

ESRM 350 Food and Feeding

Autumn 2016

"One cannot think well, love well, sleep well, if one has not dined well." - Virginia Woolf, *A Room of One's Own*

Living Requires Energy

- Multicellular organisms expend more energy than single-celled organisms
- Large animals expend more energy than small animals
- Homeotherms expend more energy than poikilotherms

A Key Problem for Wildlife

- Taxa we will cover in this class (mammals, birds, reptiles, amphibians) are heterotrophs
 - i.e., they subsist on energy packaged in other organisms
- Challenge 1: energy packaged in other organisms is limited
- Challenge 2: other organisms "don' t want" to be consumed
- Heterotrophs are under pressure to be efficient (both in finding and processing food)

Finding Food

Foraging: The process of searching for, handling, and consuming food

Herbivores

- Consume plant material (may kill the plant, but usually do not)
 - Grazers eat grasses and herbaceous vegetation
 - Browsers eat woody vegetation

White rhinoceros (*Ceratotherium simum*), a grazer

Predators

- Consume all or part of other animals, killing them in the process

Parasites

- Consume parts of other animals (hosts) without killing them
 - have negative effect on the host
 - rare among wildlife species (e.g., common vampire bat, *Desmodus rotundus*)

Scavengers

- Consume dead organic material
 - have no direct effect on populations that produce these resources
 - important in the recycling of nutrients within ecosystems

Black vultures (*Coragyps atratus*), a scavenger

Differences Between Predators and Herbivores

Some Energy Values

- Fat 9.45 Kcal/g
- Protein 5.65 Kcal/g
- Seeds 5.07 Kcal/g
- Leaves 4.23 Kcal/g
- Cellulose (plant cell walls) – 4.18 Kcal/g

- Predation offers access to high-quality food, but energy is scarce and hard to obtain
- Herbivory offers access to plentiful but hard-to-digest food
- Smallest homeotherms can't live on plants

A Key Question for Foragers

Which food items to eat?

Trade-offs

- **Trade-off:** situation where benefits of a change in one trait are linked to a costly change in another
 - benefits and costs paid in the currency of fitness (reproduction and survival)
 - e.g., growth versus reproduction
 - key to understanding wildlife evolution, ecology

A Key Question for Foragers

Which food items to eat?

- Consumption of any food item will provide benefits (e.g., energy), entail costs (e.g., risk of injury, time to find, handle food that cannot be used to continue searching)
- **Optimal** decision: chose foods that maximize the ratio of benefits to costs
- Answer a function of trade-off between benefit of eating a food item and value of ignoring it
 - no free lunch

Optimal Diet Theory

- There are many potential prey items: how do you choose?
 - Optimization criterion: net energy intake rate

$$E_{net} = E_{in} - E_{out}$$

 $\boldsymbol{\Gamma}$

 $\boldsymbol{\Gamma}$

$$E_{rate} = \frac{E_{in} - E_{out}}{T_{Foraging}}$$
Maximize This!

MacArthur and Pianka (1966) American Naturalist

Why a High E_{net}?

 Need minimum energy to stay alive, why want more?

Why is *Rate* Important in Getting Energy (low T_F)?

- Foraging can be dangerous
 could become a meal while getting a meal
- Lost opportunities: when you are foraging you aren' t engaging in other behaviors that may increase fitness
 - Mating
 - cleaning (preening)
 - social behavior
- Result: try to get high net energy as quickly as possible!

What Foods to Eat: Optimal Diet

- What is the best food type?
- All food items have
 - benefits: food value (energy)
 - costs
 - energetic costs of capture and handling
 - time costs (handling time)
 - Profitability

$$\frac{B}{C} = \frac{E_{net}}{T_h} Or \frac{E_{gross} - E_{handling}}{T_{handling}}$$

Optimal Diet Breadth

- Most foragers can't simply eat only the most profitable food item
 - usually in short supply
- Thus, the optimal diet usually consists of two or more food items
- Key is predicting how *broad* the diet will be

Koala (*Phascolarctos cinereus*) rely solely on eucalyptus

Predicting Optimal Diet Breadth

Predicting Optimal Diet Breadth

Predicting Optimal Diet Breadth

Processing Food

The physical process of extracting energy and nutrients from consumed food (i.e., digestion)

Foragers Have Morphological Adaptations for Processing Food

- Modification of limbs to manipulate prey
 - e.g. tearing vs grasping

Foragers Have Morphological Adaptations for Processing Food

- Jaws and teeth are adapted to diet
 - e.g., crushing vs tearing vs browsing

Foragers Have Morphological Adaptations for Processing Food

- Digestive systems reflect diet
- Plant eaters have elongated digestive tracts with fermentation chambers
 - Length increases surface area (to extract limited nutrients)
 - chambers contain microbes (e.g., bacteria) that aid in digestion

- Need to mechanically break down plant material
 - Some mammals (ruminants) have rumen used as a mechanical filter (allows regurgitation and rechewing)

- Need to ferment plant material
 - Rumen also contains billions of microbes (bacteria, protozoa, fungi) that break down cellulose, release nutrients

AFANDS

In Focus: Natural History

- Hindgut fermentation is less efficient than rumination
 - Often requires coprophagy (double processing)
 - e.g., brown hares (*Lepus* europaeus)

Hare fecal pellets emerge highly processed