
Page 1 of 8

TCSS 422: Operating Systems School of Engineering and Technology
Spring 2025 University of Washington – Tacoma
http://faculty.washington.edu/wlloyd/courses/tcss422 Instructor: Wes Lloyd

Assignment 1

1
Profish: Profile shell

Due Date: Tuesday May 13th, 2025 AOE
Version: 0.10

Objective
The purpose of this assignment is to develop C code using the fork, wait, and exec commands to write a
simple Linux shell. This shell, called “profish” will profile the execution of a Linux command. The user
will provide a single Linux command with arguments. The profish shell will use fork, exec, and wait to
run the command, and then the getrusage() Linux API to profile the command’s resources used when
executing on Linux.

For this program, implement your “profish” shell using the fork, exec, and wait commands.

The following limitations will apply:

1. The user commands that will be executed including all arguments combined will not exceed 65
characters.

2. Individual command arguments will not contain spaces. For example the command: “tail -n 10”
“-n 10” is considered two arguments. The first is “-n”, and the second is “10”. Spaces are used
to delimit arguments.

3. If the command operates on a file, the filename will either be in the local directory, or the user
will provide a fully qualified path name which fits within the command length requirements.
The profish shell is not responsible for finding the file.

4. All commands provided to “profish” will run using the user’s original path.

Type “echo $PATH” to see the current path variable setting.
The profish shell is not responsible for finding the command file to run.

5. For each command, the maximum number of arguments including the command itself will not

exceed 6. This equates to 5 command arguments, plus the command, for a total of 6 inputs.

1 Creative Commons Licensed image

http://faculty.washington.edu/wlloyd/courses/tcss422

Page 2 of 8

6. On the event that a user makes a mistake typing a command or its arguments, profish will

simply fail to run the command. A simple error should be shown, but only if the exec fails.

7. Profish does not accept command line arguments. Profish will request 1 Linux command to run,
plus arguments. Some commands may require a filename as an argument.

8. To profile the command, the Linux getrusage() API should be used.

9. Coding style is important. To encourage source code modularity the int main(void) method
should not exceed 20 lines of code. Solutions having a longer int main(void) method will not be
accepted and will be treated as a non-submission.

Additional Development Tasks:

10. Capture the output of the command and frame its output before showing the profiling statistics.
The output for the command can be captured to a text file and then displayed before the profile
results. Use file redirection as shown in the example in class. Capture the output of the
command’s STDOUT file stream to a separate temporary file on disk. Read the temporary file
and display its output in the console output of the profish shell. The output should be framed
with a header and footer line as shown in the sample output. Once results are displayed to the
screen any temporary files should be deleted.

File redirection example:
http://faculty.washington.edu/wlloyd/courses/tcss422/examples/exec2.c

11. Display 80 character process delimiter line and colored section labels - When profish runs a
remote program, an 80-character divider line is printed to separate the command’s output. The
label should adjust to the length of the command to have the proper number of dashes. In
addition, labels for the sections “runtime:”, “time components:”, “memory metrics:”, “I/O
operations:”, and “interrupts:” should each be shown in blue.

-----CMD: grep -c the googlebig.txt---

-----CMD: md5sum googlebig.txt--

-----CMD: wc -l googlebig.txt---

Profish follows the output of all commands with an 80-character FIXED delimiter line at the end
of the output.

--

As the process finishes running, a line is printed indicating that total elapsed time the process
has taken. The timing of the process should be done using two calls to the gettimeofday() Linux
API. Once the command has been profiled the profish shell should exit.

12. Display Linux CPU time calculations: On a Linux system, the CPU-user-mode-time plus the CPU-
kernel-mode-time equals the elapsed time (runtime) when a process only has 1-thread. This
provides a measurement sanity check. For the example below, we see that the elapsed time
(runtime) is 1905 milliseconds, and the Linux CPU time accounting value (labeled as “linux cpu

http://faculty.washington.edu/wlloyd/courses/tcss422/examples/exec2.c

Page 3 of 8

time acct”) which represents the total time is 1,904,535 microseconds which is 1,904.535
milliseconds. We can see that this is made up from 1,788,746 microseconds of cpu-user-mode
time and 115,789 microseconds of cpu-kernel-mode time. For the example (running md5sum)
kernel mode time was about 6% of the total time. Your task is to calculate and display “linux
cpu time acct” which is the sum of cpu user time plus cpu kernel time (user-time+kernel-time).

13. When profish can’t run an external command, a message indicating failure should be displayed:

CMD:[SHELL] STATUS CODE=-1

The message identifies that profish failed to run the command, and provides a status code.

To test profish, a number of commands may be used. Here are some possible commands to test your
profish shell:

 “wc” Reports the line count, word count, and character count
“md5sum” Generates a unique 128-bit md5 (checksum) hash message digest
“grep –c the” Counts the number of occurrences of a given word, here “the”
“grep –ci the” Counts the number of occurrences of a given word ignoring case, here “the”
“tail –n 10” outputs 10 lines from the end of a file
“head –n 10 ” outputs 10 lines from the start of a file
“ls –l” provides a long directory listing
“sysbench --threads=1 --time=1 cpu run” Prime number generation CPU benchmark
“sysbench --threads=4 --time=1 cpu run” Prime number generation CPU benchmark
“sysbench --threads=8 --time=1 cpu run” Prime number generation CPU benchmark
“sysbench --threads=10 --time=3 mutex run” Mutex performance test
“sysbench --threads=10 --time=3 threads run” Thread subsystem performance test
“sysbench --threads=1 --time=10 memory run” Memory functions speed test
“sysbench --threads=1 fileio prepare” File I/O test-prepare
“sysbench --threads=1 --time=10 --file-test-mode=rndrw fileio run” File I/O test-run

Using “top -d .1” it is possible to watch profish run a fork and exec to run a separate program.

A large 1.4 GB text file is available to help test your shell at:
https://faculty.washington.edu/wlloyd/courses/tcss422/assignments/googlebig.txt.gz

Input
There are no command line arguments for profish. The profish shell should be invoked as follows:

$./profish

Output
Here is a sample output sequence for running profish. The output is annotated with arrows and notes
on the right. The notes should not be included in profish output. The notes are to explain the output.

$./profish

profish>md5sum googlebig.txt  user types command here
-----CMD: md5sum googlebig.txt--

0362a7bf9035eba363462ea484bb43a6 googlebig.txt  command output
--

https://faculty.washington.edu/wlloyd/courses/tcss422/assignments/googlebig.txt.gz

Page 4 of 8

Total elapsed time:1905ms  command runtime in ms

runtime:  Linux CPU time calculations
total cpu user time=1788746 microsec

total cpu kernel time=115789 microsec

linux cpu time acct=1904535 microsec

time components:  time components from getrusage()
cpu user time=1 sec

cpu kernel time=0 sec

cpu user time=788746 microsec

cpu kernel time=115789 microsec

memory metrics:  memory components from getrusage()
max resident set size=2096

integral shared memory size=0

integral unshared data size=0

integral unshared stack size=0

page reclaims=100

page faults=0

swaps=0

I/O operations:  I/O metrics from getrusage()
block input ops=0

block output ops=16

IPC msgs sent=0

IPC msgs recv'd=0

interrupts:  interrupt stats from getrusage()
signals recv'd=0

voluntary context switches=1

involuntary context switches=10

Summary of Development Tasks

1. Write code to obtain a user provided commands plus arguments (string).

2. Split individual words from the user provided command to extract the command arguments so
they can be provided to exec(). For example, a user may type “grep –ci the”. This string will be
split into three strings: “grep”, “-ci”, and “the”.

Here is an example of hard coding these strings to call execlp:

execlp(“grep”,”-ci”,”the”,(char *) NULL);

This approach is not dynamic.
A dynamic number of arguments can be accepted using execvp() which accepts a pointer to a
NULL terminated array of char pointers (char **). Each char pointer points to a null terminated
word.

3. Fork the original parent process and use exec to run the command.

4. Use waitpid() to wait for the child process to exit. This is required by getrusage(). Without
waiting, getrusage() will fail.

5. Print out command header lines (EC) (80 characters) and the 80-character delimiter lines.

6. Determine how to measure and print out the elapsed time (runtime) of the profiled command

using the gettimeofday() API.

Page 5 of 8

7. (EC) Store the output of the command into a temporary file. Read the temporary output file and
generate clean output for profish with the command’s output at the top, and the profiling
information below. The command’s output should not go to STDOUT when it is run, but it is
captured to a file. Delete the temporary output file once the command is finished.

8. Use getrusage() to print out every available output from struct rusage. See and follow the

sample output example.

9. (EC) process the timing information in struct rusage to calculate the total cpu-user time in
microseconds, the total cpu-kernel time in microseconds, and the total cpu-user+kernel time for
Linux CPU time accounting. This total time should nicely reflect the elapsed time for single
threaded processes.

10. (EC) Display section labels for the getrusage output using blue text.

When coding a solution, it is recommended to tackle key design challenges individually (one at a time)
to simplify the testing/debugging of the implementation.

Helpful notes:

Time information in struct rusage is represented with struct timeval.

struct timeval {

 long tv_sec; /* seconds */

 long tv_usec; /* microseconds */

};

Struct timeval decomposes time into two pieces (components), the whole seconds (tv_sec), and the
additional microseconds (tv_usec), which is the fractional part of the second. For example, if the time is
7.5 seconds, then you will have 7 seconds as a long, and 500,000 microseconds as a long. To calculate
the total time, these need to be added. Seconds must be converted to microseconds by multiplying by
1,000,000. Then you can add the microseconds to get the total time.

Here is ‘struct rusage’. This structure contains all of the profiling metrics. The metrics are displayed to
the screen in the same order they appear in the struct. Note the sections in the output that delineate
specific types of metrics. You will need to use the manual page to learn how to use the getrusage() API.

 struct rusage {

 struct timeval ru_utime; /* user CPU time used */

 struct timeval ru_stime; /* system CPU time used */

 long ru_maxrss; /* maximum resident set size */

 long ru_ixrss; /* integral shared memory size */

 long ru_idrss; /* integral unshared data size */

 long ru_isrss; /* integral unshared stack size */

 long ru_minflt; /* page reclaims (soft page faults) */

 long ru_majflt; /* page faults (hard page faults) */

 long ru_nswap; /* swaps */

 long ru_inblock; /* block input operations */

 long ru_oublock; /* block output operations */

 long ru_msgsnd; /* IPC messages sent */

 long ru_msgrcv; /* IPC messages received */

Page 6 of 8

 long ru_nsignals; /* signals received */

 long ru_nvcsw; /* voluntary context switches */

 long ru_nivcsw; /* involuntary context switches */

 };

Generative-AI policy:

Use of Generative-AI (i.e. LLMs) is permitted on this assignment. If you use generative-AI to support
writing the code for this assignment, then you are required to submit two additional files: #1 (llm.txt)
this file should contain all LLM prompts used to generate C source versions of profish. If LLMs are not
used, submit the file with a statement indicating that no LLMs were used in the project.
#2 (llm_bugs.pdf) this file provides a numbered list of C source code versions and for each version, a
numbered list of LLM code generation bugs. Briefly describe the bugs and solutions found.

Grading Rubric

This assignment will be scored out of 110 points. (110/110)=100%
120 points are possible.

Toal: 80 points
10 points Run a command with at least 1 argument
10 points Run a command with up to 5 arguments
 5 points Report time component metrics from getrusage()
 5 points Report memory metrics from getrusage()
 5 points Report I/O operations metrics from getrusage()
 5 points Report interrupts metrics from getrusage()
 5 points Shell ends gracefully. The program returns cleanly to the calling shell. (It is not

necessary to press <ENTER> to return to the Linux command prompt.
 5 points Display total elapsed time in milliseconds for the command that was run.
 5 points STATUS CODE message shown for a failed command.
 5 points Display 80-character delimiter line after the command’s output is displayed
 5 points Frame the output of the command neatly at the top of the output by redirecting

the command’s output to a temporary file on disk which is deleted after the command
finished.

 10 points Display 80-char command header lines which displays the command that was
run and include colored BLUE labels to delineate different types of profiling metrics in the
getrusage() output

 5 points Display Linux CPU time accounting metrics in the output. This should include the
total cpu-user-mode time, the total cpu-kernel-mode time, and the total cpu-time. The
total measured CPU-time should closely match the elapsed time for single-threaded
programs.

Miscellaneous: 40 points
5 points Program compiles, and does not crash upon testing
5 points Coding style, formatting, and comments
5 points Makefile with valid “all” and “clean” targets provided with submission
5 points Output format matches the provided example (even if a portion doesn’t work!)
10 points Submission of text file (llm.txt) containing all LLM prompts used to generate source

code. If LLMs are not use, submit a file with a statement indicating that no LLMs were
used.

10 points Submission of PDF file (llm_bugs.pdf) providing a numbered list of all versions of source
code generated if using an LLM. For each version, provide a numbered list of LLM code
generation bugs and briefly describe solutions if found.

Page 7 of 8

WARNING!
10 points Automatic deduction if main program file is not named “profish.c”

What to Submit
For this assignment, submit a tar gzip archive as a single file upload to Canvas. Package up all of the files
into the single tar gzip archive. A makefile with “all” and “clean” targets should be included. Makefile
examples can be found online at: https://faculty.washington.edu/wlloyd/courses/tcss422/examples/

Tar archive files can be created by going back one directory from the project source directory with “cd
..”, then issue the command “tar czf A1.tar.gz my_dir”. “my_dir” is the directory of where
your program is stored. Canvas automatically appends your name to the file upon upload. Here
“my_dir” is the directory that contains source code and the makefile.
No other files should be submitted.

Pair Programming (optional)

Optionally, this programming assignment can be completed using two person teams.

If choosing to work in pairs, only one person should submit the team’s tar gzip archive to Canvas.

Additionally, EACH member of a pair programming team must provide an effort report of team
members to quantify team contributions for the overall project. Effort reports must be submitted
INDEPENDENTLY and in confidence (i.e. not shared) by each team member to capture each person’s
overall view of the teamwork and outcome of the programming assignment. Effort reports are not used
to directly numerically weight assignment grades.

Effort reports should be submitted in confidence to Canvas as a PDF file named: “effort_report.pdf”.
Google Docs and recent versions of MS Word provide the ability to save or export a document in PDF
format. Distribute 100 points for category to reflect each teammate’s contribution for: research, design,
coding, testing. Effort scores should add up to 100 for each category. Even effort 50%-50% is reported
as 50 and 50.

Please do not submit 50-50 scores for all categories.

It is highly unlikely that effort is truly equal for everything. Ratings must reflect an honest confidential
assessment of team member contributions. 50-50 ratings and non-confidential scorings run the risk of
an honor code violation.

Here is an effort report for a pair programming team (written from the point of view of Jane Smith):
NOTE: The ‘research’ task includes both Internet searches and LLM prompting.

1. John Doe
Research 24
Design 33
Coding 71
Testing 29

https://faculty.washington.edu/wlloyd/courses/tcss422/examples/

Page 8 of 8

2. Jane Smith
Research 76
Design 67
Coding 29
Testing 71

FOR SPRING 2025: TCSS 422 effort reports should include a short description of how pair
programming was conducted. If your group worked virtually, then include a description of the tools
used to support the distributed remote pair programming. Example tools include: Google Hangouts,
Zoom, GitHub, Slack, and Discord. In addition to describing the use of tools to support teamwork, please
describe how tasks were divided or how work was accomplished together in meetings.

Team members may not share their effort reports, or collaborate together in writing them. Failure to
keep reports confidential is considered an honor code violation. Reports should be submitted
independently in Canvas as a PDF file. Failure of one or both members to submit the effort report will
result in both members receiving NO GRADE on the assignment… (programs are considered late until
both effort reports are submitted)

Disclaimer regarding pair programming:
The purpose of TCSS 422 is for everyone to gain experience programming in C while working with operating
system and parallel coding. Pair programming is provided as an opportunity to harness teamwork to tackle
programming challenges. But this does not mean that teams consist of one champion programmer, and a
second observer that only passively participates! Tasks and challenges should be shared as equally as
possible to maximize learning opportunities.

Change History

Version Date Change

0.1 04/29/2025 Original Version

