

ESRM 350

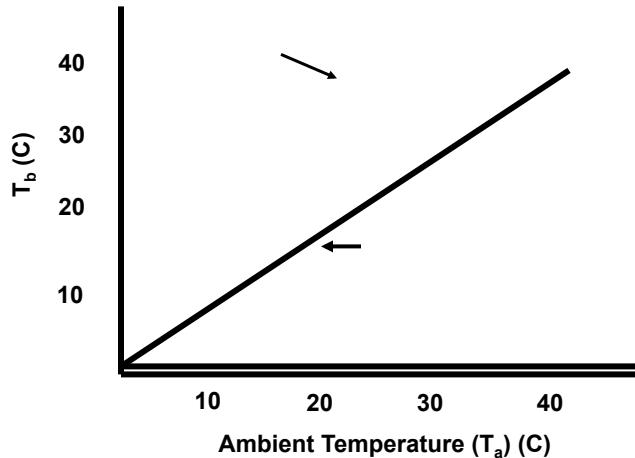
Temperature Regulation

Autumn 2014

“When it is seventy five below zero, a man must not fail in his first attempt to build a fire – that is, if his feet are wet.”

- Jack London, *To Build a Fire*

The Thermal Environment


- Fluctuations in temperature of the physical environment are a challenge for all animals
- Hot temperatures
 - denature proteins
 - accelerate chemical processes
 - affect properties of lipids
 - typical upper limit for most animals: 45° C
- Cold temperatures
 - disrupt life processes (slow chemical reactions)
 - ice crystals damage cell structures

The Thermal Environment

- Fluctuations in temperature of the physical environment are a challenge for all animals
- Hot temperatures
 - denature proteins
 - accelerate chemical processes
 - affect properties of lipids
 - typical upper limit for most animals: 45° C
- Cold temperatures
 - disrupt life processes (slow chemical reactions)
 - ice crystals damage cell structures
- How do animals cope with this challenge?

Poikilothermy

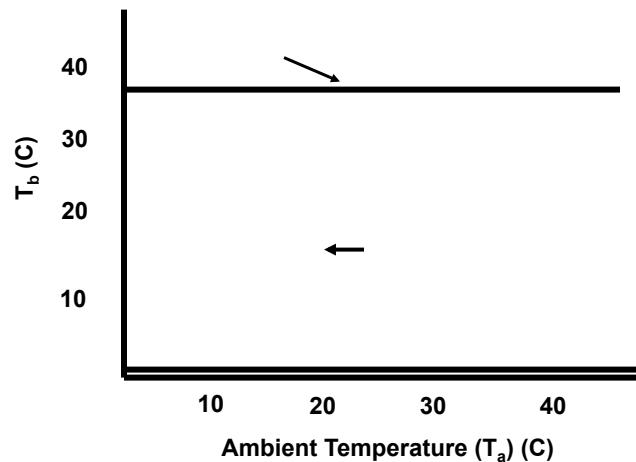
- **Poikilotherms:** Internal body temperature (T_b) fluctuates with that of the ambient environment (T_a)

Advantages of Poikilothermy

- Reptiles and amphibians (also fish)
- Low energy expenditure
 - can live without food for long time
- Can be very small
 - heat loss not an issue

Oregon spotted frog
(*Rana pretiosa*)

Costs of Poikilothermy


- Inability to exploit cold environs
- Impaired performance prior to warming up; reduced stamina
 - depleted energy stores recovered slowly

Komodo dragon
(*Varanus komodoensis*)

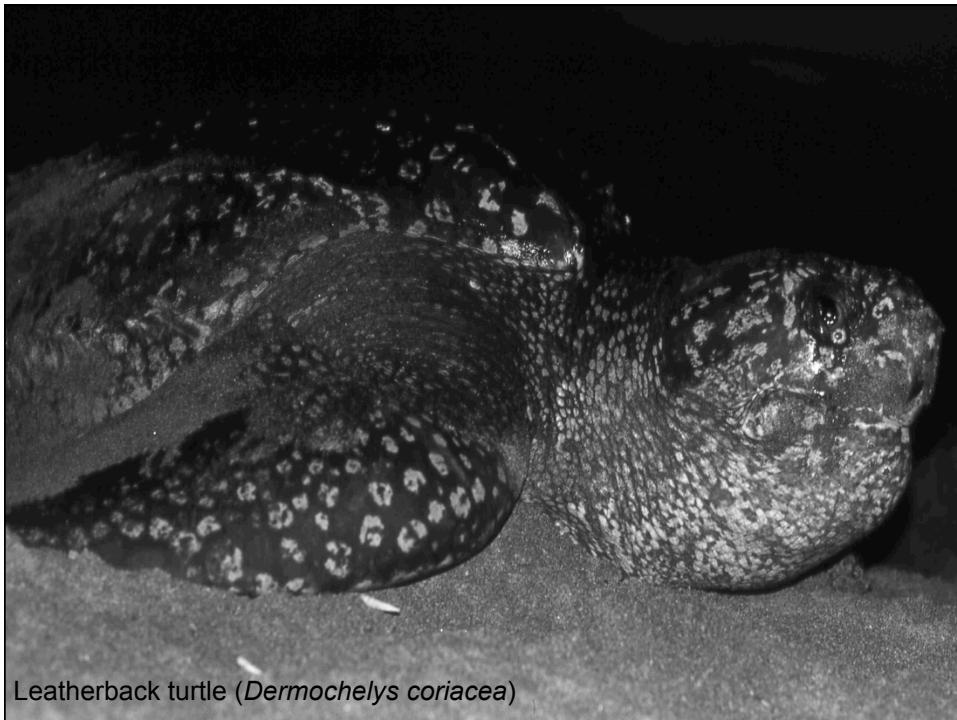
Homeothermy

- **Homeotherms:** maintain a constant internal body temperature (T_b)

Homeotherms

- Primarily **endothermic** birds and mammals
 - endotherms produce body heat internally (from metabolism)
 - known colloquially as “warm-blooded”
 - typical T_b is 35-42° C
- Are all homeotherms also endothermic?

Homeotherms


- Primarily **endothermic** birds and mammals
 - endotherms produce body heat internally (from metabolism)
 - known colloquially as “warm-blooded”
 - typical T_b is 35-42° C
- Are all homeotherms also endothermic?
 - no
 - some are **ectothermic** (derive warmth from the ambient environment)
 - i.e., some homeotherms are actually species we would call “cold-blooded”!
 - ectotherms can maintain stable T_b via behavioral regulation (described shortly)

Natural History Aside

- Are any animals other than birds and mammals endothermic?

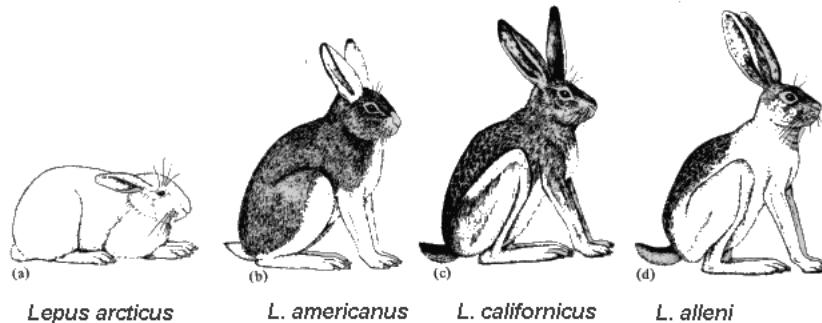
Natural History Aside

- Are any animals other than birds and mammals endothermic?
 - yes
 - some fishes (tuna)
 - also, at least one reptile...

- Can live in very cold waters at high latitudes, also found in warm waters near the equator
- Huge – up to 900 kg
- Deep divers – 1280 meters (4200 ft)
- Travel avg of 6000 km between nesting beaches and foraging grounds
- Produce heat internally (metabolically)
 - heat conserved because of large body size
 - allows for swift movement, even in cold water
 - up to 36 km/h (22 mph)
 - reduce activity to dissipate heat when in warm water
 - internal body temperature relatively stable despite extreme variation in external environment
 - ~ 25° C

Bostrom et al. (2010) *PLoS ONE*

Advantages of Homeothermy


- Can live and function optimally in a wide variety of environments
 - homeotherms found from deserts and the tropics to the arctic
- Greater stamina
 - depleted energy supplies recovered more rapidly
- Can respond rapidly to environmental stimuli
 - don't need to warm up

Costs of Homeothermy

- Homeotherms use enzymes that are specialized for a narrow range of body temperature
 - over-cooling and over-heating can lead rapidly to reduced performance, death
- Great deal of energy required to maintain T_b outside of thermo-neutral zone (TNZ)
 - homeotherms must eat lots of food
 - especially true for small homeotherms
 - high surface-to-volume ratio
 - rapidly lose heat to the ambient environment
 - energetic cost of homeothermy has led to two trends

Allen's Rule

- Homeothermic species (and populations within polytypic species) living in cold climates tend to have smaller extremities (limbs, tails, ears)
 - e.g., the Genus *Lepus* (hares) in North America

Bergmann's Rule

- Homeothermic species (and populations within polytypic species) living in cold climates tend to be larger
 - lots of small critters in the tropics
 - e.g., North American bears

Black bear (*Ursus americanus*)

90-270 kg

Brown bear (*Ursus arctos*)

95-390 kg

Polar bear (*Ursus maritimus*)

410-720 kg

Adaptations for Homeothermy

- Three kinds
 - Structural
 - Physiological
 - Behavioral
- Adaptations can either prevent
 - over-cooling (**hypothermia**), or
 - over-heating (**hyperthermia**)

Structural Adaptations for Avoiding Hypothermia

- Hypothermia – the condition of having a body temperature (T_b) below the normal range
 - impedes proper enzyme function, leads to impaired performance, death
- **Fur**
 - Guard hairs and underfur reduce heat loss by trapping a layer of air, which is then warmed

Musk ox (*Ovibos moschatus*)

Structural Adaptations for Avoiding Hypothermia

- **Feathers**
 - “fluffing” traps air, which is then warmed
 - oil matting leads to hypothermia
- **Blubber**
 - thick, insulative layer of adipose (fat) tissue found under skin
 - marine mammals (cetaceans, pinnipeds)

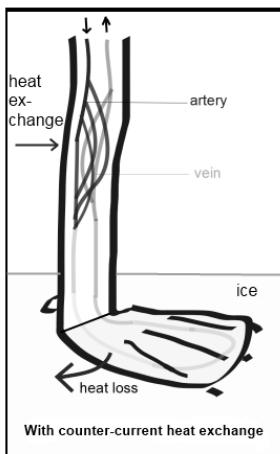
Weddell seal (*Leptonychotes weddellii*)

Physiological Adaptations for Avoiding Hypothermia

- **Increase heat production**
 - activity (elevated metabolism)
 - shivering
- **Vasoconstriction**
 - narrowing of superficial blood vessels
 - diverts flow of heated blood to the body core

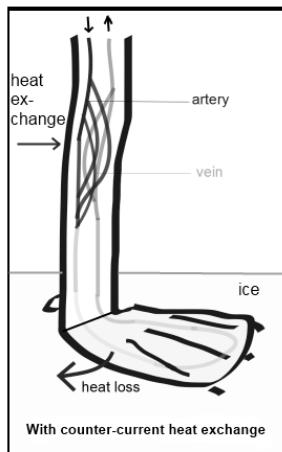
Physiological Adaptations for Avoiding Hypothermia

- **Countercurrent heat exchange**


- alignment of blood vessels such that arterial blood from core warms up colder venous blood from extremities
- heat diverted to the core; extremities (e.g., legs or flippers) stay cool, minimizing heat loss
 - weak temperature gradient at interface with ambient environment

Heat exchangers

Physiological Adaptations for Avoiding Hypothermia


- **Countercurrent heat exchange**

- e.g., bare legs of many wading birds
- Why not just feathers?

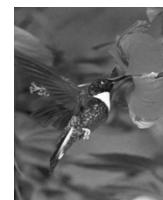
Physiological Adaptations for Avoiding Hypothermia

- Countercurrent heat exchange

- e.g., bare legs of many wading birds
- Why not just feathers?
- Expensive care for feathers (mud, matting, etc.)
- Also good for heat dissipation (heat in venous blood stays in the legs)

Behavioral Adaptations for Avoiding Hypothermia

- Migration
 - avoid cold weather
 - elevational
 - e.g., deer
 - latitudinal (N-S)
 - birds, bats, whales
- Burrowing
 - in snow or ground
 - e.g., grouse (in snow)


Behavioral Adaptations for Avoiding Hypothermia

- **Change posture**
 - e.g., curl up
- **Form tightly packed groups**
 - e.g., quail, bison

Behavioral Adaptations for Avoiding Hypothermia

- **Hibernation**
 - state of torpor characterized by depressed metabolism and temperature (reduced heating costs)
 - can last days to weeks
 - typically, basal metabolic rate is reduced to 2-4% of normal rates and T_b is maintained within a few degrees above ambient temperatures
 - common in ground squirrels, bats
 - Interestingly, some species hibernate without dropping temperature
 - bears, hummingbirds (at night)
 - more to save energy

Structural Adaptations for Avoiding Hyperthermia

- Hyperthermia – the condition of having a body temperature (T_b) above the normal range
 - leads to organ failure, death if persistent
- **Small size**
 - Remember Bergmann's rule
- **Thermal windows**
 - Birds: gular pouch, feet, legs, face
 - Mammals: face, feet, arm pits, belly
 - remember Allen's rule
 - hairlessness in humans: signature of evolution as runners?

Physiological Adaptations for Avoiding Hyperthermia

- **Evaporative cooling**
 - Mammals: sweating, panting
 - Birds: no sweat glands, so evaporation via lungs, air sacs, gular pouch
 - accomplished by panting, gular fluttering

Gular pouch of the male frigate bird
(*Fregata magnificens*)

Inflated to attract females

Physiological Adaptations for Avoiding Hyperthermia

- **Vasodilation**
 - expansion of peripheral blood vessels to dissipate heat
- **Countercurrent heat exchange**
- **Heat storage**
 - effective for large mammals, birds
 - body volume absorbs heat during day, lost passively at night
 - e.g., camels

Behavioral Adaptations for Avoiding Hyperthermia

- **Reduce activity**
 - Lower metabolism, minimize heat production
- **Increase water intake**
- **Seek cooler activity times and space, heat dissipating opportunities**
 - become crepuscular, nocturnal
 - shade, vegetation to reduce heat gain
 - shift activity space toward water
 - shift activity space underground (become **fossorial**)

Another Natural History Aside

- Behavioral homeothermy in an ectotherm...

Behavioral Homeothermy in an Ectothermic Lizard

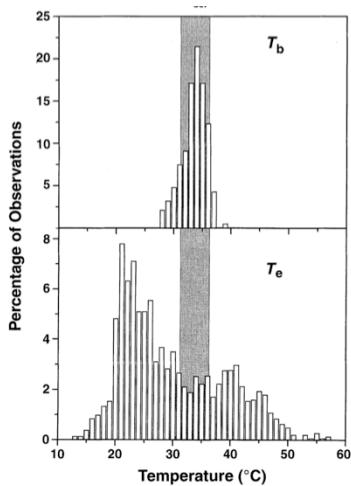


FIG. 1. Distributions of body temperature (T_b) in a population of *Podarcis hispanica atrata* and available operative temperature (T_e) during early autumn. The shaded area identifies the selected temperature range (T_{sel}).

- Lacertid lizard (*Podarcis hispanica atrata*)
- Columbretes Archipelago, Mediterranean Sea (province of Spain)
- Maintain relatively stable T_b by selecting for narrow range of ambient thermal conditions
 - Using sunny microsites
 - adopting basking posture

Bauwens et al. (1996) *Ecology*