References for Wim Hol Research Summary Part II
1. Reed, L. J. (1974). Multienzyme complexes. Acc. Chem. Res.
7, 40-46.
2. Oliver, R. M. & Reed, L. J. (1982). Multienzyme complexes.
In Electron Microscopy of Proteins (Harris, J. R., ed.), Vol. 2, pp. 1-48. Academic
Press, London.
3. Perham, R. N. (1991). Domains, motifs, and linkers in 2-oxo
acid dehydrogenase multienzyme complexes: a paradigm in the design of
a multifunctional protein. Biochemistry 30, 8501-8512.
4. Wynn, R. M., Davie, J. R., Meng, M. & Chuang, D. T. (1996).
Structure, function and assembly of mammalian branched-chain a-ketoacid dehydrogenase
complex. In Alpha-keto acid dehydrogenase complexes (Patel, M. S., Roche, T.
E. & Harris, eds.), pp. 101-118. Birkhäuser Verlag, Basel.
5. Berg, A. & de Kok, A. (1997). 2-Oxo acid dehydrogenase
multienzyme complexes. The central role of the lipoyl domain. J. Biol.
Chem. 378, 617-634.
6. Schierbeek, A. J., Swarte, M. B. A., Dijkstra, B. W., Vriend,
G., Read, R. J., Hol, W. G. J., Drenth, J. & Betzel, C. (1989). X-ray structure
of lipoamide dehydrogenase from Azotobacter vinelandii determined by a combination
of molecular and isomorphous replacement techniques. J. Mol. Biol. 206, 365-379.
7. Mattevi, A., Schierbeek, A. J. & Hol, W. G. J. (1991).
Three-dimensional structure of Azotobacter vinelandii lipoamide dehydrogenase
refined at 2.2 Å resolution. A comparison with glutathione reductase.
J. Mol. Biol. 220, 975-994.
8. Mattevi, A., Obmolova, G., Sokatch, J., Betzel, C. & Hol,
W. G. J. (1992). The refined crystal structure of Pseudomonas putida lipoamide
dehydrogenase complexed with NAD at 2.45 Å resolution. Proteins 13, 336-351.
9. Mattevi, A., Obmolova, G., Kalk, K. H., van Berkel, W. J. H.
& Hol, W. G. J. (1993). Three-dimensional structure of lipoamide dehydrogenase
from Pseudomonas fluorescens at 2.8 Å resolution: analysis of redox and
thermostability properties. J. Mol. Biol. 230, 1200-1215.
10. Mattevi, A., Obmolova, G., Schulze, G., Kalk, K. H., Westphal,
A., de Kok, A. & Hol, W. G. J. (1992). Atomic structure of the cubic core
of the pyruvate dehydrogenase multienzyme complex. Science 255, 1544-1550.
11. Mattevi, A., Obmolova, G., Kalk, K. H., Teplyakov, A. &
Hol, W. G. J. (1993). Crystallographic analysis of substrate binding and catalysis
in dihydrolipoyl transacetylase (E2p). Biochemistry 32, 3887-3901.
12. Mattevi, A., Obmolova, G., Kalk, K. H., Westphal, A. H., de
Kok, A. & Hol, W. G. J. (1993). Refined crystal structure of the catalytic
domain of dihydrolipoyl transacetylase (E2p) from Azotobacter vinelandii at
2.6 Å resolution. J. Mol. Biol. 230, 1183-1199.
13. Mande, S. S., Sarfaty, S., Allen, M. D., Perham, R. N. &
Hol, W. G. J. (1996). Protein-protein interactions in the pyruvate dehydrogenase
multienzyme complex: Dihydrolipoamide dehydrogenase complexed with the
binding domain of the dihydrolipoamide acetyltransferase. Structure 4, 277-286.
14. Hipps, D. S., Packman, L. C., Allen, M. D., Fuller, C., Sakaguchi,
K., Appella, E. & Perham, R. N. (1994). The peripheral subunit-binding domain
of the dihydrolipoyl acetyltransferase component of the pyruvate dehydrogenase
complex of Bacillus stearothermophilus: preparation and characterization of
its binding to the dihydrolipoyl dehydrogenase component. Biochem. J. 297, 137-143.
15. Izard, T., Ævarsson, A., Allen, M. D., Westphal, A.
H., Perham, R. N., de Kok, A. & Hol, W. G. J. (1999). Principles of quasi-equivalence
and Euclidean geometry govern the assembly of cubic and dodecahedral cores of
pyruvate dehydrogenase complexes. Proc. Natl. Acad. Sci. USA 96, 1240-1245.
16. Euclid. (1956). The Thirteen Books of Euclid's Elements (Original
~300BC). Trans. Heath, T.L., Dover, New York.
17. Caspar, D. L. & Klug, A. (1962). Physical principles in
the construction of regular viruses. Cold Spring Harbor Symp. Quant. Biol. 27,
1-4.
18. Ævarsson, A., Seger, R., Turley, S., Sokatch, J. R.
& Hol, W. G. J. (1999). Crystal structure of 2-oxoisovalerate dehydrogenase
and the architecture of 2-oxo acid dehydrogenase multienzyme complexes. Nat.
Struct. Biol. 6, 785-792.
19. Ævarsson, A., Chuang, J., Wynn, M., Turley, S., Chuang,
D. & Hol, W. G. J. Crystal structure of human branched-chain a-ketoacid
dehydrogenase and the molecular basis of multienzyme complex deficiency in maple
syrup urine disease. Nat. Struct. Biol. 6, 785-792.
20. Tanowitz, H. B., Kirchhoff, L. V., Simon, D., Morris, S. A.,
Weiss, L. M. & Wittner, M. (1992). Chagas' disease. Clin. Microbiol. Rev.
5, 400-419.
21. Kuzoe, F. A. S. (1993). Current situation of African trypanosomiasis.
Acta Trop 54, 153-162.
22. Wang, C. C. (1995). Molecular mechanisms and therapeutic approaches
to the treatment of African trypanosomiasis. Annu. Rev. Pharmacol. Toxicol.
35, 93-127.
23. Berman, J. D. (1997). Human leishmaniasis: clinical,
diagnostic, and chemotherapeutic developments in the last 10 years. Clin. Infect.
Dis. 24, 684-703.
24. Opperdoes, F. R. & Borst, P. (1977). Localization of nine
glycolytic enzymes in a microbody-like organelle inTrypanosoma brucei: the glycosome.
FEBS Lett. 80, 360-364.
25. Opperdoes, F. R. (1987). Compartmentation of carbohydrate
metabolism in trypanosomes. Annu. Rev. Microbiol. 41, 127-151.
26. Verlinde, C. L. M. J., Kim, H., Bernstein, B. E., Mande, S.
C. & Hol, W. G. J. (1997). Antitrypanosomiasis drug development based on
structures of glycolytic enzymes. In Structure-Based Drug Design (Veerapandian,
P., ed.), pp. 365-394. Marcel Dekker, New York.
27. Bakker, B. M., Michels, P. A., Opperdoes, F. R. & Westerhoff,
H. V. (1999). What controls glycolysis in bloodstream form Trypanosoma brucei?
J. Biol. Chem. 274, 14551-14559.
28. Kohl, L., Drmota, T., Thi, C. D., Callens, M., van Beeumen,
J., Opperdoes, F. R. & Michels, P. A. (1996). Cloning and characterization
of the NAD-linked glycerol-3-phosphate dehydrogenases of Trypanosoma brucei
brucei and Leishmania mexicana mexicana and expression of the trypanosome enzyme
in Escherichia coli. Mol. Biochem. Parasitol. 76, 159-173.
29. Biou, V., Dumas, R., Cohen-Addad, C., Douce, R., Job, D. &
Pebay-Peyroula, E. (1997). The crystal structure of plant acetohydroxy acid
isomeroreductase complexed with NADPH, two magnesium ions and a herbicidal transition
state analog determined at 1.65 Å resolution. EMBO J. 16, 3405-3415.
30. Chevalier, N., Callens, M. & Michels, P. A. (1995). High-level
expression of Trypanosoma brucei fructose-1,6-bisphosphate aldolase in Escherichia
coli and purification of the enzyme. Protein Expr. Purif. 6, 39-44.
31. Swinkels, B. W., Gould, S. J., Bodnar, A. G., Rachubinski,
R. A. & Subramani, S. (1991). A novel, cleavable peroxisomal targeting signal
at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J. 10, 3255-3262.
32. de Hoop, M. J. & Ab, G. (1992). Import of proteins into
peroxisomes and other microbodies. Biochem. J. 286, 657-669.
33. Flynn, C. R., Mullen, R. T. & Trelease, R. N. (1998).
Mutational analyses of a type 2 peroxisomal targeting signal that is capable
of directing oligomeric protein import into tobacco BY-2 glyoxysomes. Plant
J. 16, 709-720.
34. Bernstein, B. E., Michels, P. A. M. & Hol, W. G. J. (1997).
Synergistic effects of substrate-induced conformational changes in the activation
of phosphoglycerate kinase. Nature 385, 275-278.
35. Blake, C. (1997). Phosphotransfer hinges in PGK. Nature 385,
204-205.
36. Bernstein, B. E. & Hol, W. G. J. (1998). Crystal structures
of substrates and products bound to the phosphoglycerate kinase active site
reveal the catalytic mechanism. Biochemistry 37, 4429-4436.
37. Bernstein, B. E., Williams, D. M., Bressi, J. C., Kuhn, P.,
Gelb, M. H., Blackburn, G. M. & Hol, W. G. J. (1998). A bisubstrate analog
induces unexpected conformational changes in phosphoglycerate kinase from Trypanosoma
brucei. J. Mol. Biol. 279, 1137-1148.
38. Kim, H., Feil, I. K., Verlinde, C. L. M. J., Petra, P. H.
& Hol, W. G. J. (1995). Crystal structure of glycosomal glyceraldehyde-3-phosphate
dehydrogenase from Leishmania mexicana: Implication for structure-based drug
design and a new position for the inorganic phosphate binding site. Biochemistry
34, 14975-14986.
39. Kim, H. & Hol, W. G. J. (1998). Crystal structure of Leishmania
mexicana glycosomal glyceraldehyde-3-phosphate dehydrogenase in a new crystal
form confirms the putative physiological active site structure. J. Mol. Biol.
278, 5-11.
40. Aronov, A. M., Verlinde, C. L. M. J., Hol, W. G. J. &
Gelb, M. H. (1998). Selective tight binding inhibitors of trypanosomal glyceraldehyde-3-phosphate
dehydrogenase via structure-based drug design. J. Med. Chem. 41, 4790-4799.
41. Aronov, A. M., Suresh, S., Buckner, F. S., van Voorhis, W.
C., Verlinde, C. L. M. J., Hol, W. G. J. & Gelb, M. H. (1999). Structure-based
design of sub-micromolar, biologically active inhibitors of trypanosomatid glyceraldehyde-3-phosphate
dehydrogenase. Proc. Natl. Acad. Sci. USA 96, 4273-4278.
42. Oppenheimer, N. J. (1978). Structural determination and stereospecificity
of the choleragen-catalyzed reaction of NAD+ with guanidines. J. Biol. Chem.
253, 4907-4910.
43. Moss, J., Garrison, S., Oppenheimer, N. J. & Richardson,
S. H. (1979). NAD-dependent ADP-ribosylation of arginine and proteins by Escherichia
coli heat-labile enterotoxin. J. Biol. Chem. 254, 6270-6272.
44. Holmgren, J. (1981). Actions of cholera toxin and the prevention
and treatment of cholera. Nature 292, 413-417.
45. Spangler, B. D. (1992). Structure and function of cholera
toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol. Rev.
56, 622-647.
46. Nataro, J. P. & Kaper, J. B. (1998). Diarrheagenic Escherichia
coli. Clin. Microbiol. Rev. 11, 142-201.
47. World Health Organization. (1999). New frontiers in the development
of vaccines against ETEC and EHEC. Part I. Weekly Epid. Rec. 13, 97-101.
48. van den Akker, F., Merritt, E. A., Pizza, M., Domenighini,
M., Rappuoli, R. & Hol, W. G. J. (1995). The Arg7Lys mutant of heat-labile
enterotoxin exhibits great flexibility of active site loop 47-56 of the A subunit.
Biochemistry 34, 10996-11004.
49. Mekalanos, J. J., Collier, R. J. & Romig, W. R. (1979).
Enzymic activity of cholera toxin. II. Relationships to proteolytic processing,
disulfide bond reduction, and subunit composition. J. Biol. Chem. 254, 5855-5861.
50. Tomasi, M., Battistini, A., Araco, A., Roda, L. G. & D'Agnolo,
G. (1979). The role of the reactive disulfide bond in the interaction of cholera-toxin
functional regions. Eur. J. Biochem. 93, 621-627.
51. Sixma, T. K., Pronk, S. E., Kalk, K. H., Wartna, E. S., van
Zanten, B. A. M., Witholt, B. & Hol, W. G. J. (1991). Crystal structure
of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature 351,
371-377.
52. Sixma, T. K., Kalk, K. H., van Zanter, B. A. M., Dauter, Z.,
Kingma, J., Witholt, B. & Hol, W. G. J. (1993). Refined structure of Escherichia
coli heat-labile enterotoxin, a close relative of cholera toxin. J. Mol. Biol.
230, 890-918.
53. Merritt, E. A., Sarfaty, S., van den Akker, F., L'hoir, C.,
Martial, J. A. & Hol, W. G. J. (1994). Crystal structure of cholera toxin
pentamer bound to receptor GM1 pentasaccharide. Protein Science 3, 166-175.
54. Merritt, E. A. & Hol, W. G. J. (1995). AB5 Toxins. Curr.
Opin. in Struct. Biol. 5, 165-171.
55. Zhang, R. G., Scott, D. L., Westbrook, M. L., Nance, S., Spangler,
B. D., Shipley, G. G. & Westbrook, E. M. (1995). The three-dimensional crystal
structure of cholera toxin. J. Mol. Biol. 251, 563-573.
56. Merritt, E. A., Sarfaty, S., Feil, I. K. & Hol, W. G.
J. (1997). Structural foundation for the design of receptor antagonists targeting
E. coli heat-labile enterotoxin. Structure 5, 1485-1499.
57. van den Akker, F., Merritt, E. A. & Hol, W. G. J. (1999).
Structure and function of cholera toxin and related enterotoxins. In Handbook
of Experimental Pharmacology (Aktories, K., ed.), Vol. 145, pp. 109-131. Springer-Verlag,
Berlin.
58. van den Akker, F., Sarfaty, S., Twiddy, E. M., Connell, T.
D., Holmes, R. K. & Hol, W. G. J. (1996). Crystal structure of a new heat-labile
enterotoxin, LT-IIb. Structure 4, 665-678.
59. Hovey, B., Verlinde, C. L. M. J., Merritt, E. A. & Hol,
W. G. J. (1999). Structure-based discovery of a pore-binding ligand: Towards
assembly inhibitors for cholera and related AB5 toxins. J. Mol. Biol. 285, 1169-1178.
60. Merritt, E. A., Kuhn, P., Sarfaty, S., Erbe, J. L., Holmes,
R. K. & Hol, W. G. J. (1998). 1.25 Å resolution refinement of the
cholera toxin B-pentamer: evidence of peptide backbone strain at the receptor-binding
site. J. Mol. Biol. 282, 1043-1059.
61. Minke, W. E., Roach, C., Hol, W. G. J. & Verlinde, C.
L. M. J. (1999). Structure-based exploration of the ganglioside GM1 binding
sites of E. coli heat-labile enterotoxin and cholera toxin for the discovery
of receptor antagonists. Biochemistry 38, 5684-5692.
62. Sixma, T. K., Pronk, S. E., Kalk, K. H., van Zanten, B. A.
M., Berghuis, A. M. & Hol, W. G. J. (1992). Lactose binding to heat-labile
enterotoxin revealed by x-ray crystallography. Nature 355, 561-564.
63. van den Akker, F., Steensma, E. & Hol, W. G. J. (1996).
Tumor marker disaccharide D-Gal-b1,3-GalNAc complexed to heat-labile enterotoxin
from Escherichia coli. Protein Science 5, 1184-1188.
64. Minke, W. E., Diller, D. J., Hol, W. G. J. & Verlinde,
C. L. M. J. (1999). The role of waters in flexible docking strategies for carbohydrate
derivatives: heat-labile enterotoxin, a multivalent test case. J. Med.
Chem. 42, 1778-1788.
65. Minke, W. E., Hong, F., Verlinde, C. L. M. J., Hol, W. G.
J. & Fan, E. (1999). Using a galactose library for exploration of a novel
hydrophobic pocket in the receptor binding site of the E. coli heat-labile enterotoxin.
J. Biol. Chem. 274, 33469-33473.
66. Gupta, M., Fujimori, A. & Pommier, Y. (1995). Eukaryotic
DNA topoisomerases I. Biochim. Biophys. Acta 1262, 1-14.
67. Wang, J. C. (1996). DNA Topoisomerases. Annu. Rev. Biochem.
65, 635-692.
68. Redinbo, M. R., Champoux, J. J. & Hol, W. G. J. (1999).
Structural insights into the function of type IB topoisomerases. Curr. Opin.
Struct. Biol. 9, 29-36.
69. Champoux, J. J. (1998). Domains of human topoisomerase I and
associated functions. Prog. Nucleic Acid Res. Mol. Biol. 60, 111-132.
70. Redinbo, M. R., Stewart, L., Kuhn, P., Champoux, J. J. &
Hol, W. G. J. (1998). Crystal structures of human topoisomerase I in covalent
and noncovalent complexes with DNA. Science 279, 1504-1513.
71. Stewart, L., Redinbo, M. R., Qiu, X., Hol, W. G. J. &
Champoux, J. J. (1998). A model for the mechanism of human topoisomerase I.
Science 279, 1534-1541.
72. Redinbo, M. R., Stewart, L., Champoux, J. J. & Hol, W.
G. J. (1999). Structural flexibility in human topoisomerase I revealed in multiple
non-isomorphous crystal structures. J. Mol. Biol.292, 685-696.
73. Armand, J. P., Ducreux, M., Mahjoubi, M., Abigerges, D., Bugat,
R., Chabot, G., Herait, P., de Forni, M. & Rougier, P. (1995). CPT-11 (irinotecan)
in the treatment of colorectal cancer. Eur. J. Cancer 31A, 1283-1287.
74. O'Reilly, S. & Rowinsky, E. K. (1996). The clinical status
of irinotecan (CPT-11), a novel water soluble camptothecin analogue. Crit. Rev.
Oncol. Hematol. 24, 47-70.
75. Dancey, J. & Eisenhauer, E. A. (1996). Current perspectives
on camptothecins in cancer treatment. Brit. J. Cancer 74, 327-338.
76. Fan, Y., Weinstein, J. N., Kohn, K. W., Shi, L. M. & Pommier,
Y. (1998). Molecular modeling studies of the DNA-topoisomerase I ternary cleavable
complex with camptothecin. J. Med. Chem. 41, 2216-2226.
77. Murray, C. J. & Salomon, J. A. (1998). Modeling the impact
of global tuberculosis control strategies. Proc. Natl. Acad. Sci. USA 95, 13881-13886.
78. Albino, J. A. & Reichmann, L. B. (1997). Multidrug resistant
tuberculosis. Curr. Opin. Inf. Dis. 10, 116-122.
79. Preheim, L. C. & Smith, T. L. (1997). Mycobacterial infections:
New threats from old disease. Compr. Ther. 23, 310-318.
80. World Health Organization. (1998). Antituberculosis drug resistance
worldwide. Weekly Epid. Record 73, 249-254.
81. Mande, S., C., Mehra, F., Bloom, B. R. & Hol, W. G. J.
(1996). Structure of the heat shock protein chaperonin-10 of Mycobacterium leprae.
Science 271, 203-207.
82. Hunt, J. F., Weaver, A. J., Landry, S. J., Gierasch, L. &
Deisenhofer, J. (1996). The crystal structure of the GroES co-chaperonin at
2.8 Å resolution. Nature 379, 37-45.
83. Xu, Z., Horwich, A. L. & Sigler, P. B. (1997). The crystal
structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388,
741-750.
84. Pohl, E., Holmes, R. K. & Hol, W. G. J. (1999). Crystal
structure of the iron dependent repressor (IdeR) from Mycobacterium tuberculosis
shows both metal binding sites fully occupied. J. Mol. Biol. 285, 1145-1156.
85. Schmitt, M. P., Predich, M., Doukhan, L., Smith, I. &
Holmes, R. K. (1995). Characterization of an iron-dependent regulatory protein
(IdeR) of Mycobacterium tuberculosis as a functional homolog of the diphtheria
toxin repressor (DtxR) from Corynebacterium diphtheriae. Infect. Immun. 63,
4284-4289.
86. Qiu, X., Verlinde, C. L. M. J., Zhang, S., Schmitt, M. P.,
Holmes, R. K. & Hol, W. G. J. (1995). Three-dimensional structure of the
diphtheria toxin repressor in complex with divalent cation co-repressors. Structure
3, 87-100.
87. Qiu, X., Pohl, E., Holmes, R. K. & Hol, W. G. J. (1996).
High resolution structure of the diphtheria toxin repressor complexed with cobalt
and manganese reveals an SH3-like third domain and suggests a possible role
of phosphate as co-corepressor. Biochemistry 35, 12292-12302.
88. Pohl, E., Qiu, X., Must, L. M., Holmes, R. K. & Hol, W.
G. J. (1997). Comparison of high-resolution structures of the diphtheria toxin
repressor in complex with cobalt and zinc at the cation-anion binding site.
Protein Science 6, 1114-1118.
89. Pohl, E., Holmes, R. K. & Hol, W. G. J. (1998). Motion
of the DNA-binding domain with respect to the core of the diphtheria toxin repressor
revealed in the crystal structures of apo- and holo-DtxR. J. Biol. Chem. 273,
22420-22427.
90. Schiering, N., Tao, X., Zeng, H., Murphy, J. R., Petsko, G.
A. & Ringe, D. (1995). Structures of the apo- and the metal ion-activated
forms of the diphtheria tox repressor from Corynebacterium diphtheriae. Proc.
Natl. Acad. Sci. USA 92, 9843-9850.
91. Ding, X., Zeng, H., Schiering, N., Ringe, D. & Murphy,
J. R. (1996). Identification of the primary metal ion-activation sites of the
diphtheria tox repressor by X-ray crystallography and site-directed mutational
analysis. Nat. Struct. Biol. 3, 382-387.
92. Wang, G., Wylie, G. P., Twigg, P. D., Caspar, D. L. D., Murphy,
J. R. & Logan, T. M. (1999). Solution structure and peptide binding studies
of the C-terminal Src homology 3-like domain of the diphtheria toxin repressor
protein. Proc. Natl. Acad. Sci. USA 96, 6119-6124.
93. White, A., Ding, X., van der Spek, J., Murphy, J. R. &
Ringe, D. (1998). Structure of the metal-ion-activated diphtheria toxin repressor/tox
operator complex. Nature 394, 502-507.
94. Pohl, E., Holmes, R. K. & Hol, W. G. J. (1999). Crystal
structure of a cobalt-activated diphtheria toxin repressor-DNA complex reveals
a metal-binding SH3-like domain. J. Mol. Biol. 292, 653-667.
95. Schweitzer, B. I., Dicker, A. P. & Bertino, J. R. (1990).
Dihydrofolate reductase as a therapeutic target. FASEB J 4, 2441-52.
96. Kuyper, L. F., Baccanari, D. P., Jones, M. L., Hunter, R.
N., Tansik, R. L., Joyner, S. S., Boytos, C. M., Rudolph, S. K., Knick, V.,
Wilson, H. R., Caddell, J. M., Friedman, H. S., Comley, J. C. & Stables,
J. N. (1996). High-affinity inhibitors of dihydrofolate reductase: antimicrobial
and anticancer activities of 7,8-dialkyl-1,3-diaminopyrrolo[3,2- f]quinazolines
with small molecular size. J Med Chem 39, 892-903.
97. Kuyper, L. F., Garvey, J. M., Baccanari, D. P., Champness,
J. N., Stammers, D. K. & Beddell, C. R. (1996). Pyrrolo[2,3-d]pyrimidines
and pyrido[2,3-d]pyrimidines as conformationally restricted analogues of the
antibacterial agent trimethoprim. Bioorg Med Chem 4, 593-602.
98. Li, R., Sirawaraporn, P., Chitnumsub, P., Sirawaraporn, W.
& Hol, W. G. J. (1999). Three-dimensional structure of M. tuberculosisi
dihydrofolate reductase reveals opportunities for the design of novel tuberculosis
drugs. Submitted.
99. Hitchings, G. H. & Burchall, J. J. (1965). Inhibition
of folate biosynthesis and function as a basis for chemotherapy. Adv. Enzymol.
27, 417-468.
100. Seydel, J. K. (1968). Sulfonamides, structure-activity relationship,
and mode of action. Structural problems of the antibacterial action of
4-aminobenzoic acid (PABA) antagonists. J. Pharm. Sci. 57, 1455-1478.
101. Roland, S., Ferone, R., Harvey, R. J., Styles, V. L. &
Morrison, R. W. (1979). The characteristics and significance of sulfonamides
as substrates for Escherichia coli dihydropteroate synthase. J. Biol. Chem.
254, 10337-10345.
102. Achari, A., Somers, D. O., Champness, J. N., Bryant, P. K.,
Rosemond, J. & Stammer, D. K. (1997). Crystal structure of the anti-bacterial
sulfonamide drug target dihydropteroate synthase. Nat. Struct. Biol. 4, 490-497.
103. Hampele, I. C., D'Arcy, A., Dale, G. E., Kostrewa, D., Nielsen,
J., Oefner, C., Page, M. G., Schonfeld, H. J., Stuber, D. & Then, R. L.
(1997). Structure and function of the dihydropteroate synthase from Staphylococcus
aureus. J. Mol. Biol. 268, 21-30.
104. van den Akker, F. & Hol, W. G. J. (1999). Model error
assessment from difference density maps. A novel method to assess the
global and local correctness of macro-molecular crystal structures. Acta Cryst.
D55, 206-218.
105. Yeh, J. I. & Hol, W. G. J. (1998). A flash annealing
technique to improve diffraction limits and lower mosaicity in crystals of glycerol
kinase. Acta Cryst. D54, 479-480.
106. Diller, D. J., Pohl, E., Redinbo, M. R., Hovey, B. &
Hol, W. G. J. (1999). A rapid method for positioning small flexible molecules,
nucleic acids, and large protein fragments in experimental electron density
maps. Proteins in press.
107. Diller, D. J., Pohl, E., Redinbo, M. R., Hovey, B. &
Hol, W. G. J. (1999). A database method for automated map interpretation in
protein crystallography. Proteins 36, 512-525.
108. Diller, D. J. & Hol, W. G. J. (1999). An accurate numerical
model for calculating the equilibration rate of a hanging drop experiment. Acta
Cryst. D55, 656-663.
109. Rudenko, G., Bonten, E., d'Azzo, A. & Hol, W. G. J. (1996).
Structure determination of human protective protein: Two fold averaging
reveals the three-dimensional structure of a domain which was entirely absent
in the initial model. Acta Cryst. D52, 923-936.
110. Bernstein, B. E. & Hol, W. G. J. (1997). Probing the
limits of the molecular replacement method: The case of Trypanosoma brucei
phosphoglycerate kinase. Acta Cryst. D53, 756-764.