
TCSS 422: Operating Systems  School of Engineering and Technology
Fall 2018       University of Washington – Tacoma
http://faculty.washington.edu/wlloyd/courses/tcss422      
Instructor: Wes Lloyd

Assignment 1

1

Mash Shell

Due Date: Friday October 26th, 2018 @ 11:59 pm, tentative
Version: 0.10

Objective
The purpose of this assignment is to use the fork, wait, and exec commands to write
a  simple  Linux  shell.   This  shell  is  called  “mash”,  and  the  goal  of  mash  is  to
**mash** three Linux command requests together and run them against the same
input file.  The user will provide three distinct Linux commands with arguments, and
a single filename to operate on. The mash shell will **mash** the requests together
executing each command separately against the file.

For this program, implement your mash shell using fork, exec, and wait commands.

The following limitations and/or requirements define how mash should operate: 

1. User commands plus arguments will not exceed 255 characters 

2. The filename will not exceed 255 characters.  The file will either be in the
local directory, or the user will provide a fully qualified path name which is
255 characters or less.  The mash shell is not responsible for finding the input
file.

3. Commands run in “mash” will assume the user’s original path:
Type “echo $PATH” to see the current path variable setting.

4. For  each  command,  the  maximum  number  of  arguments  including  the
command itself  will  not  exceed 5.   So this implies  4 arguments,  plus the
command.   

** BONUS – Support unlimited arguments **

5. If the user makes a mistake typing a command and/or its arguments, mash
should simply fail to run the command.  A simple error should be shown, but
only if the exec fails.

1 Image labeled for non-commercial reuse

Page 1 of 7

http://faculty.washington.edu/wlloyd/courses/tcss422


6. Mash does not accept any command line arguments.  Running mash simply
starts  the  shell  which  requests  3  commands  (plus  arguments)  and  a  file
name.

7. To  execute  the  “mash”  of  commands  as  fast  as  possible,  mash  should
execute commands in parallel  using separate processes. Consequently the
order  of  completion  of  commands  can  vary.  (e.g.  it’s  non-deterministic…)
Since commands will complete in an unknown order, (we don’t know which
will  finish  first),  you  should  capture  the output  from each  command,  and
display output for each command in the same order the user provided the
commands.  To support this, use file redirection as shown in the example in
class.   Capture  the  output  of  each  command’s  stdout  file  stream  to  a
separate temporary file on disk.  If storing to disk, it is easy to reread the
output  file,  to  then  display  the  command  output  in  the  correct  order.   

** BONUS - Store the file stream’s temporary output in memory **

File redirection example:
http://faculty.washington.edu/wlloyd/courses/tcss422/examples/exec2.c 

Once printed these temporary files should be deleted.

To  test  mash,  a  number  of  commands  may  be  used.   Here  are  some possible
commands to test your mash shell:

 “wc” Reports the line count, word count, and character count
“md5sum” Generates a unique 128-bit md5 (checksum) hash message digest
“grep –c the” Counts the number of occurrences of a given word, here “the”
“grep –ci the” Counts the number of occurrences of a given word ignoring case, here “the”
“tail –n 10” outputs 10 lines from the end of a file
“head –n 10 ” outputs 10 lines from the start of a file
“ls –l” provides a long directory listing

By forking to run these commands at  the same time (in  parallel)  on multi-core
machines the tasks should collectively finish in less time achieving a performance
speedup  versus  performing  the  tasks  separately.     Using  fork  to  run  multiple
processes in parallel helps to exercise multiple available CPU cores for unrelated
tasks.   Using “top -d .1” it is possible to watch mash run multiple processes at the
same time when working on large files.

Input
There are no command line arguments for mash.  The mash shell should be invoked
as follows:

$./mash 

Output
Here is a sample output sequence for running MASH.

$ ./mash 
mash­1>grep ­c the
mash­2>md5sum

Page 2 of 7

http://faculty.washington.edu/wlloyd/courses/tcss422/examples/exec2.c


mash­3>wc ­l
file>googlebig.txt
First process finished...
Second process finished...
Third process finished...
­­­­­CMD 1: grep ­c the­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
15697
Result took:314ms
­­­­­CMD 2: md5sum­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
0362a7bf9035eba363462ea484bb43a6  googlebig.txt
Result took:2664ms
­­­­­CMD 3: wc ­l­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
76860248 googlebig.txt
Result took:803ms
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
Children process IDs: 12287 12289 12288.
Total elapsed time:2664ms

When each process is forked, an 80 character line is printed for each command.
These lines should indicate the order in which processes are forked from the parent:

­­­­­CMD 1: grep ­c the­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
­­­­­CMD 2: md5sum­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
­­­­­CMD 3: wc ­l­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

MASH will print an 80 character delimiter line at the end of the output for all three
processes.  Commands return  in  the same order the  user  entered  commands,
regardless of the order of their completion and how long they require to complete.

When  each  process  returns,  a  line  is  printed  indicating  that  one  process  has
returned.  We do not specify which, as it could be ANY of the three processes:

First process finished...
Second process finished...
Third process finished...

MASH concludes by echoing back the PID for all of the children processes, and also
the total elapsed time of all commands:

Children process IDs: 17664 17663 17665.
Total elapsed time:2658ms

On a four-core system, the elapsed time is the time of the longest command.  Since
the  other  two  processes  run  in  parallel,  there  is  a  time  savings.

The duration of each command is printed after the output:

­­­­­CMD 1: grep ­c the­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
15697
Result took:314ms
­­­­­CMD 2: md5sum­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
0362a7bf9035eba363462ea484bb43a6  googlebig.txt
Result took:2664ms
­­­­­CMD 3: wc ­l­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­
76860248 googlebig.txt
Result took:803ms

Page 3 of 7



Test  your  program with  a  variety  of  commands  on  large  text  file(s)  to  confirm
parallel execution.

If the fork command fails, then print out the status code as below:

$ ./mash
mash-1>cantfindit
mash-2>missingcommand
mash-3>whereisit
file>cc.log
First process finished...
Second process finished...
Third process finished...
-----CMD 1: cantfindit----------------------------------------------------------
CMD1:[SHELL 1] STATUS CODE=-1
Result took:1ms
-----CMD 2: missingcommand------------------------------------------------------
CMD2:[SHELL 2] STATUS CODE=-1
Result took:2ms
-----CMD 3: whereisit-----------------------------------------------------------
CMD3:[SHELL 3] STATUS CODE=-1
Result took:1ms
--------------------------------------------------------------------------------
Children process IDs: 12346 12348 12347.
Total elapsed time:2ms

When mash can’t run an external command, a message indicating failure should be
displayed:

CMD1:[SHELL 1] STATUS CODE=-1
CMD2:[SHELL 2] STATUS CODE=-1

The message identifies which mash command failed (1, 2, or 3), with a status code.

To implement this assignment successfully, tasks include:
1. Write code that captures user provided strings from the console to collect 3

individual commands and a filename.

2. Chop  individual  words  from  the  user  provided  commands  to  extract  the
command arguments so they can be provided to exec().  For example, a user
may provide “grep –ci the”.  This string will be chopped into three strings:
“grep”, “-ci”, and “the”.  These strings can be hard coded in an execlp call as
follows:

execlp(“grep”,”-ci”,”the”,(char *) NULL); 

However, this approach is not dynamic.
It should be possible to support a dynamic number of arguments.
A recommended alternative to execlp() is execvp() which accepts a pointer to
a NULL terminated array of char pointers (char **).  Each char pointer points
to a null terminated word.  

Page 4 of 7



3. Implement fork() and wait() successfully with 3 levels of nesting.  Without
nesting, only one fork() would execute at any given time causing all three
commands to run sequentially.  This would result in a slower “MASH”.

p1 = fork();
if (p1 == 0) // child
if (p1 > 0) // parent
    p2 = fork();
    if (p2 == 0) // child
    If (p2 > 0)
        p3 = fork();
        if (p3 == 0) // child
        if (p3 > 0)
            wait(..)

4. Wait for children to finish to allow the parent to gracefully exit.

5. Print  out  command  header  lines  (80  characters)  and  the  80  character
delimiter lines.

6. Determine how to measure and print out the execution time of individual
commands.

7. Capture the output of each command to a file.

8. Print the contents of the file, to have “ordered” output for MASH, instead of
random output.

9. Delete the temporary output files of each command. (recommended)

10.Print the elapsed time of all commands at the end of the program.

While writing your MASH program using processes, consider why it is non-trival to
simply redirect the output stream of each fork command to a stream and use the C
sscanf() function to consolidate/aggregate the output at the end…

It is recommended to tackle key design challenges individually (one at a time) to
simplify the testing/debugging of the implementation.  

Grading Rubric
This assignment will be scored out of 100* points.  (100/100)=100%
115 points are possible.

Toal:                       90 points                                                                                                                                           
5 points Run 1 command with at least 1 argument against the file - (arg no mash)
5 points Run 1 command with up to 5 arguments against the file - (arg chop no mash)
5 points Run 3 command with no arguments against the file – (mash 3)
5 points Run 3 commands with up to 5 arguments against the file - (arg chop mash 3)
5 points * Support an unlimited number of command line arguments 
10 points Run 3 commands in parallel to reduce overall execution time

Page 5 of 7



10 points End gracefully.   Parent  process  prints  last  line  reporting PIDs of  finished children.   
The program returns cleanly to the calling shell.  (It is not necessary to press <ENTER>
to get to the command prompt.

5 points STATUS CODE message shown for a failed command.
5 points If one command fails, others can work.
5 points Display 80-character command header lines in order of when each process is started
5 points Display 80-character delimiter line separating output at end of program  
5 points Display wall clock time in milliseconds for processing each MASH command 
5 points Display total elapsed time in milliseconds for running all of the MASH commands.
15 points Display MASH command output in the order the user entered each command.  
5 points * Store stdout of individual commands in memory, as opposed to a temp file.

* - must indicate in comments or documentation that these features have been implemented to receive credit.

Miscellaneous:      20 points                                                                                                                                           
5 points Program compiles, and does not crash upon testing
5 points Coding style, formatting, and comments
5 points Makefile with valid “all” and “clean” targets 
5 points Output format matches the provided example (even if a portion doesn’t work!)

WARNING!                                                                                                                                                                   
10 points Automatic deduction if program is not named “mash”

What to Submit 
For this assignment, submit a tar gzip archive as a single file upload to Canvas.

Package up all of the files into the single tar gzip archive.
This should include a makefile with “all” and “clean” targets.

Tar archive files can be created by going back one directory from the project source
directory  with  “cd  ..”,  then  issue  the  command  “tar  czf
<lastname_firstname>_A1.tar.gz my_dir”.  Name the tar gzip file with your last
name underscore firstname underscore A1 for assignment 1.   “my_dir” would be
the directory that contains the source code and makefile.  No other files should
be submitted.

Pair Programming (optional)
Optionally, this programming assignment can be completed with two person teams.

If choosing to work in pairs,  only one person should submit the team’s tar gzip
archive to Canvas.

Additionally,  EACH  member of a pair programming team must provide an  effort
report of  team members to  quantify team contributions for the overall  project.
Effort  reports must  be  submitted  INDEPENDENTLY  and  in  confidence  (i.e.  not
shared)  by  each  team  member  to  capture  each  person’s  overall  view  of  the
teamwork and outcome of  the programming assignment.   Effort  reports  are not
used to directly numerically weight assignment grades.  

Effort reports should be submitted in confidence to Canvas as a PDF file named:
“effort_report.pdf”.  Google Docs and recent versions of MS Word provide the ability
to save or export a document in PDF format.  

Page 6 of 7



Distribute  100  points  for  category  to  reflect  each  teammate’s  contribution  for:
research,  design,  coding,  testing.   Effort  scores  should  add up  to  100 for  each
category.  Even effort 50%-50% is reported as 50 and 50.   

Please do not submit 50-50 scores for all categories.  

It is highly unlikely that effort is truly equal for everything.  Ratings must reflect an
honest confidential assessment of team member contributions.  50-50 ratings and
non-confidential scorings run the risk of an honor code violation.

Here is an  effort report for a pair programming team (written from the point of
view of Jane Smith):

1. John Doe
Research 24
Design 33
Coding 71
Testing 29

2. Jane Smith
Research 76
Design 67
Coding 29
Testing 71

Team  members  may  not  share  their  effort  reports,  and  should  submit  them
independently in Canvas as a PDF file.   Failure of one or both members to submit
the  effort  report will  result  in  both  members  receiving  NO  GRADE  on  the
assignment…   (considered late until both are submitted)

Disclaimer regarding pair programming:
The purpose of TCSS 422 is for everyone to gain experience programming in C while
working with operating system and parallel coding.  Pair programming is provided as an
opportunity to harness teamwork to tackle programming challenges.  But this does not
mean that teams consist of one champion programmer, and a second observer simply
watching the champion!   The tasks and challenges should be shared as  equally  as
possible.

Page 7 of 7


