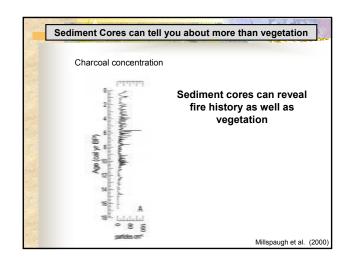
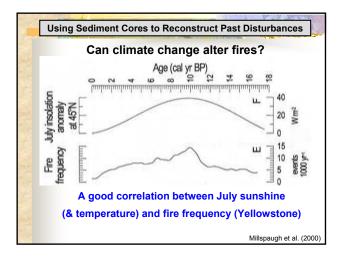
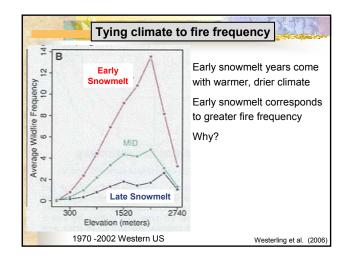
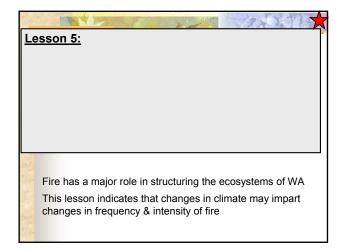


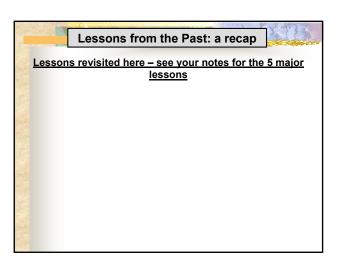
K Yr BP	Climate	SW WA (470')	Puget Trough		
2	Modern	Western	Western	Cool, moist forests	
4	Wodern	hemlock	hemlock	of a moderate, wet modern climate	
6	Warmer, drier	Gary oak, Douglas-fir	Douglas-fir, western		
8	Much	woodland	hemlock	Transition from	
10	warmer, drier		Western hemlock, Sitka	moist to warm, dry forests	
12			spruce, Grand fir, Douglas-fir	HYPSITHERMAL	
14	Cooler, Subalpine drier forest		Western hemlock, Sitka spruce	Alpine & subalpine communities in	
16	Colder,			cool, dry climate	


2.4	Ali a			and the second	
	K Yr BP	Climate	SW WA (470')	Puget Trough	Lesson 2:
	2	Modern	Western hemlock	Western hemlock	
	4				
	6	Warmer, drier	Gary oak, Douglas-fir	Douglas-fir, western	
	8	Much warmer, drier	woodland	hemlock	
	10		Temperate- montane forest	Western hemlock, Sitka spruce, Grand	
0.0	12			fir, Douglas-fir	
N.S.M.	14	Cooler, S drier	Subalpine forest	Western hemlock, Sitka spruce	
i.	16	Colder, much		Alpino tundro	
-	18	drier		Alpine tundra	
					Data: Whitlock et al. (2003)








	5	A A	STATISTICS IN COMPANY	
	K Yr BP	Puget Trough	Olympic Peninsula	Responses to climate change are not always immediate
	2	Western	Western hemlock, Sitka Spruce	
1.1.1	4	4 hemlock forest		Seedlings are usually more susceptible to environmental
	6	Douglas-fir, western	Douglas-fir, western hemlock	changes than mature plants
	8	hemlock		
	10	Western hemlock, Sitka	Lodgepole pine, sitka spruce, Douglas-fir	Climate Change
-	12	Spruce, Grand fir, Douglas-fir		
A Transferration	14	Western hemlock, Sitka Spruce, pine	Western hemlock, Sitka Spruce	Lesson 4: mature ecosystems (esp forests) may buffer
	16 18	. Alpine tundra	Subalpine forest	against climate change and slow ecosystem response
	8	Data: Whitlock e	et al. (2003)	

Lessons from the Past: a bottom line of uncertainty

Ecosystems and Time

"Ecosystem" is a familiar concept encompassing the living and physical components of a landscape at whatever spatial scale is of interest. An element of *distinctness* is implied. The ecosystem has features that distinguish it from adjacent ecosystems, implying boundaries in space.

Ecologists also recognize the dimension of time as part of the concept. The idea of a "climax" ecosystem, for example, implies that the biotic and physical components have interacted over an interval of time and assembled a web of life and land that has stability. This stable configuration can be disrupted by fire, windstorms, and disease, but eventually the climatic climax returns after a process called succession. These concepts imply that a coherent ecosystem, of which the coastal temperate rain forest climax is an example, will somehow reassemble itself no matter what the disruption. After all, this is what ecologists have observed, more or less, in the century or so they have studied ecosystems.

Hebda & Whitlock (1997)

Lessons from the Past: a bottom line of uncertainty

The perspective of a few decades or centuries has produced a false impression of ecosystem stability. Ecosystems come and go with passing millennia and sometimes even more quickly. Evolution and factors affecting biogeographic distributions alter the nature of the biotic pool available to a future ecosystem. Furthermore, the living components of an ecosystem respond individually as a region's physical circumstances, mainly its climate, change. Even if the same species reassemble into an ecosystem superficially similar to the original one, the new ecosystem cannot be exactly the same. The component species, especially plants, have evolved during the course of their history. Ecosystems do not migrate as coherent units: individual species do so by changing their ranges. Paleoecological studies clearly demonstrate that ecosystems have a finite existence in a place during an interval of time.