program implementations in C, 5 points bonus are awarded to C implementations.

Notes regarding Java implementation:
If coding in Java, solutions are required to use the Java equivalent of C’s condition variables.
In Java, the java.lang.Object parent class integrates the equivalent of condition variables with the
methods: wait(), notify(), and notifyAll(). Like in C, conditions need to be associated with a lock, which is
also called a “monitor” in Java. In Java, locks (monitors) are implicit. Similar to how pointers are hidden
in Java, locks are hidden through incorporation with synchronized methods and code blocks. Any thread
that executes a synchronized method or a synchronized block of code first acquires an “implicit” hidden
lock from Java that is not concretely declared. This may impact the readability of the code. Java also
offers an explicit lock similar to pthread_mutex_lock called ReentrantLock. Use of ReentrantLock is not
required. However we ask that solutions be coded with either synchronized methods, synchronized
blocks, or ReentrantLock so they are reasonably similar to an implementation in C.
Use of any other synchronization mechanism (e.g. Semaphore, Java atomic data types, Google Guava
monitor, or other 3rd party locking APIs) is strictly prohibited. Solutions using these constructs will be
returned ungraded and the program will receive 0 points until the program is resubmitted using the
required locking constructs.

The following modules are provided:
C Module Header file Source File Description
Counter counter.h counter.c Synchronized counter data structure from Ch. 30
Matrix matrix.h matrix.c Matrix helper routines
Prodcons prodcons.h prodcons.c Producer Consumer worker thread module
Pcmatrix pcmatrix.h pcmatrix.c Program main module with int main()

In C, a Makefile is provided to compile the modules into a pcMatrix binary.

Java Classes Source File Description
Counter Counter.java counter data structure (synchronization must be added)
Matrix Matrix.java Matrix helper routines
Producer Producer.java Empty Producer class which will implement producer thread
Consumer Consumer.java Empty Consumer class which will implement consumer thread
Buffer Buffer.java Empty Buffer class which will implement the bounded buffer (put/get)
PCMatrix PCMatrix.java Program main module with public static void main()

In Java, a pom.xml file is provided to build a Maven project. Use of maven is required for a Java
solution. Java solutions with a non-working maven build will be returned without review and will
receive 0 points.

http://faculty.washington.edu/wlloyd/courses/tcss422/assignments/pcmultiply.tar.gz
http://faculty.washington.edu/wlloyd/courses/tcss422/assignments/pcmultiply_java.tar.gz

Page 3 of 10

Maven projects are supported by most major Java IDEs. Netbeans is the recommended IDE for working
with Java maven projects. Projects must operate using Java 11 (default for Ubuntu 22.04).
To build the project from the command line:

cleans existing build files

$mvn clean

builds a new Java jar file

$mvn install

run the sample code

$cd target

$java -jar pcmultiply-v1.jar

An initial demonstration of the random matrix generation routine, matrix multiplication, and matrix
display is provided in pcmatrix.c int main() and also PCMatrix.java main(). The matrix multiplication
output format should be followed for the actual program implementation.

Your program should accept command line arguments.

Code is included in pcmatrix.c and PCMatrix.java to obtain command line arguments and load them into
global variables for the user.

If no command line arguments are provided, the default values are used. A message is displayed
indicating the parameterization:

$./pcMatrix

USING DEFAULTS: worker_threads=1 bounded_buffer_size=200 matricies=1200 matrix_mode=0

$./pcMatrix 1 1 2 2

USING: worker_threads=1 bounded_buffer_size=1 matricies=2 matrix_mode=2

$ java -jar pcmultiply-v1.jar --help

Unrecognized option: --help

usage: PCMatrix

 -b,--bounded-buffer-size <arg> the size of the bounded buffer

 -m,--matrices <arg> the number of matrices

 -o,--matrix-mode <arg> the matrix mode

 -t,--worker-threads <arg> the number of worker threads

Starter code is provided to load command line arguments into global variables for use throughout the
program to control these settings. Implementation of the global variables is required for program
testing.

Global variables include in pcmatrix.h and PCMultiply.java:
int BOUNDED_BUFFER_SIZE; // Size of the buffer ARRAY (see ch. 30, section 2, producer/consumer)
int NUMBER_OF_MATRICES; // Specifies the number of matrices to produce/consume
int MATRIX_MODE; // MATRIX MODE FLAG: mode 0: generate random matrices,

// 1-n: fixed # of rows/cols with elements of 1

In Java, there is a 4th global variable, “WORKER_THREADS” which is the number of producer and
consumer threads the program should create and use. In C, this variable is defined as the local variable
“numw” in pcmatrix.c.

Page 4 of 10

You are responsible to implement the use of the command line arguments with these variables
throughout the program to manage the number of matrices produced and consumed, the number of
producer and consumer threads, the matrix generation mode, and the bounded buffer size.

It should be possible to pass different values for these parameters as command line arguments to invoke
your program differently for testing purposes.

The following constant parameters and global values are defined in pcmatrix.h:

DEFAULTS
NUMWORK DEFAULT number of producer and consumer worker threads.
OUTPUT Integer true (1) / false (0) to enable or disable debug output.

See matrix.c for example use of #if OUTPUT / #endif.
MAX DEFAULT size of the bounded buffer defined as an array of Matrix struct ptrs.
LOOPS DEFAULT number of matrices to produce/consume.
DEFAULT_MATRIX_MODE DEFAULT type of matrices to produce

In C, the following data types are provided:
Struct Defined in File Description
counter_t counter.h Synchronized shared counter
counters_t counter.h Shared structure with a producer and consumer counter.
Matrix matrix.h Matrix structure that tracks the number of rows and cols and includes a

pointer to an NxN integer matrix.
ProdConsStats prodcons.h Structure that tracks the number of matrices produced, consumed, as

well as the sum of all matrices produced and consumed, and the
number of matrices multiplied.

The program uses the ProdConsStats struct in prodcons.h to track:

sumtotal The sum of all elements of matrices produced and consumed.
multtotal The total number of matrices multiplied by consumer threads.
matrixtotal The total number of matrices produced by producer threads, and consumed by

consumer threads.

This struct is passed to each consumer and producer thread and used to track the work of the thread.
The parent is then responsible for adding up the cumulative work to print out a summary of the total
work. The total number of matrices produced and consumed must equal. The sum of all elements
produced and consumed must equal. This self-accounting ensures correctness of the program as the
number of producer and consumer threads is scaled from 1 to N.

A possible implementation is to use two separate synchronized counters, one to count the number of
matrices produced, the other to count the number of matrices consumed. Inside the producer or
consumer worker method, having access to both counters is helpful. (see Chapter 30)

Lock and Condition Variable Recommendations
Consider using more than one lock variable in your program implementation. For example, one lock
might protect adding and removing data from the shared bounded buffer inside the get() and put()
routines. Other lock(s) can be combined with condition variables to signal when the bounded buffer is

Page 5 of 10

full, or when the bounded buffer is empty. It is one thing to ensure correctness of synchronization (e.g.
no threads deadlock). It is another challenge to have an optimal implementation where the maximum
number of operations can proceed in parallel to achieve the highest possible Thread Level Parallelism
(TLP) for the program. On a multicore machine, when monitoring load with “top -d .1”, the max
percent CPU utilization demonstrates the highest degree of parallelism achieved. On an 8-hyperthead
computer, 800% is possible. On a 4-hyperthread computer, 400% is possible.

Program Testing Recommendations
For testing correctness of concurrent programming, try out different sizes of the bounded buffer (MAX).
If the bounded buffer is too large, this will minimize errors, and hide possible concurrency problems.
The 422 grader will reduce MAX to a low setting to test for flaws. Similarly, only producing and
consuming a very small number of matrices (LOOPS) will hide concurrency problems. Testing your
program with a large number for matrices (LOOPS) also can help expose concurrency problems. (i.e.
millions or more) To increase the synchronization challenge, direct your program’s output to
“/dev/null”. By canceling standard output, this will increase the speed of your program potentially
exposing additional concurrency issues.

Sample Output
$./pcMatrix

Producing 12 matrices.

Using a shared buffer of size=5

With 1 producer and consumer threads.

MULTIPLY (3 x 1) BY (1 x 3):

| 5|

| 5|

| 10|

 X

| 7 1 8|

 =

| 35 5 40|

| 35 5 40|

| 70 10 80|

MULTIPLY (1 x 1) BY (1 x 1):

| 9|

 X

| 7|

 =

| 63|

Page 6 of 10

MULTIPLY (1 x 3) BY (3 x 2):

| 9 4 6|

 X

| 6 7|

| 2 8|

| 4 2|

 =

| 86 107|

MULTIPLY (1 x 3) BY (3 x 2):

| 7 6 7|

 X

| 3 1|

| 7 9|

| 1 7|

 =

| 70 110|

Sum of Matrix elements --> Produced=190 = Consumed=190

Matrices produced=12 consumed=12 multiplied=4

Starting Out
As a starting point for assignment 2, inspect the signal.c example from chapter 30. This provides a
working matrix generator which uses locks and conditions to synchronize generation of 1 matrix at a
time to a shared bounded buffer of 1 defined as int ** bigmatrix;. A producer thread example is
provided as the worker routine void *worker(void *arg), and the consumer thread code is
implemented inside of int main(). It has not been refactored into a separate method- this would be a
logical next step. The signal.c example program stores matrices in a bounded buffer of 1. The signal.c
example is here:
http://faculty.washington.edu/wlloyd/courses/tcss422/examples/Chapter30/

In assignment #2, the bounded buffer is defined in the C starter code file: prodcons.h.

Matrix ** bigmatrix;

The buffer can then be initialized as follows where MAX is the size.
The bounded buffer is a NULL terminated array of struct Matrix pointers of size
“BOUNDED_BUFFER_SIZE”:

bigmatrix = (Matrix **) malloc(sizeof(Matrix *) * BOUNDED_BUFFER_SIZE);

Development Tasks
The following is a list of development tasks for assignment #2.

Task 1- Implement the “bigmatrix” bounded buffer as described above. The “bigmatrix” bounded buffer
is a buffer of pointers to Matrix structs (records). The buffer should be limited to
BOUNDED_BUFFER_SIZE size.

Task 2 – Implement get() and put() routines for the bounded buffer.

http://faculty.washington.edu/wlloyd/courses/tcss422/examples/Chapter30/

Page 7 of 10

Task 3 – Call put() from within prod_worker() and add all necessary uses of mutex locks, condition
variables, and signals. Integrate the counters. Calculate running total for produced matrices.

Task 4 – Call get() from within cons_worker() and all necessary uses of mutex locks, condition variables,
and signals. Integrate the counters. Implement the matrix multiplication by consuming matrices from
the bounded buffer as described above. Calculate running total for consumed matrices.

Task 5 – Create one producer pthread and one consumer pthread in pcmatrix.c to launch the parallel
matrix production and multiplication.

Tasks 6- Once a 1 producer and 1 consumer version of the program is working correctly without
deadlock, refactor pcmatrix.c to use an array of producer threads, and an array of consumer threads.
The array size is NUMWORK. (Extra credit for correct implementation of 3 or more producer/consumer
pthreads).

Points to consider:

1. A concurrent shared bounded buffer will store matrices for potential multiplication. The use of
signals is required to inform consumer threads when there are matrices available to consume,
and to signal the producer when there is available space in the bounded buffer to add more
matrices. For testing, we might change the size of the bounded buffer (MAX) to a low number,
for example 2, to ensure your program still works.

2. Put() will add a matrix to the end of the bounded buffer. Get() retrieves a matrix from the other
end. With multiple producers and consumers, multiple matrices can be added and removed for
multiplication from the shared bounded buffer simultaneously. You’ll need to ensure that no
two consumers consume the same matrix.

3. This program will require the use of both locks (mutexes) and condition variables.
4. Memory for matrices should be freed once a matrix is consumed to prevent a memory leak.

Without releasing memory, generating millions of matrices will place severe demands on the
program’s memory heap.

Java Resources

https://www.baeldung.com/java-mutex
https://www.baeldung.com/java-wait-notify
https://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Object.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/locks/ReentrantLoc
k.html

Grading

Rubric:
Scored out of 100 points. 120 possible points: (20 extra credit points available)
EC – indicates EXTRA CREDIT

Functionality Total: 100 points
15 points Matrix multiplication support

>>> 5 points, correctly identify M1 and M2 and production of M3
>>> 5 points, discard M2 when incompatible with M1 for multiplication

https://www.baeldung.com/java-mutex
https://www.baeldung.com/java-wait-notify
https://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Object.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/locks/ReentrantLock.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/locks/ReentrantLock.html

Page 8 of 10

>>> 5 points, free (garbage collect) M1, M2, and M3 after multiplication

15 points Display Requirements and command-line arguments
>>> 5 points, properly show matrices multiplied as in the demonstration code
>>> 5 points, display the total number of matrices multiplied
>>> 5 points, properly support command line arguments

40 points Program working correctly with 1 producer thread to produce matrices, and 1 consumer
thread to consume matrices for matrix multiplication
>>> 10 points, put() and get() correctly implement bounded buffer
>>> 10 points, synchronization working correctly with mutexes, conditions, signals
>>> 10 points, Display total number of matrices produced and consumed.

They should be equal.
>>> 10 points, Display sum of elements of matrices produced, and sum of elements

of matrices consumed. They should be equal.
25 points Program is working with multiple producer and consumer threads to provide thread

level parallelism > 2 (CPU Utilization > 200%)
>>> 10 points, Implementation of 2 producer threads, 2 consumer threads

>>> *EC-1: 5 points, Implementation of 3 producer threads, 3 consumer threads

>>> *EC-2: 5 points, Implementation of 4+ producer threads, 4+ consumer threads

>>> *EC-3: 5 points, program does not deadlock under any condition with at least
 3+ producer and consumer threads implemented.

Miscellaneous Total: 25 points
5 points Program compiles without errors, makefile working with all and clean targets, or mvn

build working with install and clean targets.
5 points Coding style, formatting, and comments
5 points Program is modular. Multiple modules have been used which separate core

pieces of the program’s functionality.
5 points Global data is only used where necessary. Where possible functions are decoupled by
 passing data back from routines.
5 points Program implementation is in C.

WARNING!
10 points Automatic deduction if executable binary file is not called “pcMatrix” in C
 Or pcmultiply-v1.jar in Java.

* - EXTRA CREDIT- COMMENTS ARE REQUIRED:

Comments must be included at the top of the pcmatrix.c file (or in Java PCMatrix.java) to
indicate which extra credit features (e.g. EC1, EC2,and EC3) have been implemented to receive
credit. If there is no indication that extra credit features are implemented, no extra credit will be
awarded.

Example of required comment:

// EXTRA CREDIT FEATURES: EC2, EC3 implemented

Page 9 of 10

What to Submit
For this assignment, submit a tar gzip archive as a single file upload to Canvas.

Tar archive files can be created by going back one directory from the source directory with “cd ..”,
then issue the command “tar cf pcmatrix.tar pcMatrix/”. Then gzip it: gzip

pcmatrix.tar. Upload this file to Canvas. Canvas automatically adds student names to uploaded
files.

Pair Programming (optional)

Optionally, it is encouraged to complete this programming assignment with two person teams.

If choosing to work in pairs, only one person should submit the team’s tar gzip archive to Canvas.

Additionally, EACH member of a pair programming team must provide an effort report of team
members to quantify team contributions for the overall project. Effort reports must be submitted
INDEPENDENTLY and in confidence (i.e. not shared) by each team member to capture each person’s
overall view of the teamwork and outcome of the programming assignment. Effort reports are not used
to directly numerically weight assignment grades.

Effort reports should be submitted in confidence to Canvas as a PDF file named: “effort_report.pdf”.
Google Docs and recent versions of MS Word provide the ability to save or export a document in PDF
format. Distribute 100 points for category to reflect each teammate’s contribution for: research, design,
coding, testing. Effort scores should add up to 100 for each category. Even effort 50%-50% is reported
as 50 and 50.

Please do not submit 50-50 scores for all categories.

It is highly unlikely that effort is truly equal for everything. Ratings must reflect an honest confidential
assessment of team member contributions. 50-50 ratings and non-confidential scorings run the risk of
an honor code violation.

Here is an effort report for a pair programming team (written from the point of view of Jane Smith):

1. John Doe
Research 24
Design 33
Coding 71
Testing 29

2. Jane Smith
Research 76
Design 67
Coding 29
Testing 71

TCSS 422 effort reports should include a short description of how pair programming was conducted.
The description should LIST tools that were used and how they facilitated pair programming. Some
recommended tools include: Zoom, Discord, Canvas, Slack, etc.

Page 10 of 10

Team members may not share their effort reports, and should submit them independently in Canvas as
a PDF file. Failure of one or both members to submit the effort report will result in both members
receiving NO GRADE on the assignment… (considered late until both are submitted)

Disclaimer regarding pair programming:
The purpose of TCSS 422 is for everyone to gain experience programming in C while working with operating
system and parallel coding. Pair programming is provided as an opportunity to harness teamwork to tackle
programming challenges. But this does not mean that teams consist of one champion programmer, and a
second observer that only passively participates! Tasks and challenges should be shared as equally as
possible to maximize learning opportunities.

Change History

Version Date Change

0.1 5/14/2024 Original Version

0.11 5/30/2024 Clarification of task 1 regarding bigmatrix

