6

Feature Theory

This chapter explores the theory for representing language sounds as symbolic units. You will:

- see that sounds are defined in terms of a fixed set of universal features
- learn the phonetic definitions of features, and how to assign feature values to segments based on phonetic properties
- understand how phonological rules are formalised in terms of those features
- see how these features makes predictions about possible sounds and rules in human language

The discussion of sound systems has, up to this point, been conducted without attention to what sounds as cognitive units are made of. We have treated them as letters, labeled by traditional articulatory descriptions. It is time now to raise a fundamental question: are segments analysed into “parts” that define them, or are they truly atomic — units which are not further divisible or analysable?

1. Scientific Questions About Speech Sounds

One of the scientific questions that can be asked about language is: what is a possible speech sound? Humans can produce many more sounds than those systematically used in language. One limitation on language regards modality — language sounds are produced exclusively within the mouth and nasal passages, in the area between the lips and larynx. No language employs hand-clapping, finger-snapping, or vibrations of air between the hand and cheek caused by release of air from the mouth when obstructed by the palm of the hand (though such a sound can communicate an attitude). Even staying within the vocal tract, languages also do not, for example, use whistles or inhalation to form speech sounds, nor is a labio-lingual trill (a.k.a. ‘the raspberry’) a speech sound in any language. It is important to understand that even though these various odd sounds are not language sounds, they may still be used in communication. The ‘raspberry’ in American culture communicates a contemptuous attitude; in parts of coastal East Africa and Scandi-
navia, inhaling with the tongue in the position for schwa expresses agreement. Such noises lie outside of language, and we never find plurality indicated with these sounds, nor are they surrounded by other sounds to form the word ‘dog’. General communication has no systematic limitations short of anatomical ones, but in language, only a restricted range of sounds are used.

The issue of possible speech sounds is complicated by manual languages such as American Sign Language. ASL is technically not a counterexample to a claim about modality framed in terms of ‘speech sounds’. But it is arbitrary to declare manual language to be outside of the theory of language, and facts from such languages are relevant in principle. Unfortunately, knowledge of the signed languages of the world is very restricted, especially in phonology. Signed languages clearly have syntax: what isn’t clear is what they have by way of phonologies. Researchers have only just begun to scratch the surface of sign language phonologies, so unfortunately we can say nothing more about them here.

The central question then must be posed: what is the basis for defining possible speech sounds?

1.1. Possible Differences in Sounds

One way to approach the question is to collect samples of the sounds of all of the languages in the world. This search (which has never been conducted) would reveal massive repetition, and would probably reveal that the segment [m] in English is exactly the same as the segment [m] in French, German, Tübatuluabal, Arabic, Swahili, Chinese and innumerable other languages. It would also reveal differences, some of them perhaps a bit surprising. Given the richness of our transcriptional resources for notating phonetic differences between segments, you might expect that if a collection of languages had the same vowels transcribed as [i] and [u], then these vowels should sound the same. This is not so.

Varieties of phonetic [i] vs. [u]. Many languages have this pair of vowels; for example, Kimatuumbi has [i] and [u]. But the actual pronunciation of [i] vs. [u] differs between English and Kimatuumbi. Kimatuumbi [i] is higher than in English, and Kimatuumbi [i] is a bit lower than English [i] — to some people it almost sounds like [e] (but is clearly different from [e], even the ‘pure’ [e] found in Spanish). This might force us to introduce new symbols, so that we can accurately represent these distinctions. (This is done in publications on Kimatuumbi, where the difference is notated as ‘extreme’ j, y versus ‘regular’ i, u). Before we embark on a program of adding new symbols, we should be sure that we know how many symbols to add. It turns out that the pronunciation of [i] and [u] differs in many languages: these vowels exist in English, Kikamba, Elomwe, Kimatuumbi, Bari, Kipsigis, Didonga and Sesotho, and their actual pronunciation differs in each language.

You do not have to go very far into exotic languages to find this phonetic difference, for the difference between English [i] and German [i] is also very no-
ticeable, and is something that a language-learner must master to develop a good German or English accent. Although the difference may be difficult for the untrained ear to perceive at first, they are consistent, physically measurable, and reproducible by speakers. If written symbols are to represent phonetic differences between languages, a totally accurate transcription should represent these differences. To represent just this range of vowel differences involving [i] and [ɻ], over a dozen new symbols would need to be introduced.

Other variants of sounds. Similar variation exists with other phonetic categories. The retroflex consonants of Telugu, Hindi, and Ekoti are all pronounced differently. Hindi has what might be called ‘mild’ retroflexion, where the tip of the tongue is placed just behind the alveolar ridge, while in Telugu, the tip of the tongue is further back and contact is made between the palate and the underside of the tongue (sub-laminal); in Ekoti, the tongue is placed further forward, but is also sub-laminal. Finnish, Norwegian, and English contrast the vowels [a] and [æ], but in each of these languages the vowels are pronounced in a slightly different way. The voiced velar fricative [ɣ] found in Arabic, Spanish and the Kurdish language Hawrami are all phonetically different in subtle but audible ways.

The important details of speech. We will not expand our transcription tools to include as many symbols as needed to capture the myriad of fine distinctions between similar sounds of languages. Fine-tuning transcription is tangential to the goals of phonology, and perfect accuracy is impossible. Auditory transcriptions are limited in what they accomplish, and cannot be used to achieve exact reproduction of a speech event via symbols. If a speaker produces the English word “putt” [pʌt] 10,000 times, no utterance will be exactly identical to any other utterance. They will be very similar, in ways which might be quantified mathematically, but they would not be exactly the same. Productions of the same word by two speakers of the same language have a greater difference, and supposedly similar utterances in different languages can be much more different. There is no limit to the number of physically different utterances which humans can produce, but there are also only a very small number of discrete transcriptional symbols. The reason for this, as we have emphasised in Chapter 1, is that a transcription approximates speech, and omits properties which are unimportant to phonological systems.

Such details are important to phonetics and its interface with phonology, but must be studied quantitatively using acoustic measurements — formant frequencies or segment durations — or articulatorily by measuring the position of the tongue and lips. For the purposes of phonology, these languages have the same vowels, [i] vs. [ɻ]. The differences in pronunciation come from detail rules that are part of the phonetic grammars of the languages.

What is important to phonology is not exactly how sounds are pronounced, but what types of sound differences can be contrastive — can form the basis for making differences in meaning. Language can contrast tense [i] and lax [ɻ], but
cannot further contrast a hyper-tense high vowel (like that found in Kimatuumbi) which we might write as [i’] with plain tense [i] as in English, or hyper-lax [i’] as in Kimatuumbi with plain lax [i] as found in English. Within a language, you find at most [i] vs. [i]. Languages can have one series of retroflex consonant, and cannot contrast Hindi-style [tä] with a Telegu-style phoneme which we might notate as [tä’]. The phonology simply has “retroflex”, and it is up to the phonetic component of a language to say exactly how a retroflex consonant is pronounced.

It is important to emphasise that these phonetic details are not too subtle to hear. The difference between various retroflex consonants is quite audible, and the difference between English and German [i] is appreciable. Children learning German can hear and reproduce German [i] accurately. Speakers can also tell when someone mispronounces a German [i] as an English [i], and bilingual German-English speakers can easily switch between the two phonetic vowels.

What phonological theory wants to know is: what is a possible phoneme?

How might we answer this? We could look at all languages and publish a list. A monumental difficulty with that is that there are nearly 7,000 languages, but useful information on around 10% of these languages. Worse, this could only say what phonemic contrasts exist at the present: it does not answer the really interesting question, what the possible phonemes are, which may have existed in a language spoken 1000 years ago, or some future language which will be spoken 1000 years hence. We are not just interested in observation, we are interested in prediction.

In this connection, consider whether a ‘bilabial click’ is a possible phoneme. We symbolize it as [ʘ] — it is like a kiss, but with the lips flat as for [m], not protruded as for [w]. Virtually all languages have bilabial consonants, and we know of dozens of languages with clicks consonants (Dahalo, Sesotho, Zulu, Xhosa, Khoekhoe), so the question is whether the combination ‘bilabial’ and ‘click’ can define a phoneme. Such a sound does exist, but only in two closely related languages, !Xoo and Eastern #Hoan, members of the Khoisan language family. These languages have under 5,000 speakers combined, and given socio-economic factors where these languages are spoken (Namibia and Botswana), it is likely that the languages will no longer be spoken in 200 years. We are fortunate in this case that we have information of these languages which allows us to say that this is a phoneme, but things could have turned out differently. The languages could easily have died out without having been recorded, and then we would wrongly conclude that a bilabial click is not a possible phoneme because it has not been observed. In posing the question of possible phonemes, we must be aware that there can be accidental gaps in the database of observed phonemes.

Predictions versus observations. A list of facts is scientifically uninteresting. A basic goal of science is to have knowledge that goes beyond what has been observed, because we believe that the universe obeys general laws. A list might be helpful in building a theory, but we would not want to stop with a list, because it would give us no explanation why that particular list, as opposed to some other
arbitrary list, should constitute the possible phonemes of language. The question ‘what is a possible phoneme’ should thus be answered by reference to a general theory of what speech sounds are made of, just as a theory of ‘possible atoms’ is based on a general theory of what makes up atoms and rules for putting those bits together. Science is not simply the accumulation and sorting of facts, but rather is the attempt to discover laws that regulate the universe. Such laws make predictions about things that we have yet to observe: certain things should be found, other things should never be found.

The Law of Gravity predicts that a rock will fall to earth, which says what it will do and by implication what it will not do: it also won’t go up or sideways. Physicists have observed that subatomic particles decay into other particles. Particles have an electrical charge — positive, negative or neutral — and there is a physical law that the charge of a particle is preserved when it decays (adding up the charges of the decay products). The particle known as a “kaon” (K) can be positive (K⁺), negative (K⁻) or neutral (K⁰); a kaon can decay into other particles known as “pions” (π) which also can be positive (π⁺), negative (π⁻) or neutral (π⁰). Thus a neutral kaon may become a positive pion and a negative pion (K⁰ → π⁺ + π⁻), or it may become one positive, one negative and one neutral pion (K⁰ → π⁺ + π⁻ + π⁰), because in both cases the positives and negatives cancel out and the sum of charges is neutral (0). The Law of Conservation of Charge allows these patterns of decay, and prohibits a neutral kaon from becoming two positive pions (K⁰ → π⁺ + π⁺). In the myriad cases of particle decay which have been observed experimentally, none violate this law which predicts what can happen and what cannot.

Analogously, phonological theory seeks to discover the laws for building phonemes, which predict the possible phonemes of languages. We will see that theory, after considering a related question which defines phonology.

1.2. Possible Rules

Previous chapters have focused on rules, but we haven’t paid much attention to how they should be formulated. English has rules defining allowed clusters of two consonants at the beginning of the word. The first set of consonant sequences in (1) is allowed, whereas the second set of sequences is disallowed.

1

pr pl br bl tr dr kr kl gr gl
*rp *lp *rb *lb *rt *rd *rk *lk *rg *lg

This restriction is very natural and exists in many languages — but it is not inevitable, and does not reflect any insurmountable problems of physiology or perception. Russian allows many of these clusters, for example [rtut⁵] ‘mercury’ exemplifies the sequence [rt] which is impossible in English.

We could list the allowed and disallowed sequences of phonemes and leave it at that, but this does not explain why these particular sequences are al-
lowed. Why don’t we find a language which is like English, except that the specific sequence [lb] is allowed and the sequence [bl] is disallowed? An interesting generalization regarding sequencing has emerged after comparing such rules across languages. Some languages (e.g. Hawaiian) do not allow any clusters of consonants and some (Bella Coola, a Salishan language of British Columbia) allow any combination of two consonants, but no language allows initial [lb] without also allowing [bl]. This is a more interesting and suggestive observation, since it indicates that there is something about such sequences that is not accidental in English; but it is still just a random fact from a list of accumulated facts, if we have no basis for characterising classes of sounds, and view the restrictions as restrictions on letters, as sounds with no structure.

There is a rule in English which requires that all vowels be nasalized when they appear before a nasal consonant, and thus we have a rule something like (2).

\begin{align*}
\text{(2)} & \quad \varepsilon e i i \\
& \quad a o u \quad \rightarrow \quad ã ë õ ù \\
& \quad u æ \quad ù æ \quad / \quad m, n, ŋ
\end{align*}

If rules just replace one arbitrary list of sounds by another list when they stand in front of a third arbitrary list, we have to ask why these particular sets of symbols operate together. Could we replace the symbol [n] with the symbol [č], or the symbol [ô] with the symbol [ö], and still have a rule in some language? It is not likely to be an accident that these particular symbols are found in the rule: a rule similar to this can be found in quite a number of languages, and we would not expect this particular collection of letters to assemble themselves into a rule in many languages, if these were just random collections of letters.

Were phonological rules stated in terms of randomly assembled symbols, there would be no reason to expect (3a) to have a different status from (3b).

\begin{align*}
\text{(3) a. } & \quad \{p,t,č,k\} \rightarrow \{m,n, ŋ, ň\} / \quad \{m,n, ŉ, ņ\} \\
\text{b. } & \quad \{b,p,d,q\} \rightarrow \{d,q,b,p\} / \quad \{s,x,o, ţ\}
\end{align*}

Rule (3a) — nasalization of stops before nasals — is quite common, but (3b) is never found in human language. This is not an accident, but rather reflects the fact that the latter process cannot be characterized in terms of a unified phonetic operation applying to a phonetically defined context. The insight which we have implicitly assumed, and make explicit here, is that rules operate not in terms of specific symbols, but in terms of defineable classes. The basis for defining those classes is a set of phonetic properties.

As a final illustration of this point, rule (4a) is common in the world’s languages but (4b) is completely unattested.
(4)
\[a. \quad k.g \rightarrow \tilde{c}\tilde{\gamma} / _ _ i,e \]
\[b. \quad p,r \rightarrow i,b / _ _ o,n \]

The first rule refers to phonetically definable classes of segments (velar stops, alveopalatal affricates, front vowels), and the nature of the change is definable in terms of a phonetic difference (velars change place of articulation and become alveopalatals). The second rule cannot be characterised by phonetic properties: the sets \{p,r\}, \{i,b\} and \{o,n\} are not defined by some phonetic property, and the changes of [p] to [i] and [r] to [b] has no coherent phonetic characterisation.

The lack of rules like (4b) is not just an isolated limitation of knowledge — it’s not simply that we haven’t found the specific rule (4b) but we have found (4a) — but rather these kinds of rule represents large, systematic classes. (3b) and (4b) represent a general kind of rule, where classes of segments are defined arbitrarily. Consider the constraint on clusters of two consonants in English. In terms of phonetic classes, this reduces to the simple rule that the first consonant must be a stop and the second consonant must be a liquid. The second rule changes vowels into nasalized vowels before nasal consonants. The basis for defining these classes will be considered now.

2. Distinctive feature theory

Just saying that rules are defined in terms of phonetic properties is too broad a claim, since it says nothing about the phonetic properties that are relevant. Consider a hypothetical rule, stated in terms of phonetic properties:

all vowels change place of articulation so that the original difference in formant frequency between F₁ and F₃ is reduced to 1/2 what it originally was, when the vowel appears before a consonant whose duration ranges from 100 to 135 msc.

What renders this rule implausible (no language has one vaguely resembling it) is that it refers to specific numerical durations, and to the difference in frequency between the first and third formant.

The phonetic properties which are the basis of phonological systems are general and somewhat abstract, such as voicing or rounding, and largely are the categories which we have informally been using already: they are not the same, as we will see. The hypothesis of distinctive feature theory is that there is a small set, around two dozen, of phonetically-based properties which phonological analysis uses. These properties, the distinctive features, not only define the possible phonemes of human languages, but also define phonological rules. The classical statement of features derives from Chomsky & Halle 1968. We will use an adapted set of these features, which takes into consideration refinements. Each feature can have one of two values, plus and minus, so for each speech sound, the segment
either has the property (is [+F_i]) or lacks the property (is [-F_i]). In this section, we follow Chomsky & Halle 1968 and present the generally-accepted articulatory correlates of the features, that is, what aspects of production the feature relates to. There are also acoustic and perceptual correlates of features, pertaining to what the segment sounds like, which are discussed by Jakobson, Fant & Halle 1952 using a somewhat different system of features.

2.1. Phonetic Preliminaries

By way of phonetic background to understanding certain features, two phonetic points need to be clarified. First, some features are characterised in terms of the ‘neutral position’, which is a configuration that the vocal tract is assumed to have immediately prior to speaking. The neutral position, approximately that of the vowel [e], defines relative movement of the tongue.

Second, you need to know a bit about how the vocal folds vibrate, since some feature definitions relate to the effect on vocal fold vibration (important because it provides most of the sound energy of speech). The vocal folds vibrate when there is enough air pressure below the glottis (the opening between the vocal folds) to force the vocal folds apart. This opening reduces subglottal pressure, which allows the folds to close, and this allows air pressure to rebuild to the critical level where the vocal folds are blown apart again. The critical factor that causes the folds to open is that the pressure below the vocal folds is higher than the pressure above.

Air flows from the lungs at a roughly constant rate. Whether there is enough drop in pressure for air to force the vocal folds open is thus determined by the positioning and tension of the vocal folds (how hard it is to force them apart), and the pressure above the glottis. The pressure above the glottis depends on how effectively pressure buildup can be relieved, and this is determined by the degree of constriction in the vocal tract. In short, the configuration of the vocal folds, and the degree and location of constriction above the glottis almost exclusively determine whether there will be voicing.

If the pressure above and below the glottis are nearly equal, air stops flowing and voicing is blocked. So if the vocal tract is completely obstructed (as for the production of a voiceless stop like [k]), air flowing through the glottis rapidly equalizes the pressure below and above the glottis, which stops voicing. On the other hand, if the obstruction in the vocal tract is negligible (as it is in the vowel [a]), the pressure differential needed for voicing is easily maintained, since air passing through the glottis is quickly vented from the vocal tract.

A voiced stop such as [g] is possible, even though it involves a total obstruction of the vocal tract analogous to that found in [k], because it takes time for pressure to build up in the oral cavity to the point that voicing ceases. Production of [g] involves ancillary actions to maintain voicing. The pharynx may be widened, which gives the air more room to escape, delaying the buildup of pressure.
The larynx may be lowered, which also increases the volume of the oral cavity; the closure for the stop may be weakened slightly, allowing tiny amounts of air to flow through; the velum may be raised somewhat to increase the size of the air cavity, or it may be lowered somewhat to allow small (usually imperceptible) amounts of air to pass through the nose. The duration of the consonant can be reduced — generally, voiced stops are phonetically shorter than corresponding voiceless stops are.

Certain sounds such as vowels lack a radical constriction in the vocal tract, so it is quite easy to maintain voicing during such sounds, whereas with other sounds, specifically obstruents, voicing is difficult to maintain. Some accounts of this distinction, especially that of Chomsky & Halle 1968, refer to ‘spontaneous voicing’, which is grounded on the assumption that voicing occurs automatically simply by positioning the vocal folds in what we might call the ‘default’ position. For sounds that involve a significant obstruction of the vocal tract, special actions are required for voicing. The features [sonorant] and [consonantal] directly relate to the obstruction in the vocal tract, which determines whether the vocal folds vibrate spontaneously.

2.2. Major Class Features

One of the most intuitive distinctions which feature theory needs to capture is that between consonants and vowels. There are three features, the so-called major class features, which provide a rough first grouping of sounds into functional types that includes the consonant/vowel distinction.

- **syllabic**: forms a syllable peak (and thus can be stressed).
- **sonorant**: sounds produced with a vocal tract configuration in which spontaneous voicing is possible.
- **consonantal**: sounds produced with a major obstruction in the oral cavity.

The feature [syllabic] is, unfortunately, simultaneously one of the most important features and one of the hardest to define physically. It corresponds intuitively to the notion ‘consonant’ (where [h], [y], [m], [s] [t] are ‘consonants’) versus ‘vowel’ (such as [a], [i]): indeed the only difference between the vowels [i,u] and the corresponding glides [y,w] is that [i,u] are [+syllabic] and [y,w] are [-syllabic]. The feature [syllabic] goes beyond the intuitive vowel/consonant split. English has syllabic sonorants, such as [r], [l], [n]. The main distinction between the English words (American English pronunciation) “ear” [ɪɹ] and “your” [jɹ] resides in which segments are [+syllabic] versus [-syllabic]. In “ear”, the vowel [ɪ] is [+syllabic] and [ɹ] is [-syllabic], whereas in “your”, [j] is [-syllabic] and [ɹ] is [+syllabic]. The words “eel” [ɪ] and the reduced form of “you’ll” [j] for many speakers of American English similarly differ in that [ɪ] is the peak of the syllable (is [+syllabic]) in “eel”, but [j] is the syllable peak in “you’ll”.
Other languages have syllabic sonorants which phonemically contrast with nonsyllabic sonorants, such as Serbo-Croatian which contrasts syllabic [r] with nonsyllabic [r] (cf. groze ‘fear (gen.)’ versus groce ‘little throat’). Swahili distinguishes [mbuni] “ostrich” and [mbuni] “coffee plant” in the fact that [mbuni] is a three-syllable word and [m] is the peak (the only segment) of that first syllable, but [mbuni] is a two syllable word, whose first peak is [u]. Although such segments may be thought of as ‘consonants’ in one intuitive sense of the concept, they have the feature value [+syllabic]. This is a reminder that there is a difference between popular concepts about language and technical terms. ‘Consonant’ is not strictly speaking a technical concept of phonological theory, even though it is quite frequently used by phonologists — almost always with the meaning ‘non-peak’ in the syllable, i.e. a [-syllabic] segment.

The feature [sonorant] captures the distinction between segments such as vowels and liquids where the constriction in the vocal tract is small enough that no special effort is required to maintain voicing, as opposed to sounds such as stops and fricatives which have enough constriction that effort is needed to maintain voicing. In an oral stop, air cannot flow through the vocal tract at all, so oral stops are [-sonorant]. In a fricative, even though there is some airflow, there is so much constriction that pressure builds up, so that spontaneous voicing is not possible, thus fricatives are [-sonorant]. In a vowel or glide, the vocal tract is only minimally constricted so air can flow without impedance: vowels and glides are therefore [+sonorant]. A nasal consonant like [n] has a complete obstruction of airflow through the oral cavity, but nevertheless the nasal passages are open which allows free flow of air. Air pressure does not build up during the production of nasals, so nasals are [+sonorant]. In the liquid [l], there is a complete obstruction formed by the tip of the tongue with the alveolar ridge, but nevertheless air flows freely over the sides of the tongue so [l] is [+sonorant].

The question whether [r] is [+sonorant] or [-sonorant] has no simple answer, since many phonetically different segments are transcribed as [r]; some are [-sonorant] and some are [+sonorant], depending on their phonetic properties. The so-called fricative r of Czech (spelled ř) has a considerable constriction, so it is [-sonorant], but English type [r] is a sonorant since there is very little constriction. In other languages there may be more constriction, but it is so brief that it does not allow significant buildup of air pressure (this would be the case with ‘tapped’ r’s). Even though spontaneous voicing is impossible for the laryngeal consonants [h,ʔ] because they are formed by positioning the vocal folds so that voicing is precluded, they are [+sonorant] since they have no constriction above the glottis.

The feature [consonantal] is very similar to the feature [sonorant], but specifically addresses the question of whether there is any major constriction in the oral cavity. This feature groups together obstruents, liquids and nasals which are [+consonantal], versus vowels, glides and laryngeals ([h,ʔ]) which are [-consonantal]. Vowels and glides have a minor obstruction in the vocal tract, compared to that formed by a fricative or a stop. Glottal stop is formed with an
obstruction at the glottis, but none in the vocal tract, hence it is [-consonantal]. In
nasals and liquids, there is an obstruction in the oral cavity, even though the
overall constriction of the whole vocal tract is not high enough to prevent sponta-
neous voicing. Recent research indicates that this feature may not be necessary,
since its function is usually covered as well or better by other features.

The most important phonological use of features is that they identify
classes of segments in rules. All speech sounds can be analysed in terms of their
values for the set of distinctive features, and the set of segments that have a par-
ticular value for some feature (or set of feature values) is a natural class. Thus the
segments [a i r m] are members of the [+syllabic] class, and [y h ? r m s p] are
members of the [-syllabic] class; [a r y ? r m] are in the [+sonorant] class and [s z p
b] are in the [-sonorant] class; [a i w h?] are in the [-consonantal] class and [r m r
m s p] are in the [+consonantal] class. Natural classes can be defined in terms of
conjunctions of features, such as [+consonantal, -syllabic] which refers to the set
of segments which are simultaneously [+consonantal] and [-syllabic]. Accordingly,
the three major class features combine to define five maximally differentiated
classes, exemplified by the following segment groups.

(5) a,i,u r,l,m y,w,h,? r,l,m s,z,p,b
 syllabic + + - - -
 sonorant + + + + -
 consonantal - + - + +

Further classes are definable by omitting specifications of one or more of these
features: for example, the class [-syllabic,-sonorant] includes {y,w,h,?,r,l,m}.

One thing to note is that all [+syllabic] segments, i.e. all syllable peaks, are
also [+sonorant]. It is unclear whether there are syllabic obstruents, i.e. [s], [k]. It
has been claimed that such things exist in certain dialects of Berber, but their inter-
pretation remains controversial, since the principles for detection of syllables are
controversial. Another gap is the combination [-sonorant, -consonantal], which
would be a physical impossibility. A [-sonorant] segment would require a major
obstruction in the vocal tract, but the specification [-consonantal] entails that the
obstruction could not be in the oral cavity. The only other possibility would be
constriction of the nasal passages, and nostrils are not sufficiently constrictable.

2.3. Place of Articulation

Features to define place of articulation are our next functional set. We be-
gin with the features typically used by vowels, specifically the [+syllabic,
-consonantal,+sonorant] segments, and then proceed to consonant features, ending
with a discussion of the intersection of these features.
Vowel place features. The features which define place of articulation for vowels are the following.

- **high**: the body of the tongue is raised from the neutral position.
- **low**: the body of the tongue is lowered from the neutral position.
- **back**: the body of the tongue is retracted from the neutral position.
- **round**: the lips are protruded.
- **tense**: sounds requiring deliberate, accurate, maximally distinct gestures that involve considerable muscular effort.
- **advanced tongue root**: produced by drawing the root of the tongue forward.

The main features are [high], [low], [back] and [round]. Phonologists primarily distinguish just front and back vowels, governed by [back]: front vowels are [-back] since they do not involve retraction of the tongue body, and back vowels are [+back]. Phonetic central vowels are usually treated as phonological back vowels, since typically central vowels are unrounded and back vowels are rounded. Distinctions such as between the mid vowels [ɜ], [æ], [ʌ], [æ] and [ʌ], or the high vowels [i], [u] and [ʊ], are considered to be phonologically unimportant over-differentiations of language-specific phonetic values of phonologically back unrounded vowels. In lieu of clear examples of a contrast between central and back rounded vowels, or central and back unrounded vowels, we will not at the moment postulate any feature for the front-back dimension: though, section 6 considers possible evidence for the phonological relevance of the concept ‘central vowel’.

Two main features are employed to represent vowel height. High vowels are [+high] and [-low], low vowels are [+low] and [-high]. No vowel can be simultaneously [+high] and [+low] since the tongue cannot be raised and lowered simultaneously; mid vowels are [-high,-low]. In addition, any vowel can be produced with lip rounding, using the feature [round]. These features allow us to characterize the following vowel contrasts:

\[
\begin{array}{cccccccccc}
 & i & ù & i & u & e & õ & œ & æ & ð \\
high & + & + & + & + & - & - & - & - & - \\
back & - & - & + & + & - & + & - & - & + \\
round & - & + & - & + & - & - & + & - & + \\
\end{array}
\]

Note that [a] is a back low unrounded vowel, in contrast to the symbol [ɒ] for a back low rounded vowel. As noted in chapter 2, IPA uses more vowel symbols than are typical for reporting linguistic data, especially among low vowels which includes [æ a ə ɒ ɒ]. Phonological sources typically use <a> to indicate a low non-round, non-front vowel — IPA [a] — and do not distinguish <a>, <ɑ> or <ɛ>.
Vowels with a laxer, ‘less deliberate’ and lower articulation, such as [ɨ] in English ‘sit’ or [ɛ] in English ‘set’ would be specified as [−tense].

One question which has not been resolved is the status of low vowels in terms of this feature. Unlike high and mid vowels, there do not seem to be analogous contrasts between low vowels between tense vs. lax [æ]. Another important point about this feature is that while [back], [round], [high] and [low] will also play a role in defining consonants, [tense] plays no role in consonantal contrasts.

The difference between /i/ and /ɨ/, or /e/ and /ɛ/ has also been considered to be one of vowel height (proposed in alternative models where vowel height is governed by a single scalar vowel height feature, rather than by the binary features [high] and [low]). This vowel contrast has also been described in terms of the features ‘Advanced Tongue Root’ (ATR), especially in the vowel systems of languages of Africa and Siberia. There has been debate over the phonetic difference between [ATR] and [tense]. Typically, [+tense] front vowels are fronter than their lax counterparts, and [+tense] back vowels are backer than their lax counterparts. In comparison, [+ATR] vowels are supposed to be generally fronter than corresponding [-ATR] vowels are, so that [+ATR] back vowels are phonetically fronter than their [-ATR] counterparts. However, some articulatory studies have shown that the physical basis for the tense/lax distinction in English is no different from that which ATR is based on. Unfortunately, the clearest examples of the feature [ATR] are found in languages of Africa, where very little phonetic research has been done. Since no language contrasts both [ATR] and [tense] vowels, it is usually supposed that there is a single feature, whose precise phonetic realization varies somewhat from language to language.

Consonant place features. The main features used for defining consonantal place of articulation are the following.

coronal: produced with the blade or tip of the tongue raised from the neutral position.

anterior: produced with an obstruction located at or in front of the alveolar ridge.

strident: produced with greater noisiness.

distributed: produced with a constriction that extends for a considerable distance along the direction of air flow.
Place of articulation in consonants is primarily described with the features [coronal] and [anterior]. Labials, labiodentals, dentals and alveolars are [+anterior] since their primary constriction is at or in front of the alveolar ridge (either at the lips, the teeth, or just back of the teeth) whereas other consonants (including laryngeals) are [-anterior], since they lack this front constriction. The best way to understand this feature is to remember that it is the defining difference between [s] and [š], where [s] is [+anterior] and [š] is [-anterior]. Anything produced where [s] is produced, or in front of that position, is therefore [+anterior]; anything produced where [š] is, or behind [š] is [-anterior].

\[
\begin{array}{l}
\text{(+anterior)} & \text{(-anterior)} \\
\text{f p θ s t t} & \text{š č š t ç x k q ř h ?}
\end{array}
\]

Consonants which involve the blade or tip of the tongue are [+coronal], and this covers the dentals, alveolars, alveopalatals and retroflex consonants. Consonants at other places of articulation — labial, velar, uvular and laryngeal — are [-coronal]. Note that this feature does not encompass the body (back) of the tongue, so while velars and uvulars use the tongue, they use the body of the tongue rather than the blade or tip, and therefore are [-coronal]. The division of consonants into classes as defined by [coronal] is illustrated below.

\[
\begin{array}{l}
\text{(+coronal)} & \text{(-coronal)} \\
\text{č t s š n l ř ř} & \text{p f k q ř}
\end{array}
\]

Two other features are important in characterizing the traditional places of articulation. The feature [distributed] is used in coronal sounds to distinguish dental [t] from English alveolar [t], or alveopalatal [š] from retroflex [š]: the segments [t,š] are [+distributed] and [t,č,š] are [-distributed]. The feature [distributed], as applied to coronal consonants, approximately corresponds to the traditional phonetic notion ‘apical’ ([+distributed]) versus ‘laminal’ ([+distributed]). This feature is not relevant for velar and labial sounds and we will not specify any value of [distributed] for non-coronal segments.

The feature [strident] distinguishes strident [f,s] from nonstrident [φ,θ]: otherwise, the consonants [f,φ] would have the same feature specifications. Note that the feature strident is defined in terms of the aerodynamic property of greater turbulence (which has the acoustic correlate of greater noise), not in terms of the movement of a particular articulator — this defining characteristic is accomplished by different articulatory configurations. In terms of contrastive usage, the feature [strident] only serves to distinguish bilabial and labiodentals, or interdentals and alveolars. A sound is [+strident] only if it has greater noisiness, and ‘greater’ implies a comparison. In the case of [φ] versus [f], [β] versus [v], [θ] versus [s], or [ð] versus [z] the second sound in the pair is noisier. No specific degree of noisi-
ness has been proposed which would allow you to determine in isolation whether a given sound meets the definition of strident or not. Thus it is impossible to determine whether [s] is [+strident], since there is no contrast between strident and non-strident alveopalatal sounds. The phoneme [s] is certainly relatively noisy — noisier than [θ] is — but then [θ] is noisier than [φ] is.

[Strident] is not strictly necessary for making a distinction between [s] and [θ], since [distributed] also distinguishes these phonemes. Since [strident] is therefore only crucial for distinguishing bilabial and labial fricatives, it seems questionable to postulate a feature with such broad implications solely to account for the contrast between labiodental and bilabial fricatives. Nonetheless, we need a way of representing this contrast. The main problem is that there are very few languages (such as Ewe, Venda and Shona) which have both [f] and [φ], or [v] and [β], and the phonological rules of these languages do not give us evidence as to how this distinction should be made in terms of features. We will therefore only invoke the feature [strident] in connection with the [φ,β] vs. [f,v] contrast.

Using these three features, consonantal places of articulation can be partially distinguished as follows.

(10)	p	t	s	c	k	q	Ũ	Ĩ
anterior | + | + | - | - | - | - | - | - |
coronal | + | + | + | + | + | - | - | - |
distributed | - | + | + | - | - | - | - | - |

Vowel features on consonants. The features [high], [low], [back] and [round] are not reserved exclusively for vowels, and these typical vowel features can play a role in defining consonants as well. As we see in (10), velar, uvular, pharyngeal and glottal places of articulation are not yet distinguished; this is where the features [high], [low] and [back] become important. Velar, uvular and pharyngeal consonants are [+back] since they are produced with a retracted tongue body. The difference between velar and uvular consonants is that with velar consonants the tongue body is raised, whereas with uvular consonants it is not, and thus velars are [+high] where uvulars are [-high]. Pharyngeal consonants are distinguished from uvulars in that pharyngeals are [+low] and uvulars are [-low], indicating that the constriction for pharyngeals is even lower than that for uvulars.

One traditional phonetic place of articulation for consonants is that of ‘palatal’ consonants. The term ‘palatal’ is used in many ways, for example the post-alveolar or alveo-palatal (palato-alveolar) consonants [s] and [c] might be referred to as palatals. This is strictly speaking a misnomer, and the term ‘palatal’ is best used only for the ‘true palatals’, transcribed in IPA as [c c Ũ]. Such consonants are found in Hungarian, and also in German in words like [iç] ‘I’ or in Norwegian [çi:per] ‘buys’. These consonants are produced with the body of the tongue raised and fronted, and therefore they have the feature values [+hi,-back]. The classical feature system presented here provides no way to distinguish such palatals from
Palatalized velars ([kʰ]) either phonetically or phonologically. Palatalized (fronted) velars exist as allophonic variants of velars before front vowels in English e.g. [kʰɪp] ‘keep’; they are articulatorily and acoustically extremely similar to the palatals of Hungarian. Very little phonological evidence is available regarding the treatment of ‘palatals’ versus ‘palatalized velars’: it is quite possible that [c] and [kʰ], or [ç] and [xʰ], are simply different symbols, chosen on the basis of phonological patterning rather than systematic phonetic differences.

With the addition of these features, the traditional places of articulation for consonants can now be fully distinguished.

\[
\begin{array}{cccccccccc}
\text{anterior} & p & ð & t & č & ř & c,kʰ & k & q & ř & ?
\end{array}
\]

\[
\begin{array}{cccccccccc}
\text{coronal} & - & + & + & - & - & - & - & - & - & -
\end{array}
\]

\[
\begin{array}{cccccccccc}
\text{distributed} & + & - & + & - & - & - & - & - & - & -
\end{array}
\]

The typical vowel features have an additional function as applied to consonants, namely that they define secondary articulations such as palatalization and rounding. Palatalization involves superimposing the raised and fronted tongue position of the glide [y] onto the canonical articulation of a consonant, thus the features [+high,-back] are added to the primary features that characterise a consonant (those being the features that typify [i,y]). So, for example, the essential feature characteristics of a bilabial are [+anterior,-coronal] and they are only incidentally [+hi,-back]. A palatalized bilabial would be [+anterior,-coronal,+hi,-back]. Velarized consonants have the features [+high,+back] analogous to the features of velar consonants; pharyngealized consonants have the features [+back,+low]. Consonants may also bear the feature [round]. Applying various possible secondary articulations to labial consonants results in the following specifications.

\[
\begin{array}{cccccccccc}
\text{hi} & p & p^y & p^z,p^w & p^w & p^y & p^q & p^o & p^6
\end{array}
\]

\[
\begin{array}{cccccccccc}
\text{back} & - & - & + & + & - & + & + & -
\end{array}
\]

\[
\begin{array}{cccccccccc}
\text{low} & - & - & - & - & - & - & - & -
\end{array}
\]

\[
\begin{array}{cccccccccc}
\text{round} & - & - & - & + & + & - & + & +
\end{array}
\]

Labialised (p^w), palatalised (p^z), velarised (p^w,p^w) and pharyngealised (p^6) variants are the most common categories of secondary articulation. Uvularised consonant, i.e. p^u, are rare: uvularised clicks are attested in Jun /’hoansi. It is unknown if there is a contrast between rounded consonants differing in secondary height, symbolised above as p^w vs. p^o or p^w vs. p^6. Feature theory allows such a contrast, so even-
tually we ought to find examples. If, as seems likely after some decades of re-
search, such contrasts do not exist where predicted, there should be a revision of
the theory, so that the predictions of the theory better match observations.

This treatment of secondary articulations makes other predictions. One is
that there cannot be palatalized uvulars or pharyngeals. This follows from the fact
that the features for palatalization ([+high,-back]) conflict with the features for
uvulars ([+hi,-back]) and pharyngeals ([+hi,+back,+low]). Since such segments do
not appear to exist, this supports the theory: otherwise we expect — in lieu of a
principle that prohibits them — that they will be found in some language. Second,
in this theory a ‘pure’ palatal consonant (such as Hungarian [j]) is equivalent to a
palatalized (i.e. fronted) velar. Again, since no language makes a contrast between
a palatal and a palatalised velar, this is a good prediction of the theory (unless such
a contrast is uncovered, in which case it becomes a bad prediction of the theory).

2.4. Manner of Articulation

Other features relate to the manner in which a segment is produced, apart
from the location of the segment’s constriction. The manner features are:

- **continuant**: the primary constriction is not narrowed so much that air flow
 through the oral cavity is blocked.
- **delayed release**: release of a total constriction is slowed so that a fricative
 is formed after the stop portion.
- **nasal**: the velum is lowered which allows air to escape through the nose.
- **lateral**: the mid section of the tongue is lowered at the side.

The feature [+continuant] groups together vowels, glides, fricatives and [h]
as [+continuant]. Note that [+continuant] is a broader group than the traditional no-
tion ‘fricative’ which refers to segments such as [s], [z] or [θ]. The term ‘fricative’
generally refer to non-sonorant continuants, i.e. the class defined by the conjunc-
tion of features [+continuant,-sonorant]. Since continuants are defines as sounds
where air can flow continuously through the oral cavity, nasals like [m n ñ] are
[-continuant], even though they allow continuous air flow (through the nose).

Affricates such as [tʃ, pʃ] are characterised with the feature [+delayed re-
lease]. Necessarily, all affricates are [-continuant], since they involve complete
constriction followed by a period of partial fricative-like constriction, and therefore
they behave essentially as a kind of stop. This feature is in question, since [pʰ ɾ kʰ]
do not act as a unified phonological class; nevertheless, some feature is needed to
characterise stops versus affricates. Various alternatives have been proposed, for
example that [kʰ] might just be the pronunciation of aspirated [kʰ] since velar [kʰ]
and [kʰ] never seem to contrast; perhaps the feature [strident] defines [tʰ] vs. [ɾ].
The proper representation of affricates is a currently unsolved issue in phonology.
The feature [+nasal] is assigned to sounds where air flows through the nasal passages, for example [n] as well as nasalised vowels like [ä]. Liquids and fricatives can be nasalised as well, but the latter especially are quite rare. L-like sounds are characterised with the feature [lateral]. Almost all [lateral] sounds are coronal, though there are a few reports of velar laterals. Detailed information on the phonetics and phonology of these segments is not available.

Examples of the major manners of articulation are illustrated below, for coronal place of articulation.

\[
\begin{array}{ccccccc}
& t & n & t^* & s & l & t^i = \lambda
\\
delayed release & - & - & + & - & - & +
\\
continuant & - & - & - & + & + & -
\\
lateral & - & - & - & + & + & +
\\
nasal & - & + & - & - & + & -
\end{array}
\]

2.5. Laryngeal Features

Three features characterise the state of the glottis.

spread glottis: the vocal folds are spread far apart.

constricted glottis: the vocal folds are tightly constricted.

voice: the vocal folds vibrate.

Voiced sounds are [+voice]. The feature [spread glottis] describes aspirated obstruents ([pʰ], [bʰ]) and breathy sonorants ([m], [a]): [constricted glottis] describes implosive ([ɓ]), ejective obstruents ([p’]), and laryngealized sonorants ([m̩], [a̩]).

How to distinguish implosives from ejectives is not entirely obvious, but the standard answer is that ejectives are [-voice] and implosives are [+voice]. There are two problems with this. One is that implosives do not generally pattern with other [+voiced] consonants in phonological systems, especially in how consonants affect tone (voiced consonants, but typically not implosives, may lower following tones). The second is that Ngiti and Lendu have both voiced and voiceless implosives. The languages lack ejectives, which raises the possibility that voiceless implosives are phonologically [-voice,+c.g], which is exactly the specification given to ejective consonants. You may wonder how [-voice,+c.g.] can be realised as an ejective in languages like Navajo, Tigre or Lushootseed, and as a voiceless implosive in Ngiti or Lendu. This is possible because feature values give approximate phonetic descriptions, not exact ones. The Korean ‘fortis’ consonants, found in [k’ata] “peel (noun)”, [ak’i] “musical instrument” or [alt’a] “be ill” are often described as glottalised, and phonetic studies have shown that they are produced with glottal constrictions: thus they would be described as [-voice,+c.g]. Nevertheless, they are not ejectives. Similarly, Khoekhoe (Nama) has a contrast
between plain clicks ([‘ãm] ‘deep’) and glottalised ones ([‘’ãm] ‘kill’), but the glottalised clicks realise the feature [+c.g.] as a simple constriction of the glottis, not involving an ejective release.

The usual explanation for the difference between ejectives in Navajo and glottalised non-ejective consonants in Korean or Khoekhoe is that they have the same phonological specifications, [-voice,+c.g.], but realise the features differently due to language specific differences in principles of phonetic implementation. This is an area of feature theory where more research is required.

The representations of laryngeal contrasts in consonants are given below.

\[(14)\]

\[
\begin{array}{ccccccc}
\text{voice} & - & + & + & - & - & + \\
\text{c.g.} & - & - & + & + & - & - \\
\text{s.g.} & - & - & - & - & + & + \\
\end{array}
\]

2.6. Prosodic Features

Finally, in order to account for the existence of length distinctions, and to represent stressed versus unstressed vowels, two other features were proposed.

long: has greater duration.

stress: has greater emphasis, higher amplitude and pitch, longer duration.

These are obvious: long segments are [+long] and stressed vowels are [+stress].

A major lacuna in the Chomsky & Halle 1968 account of features is a lack of features for tone. This is remedied in Chapter 10 when we introduce nonlinear representations. For the moment, we can at least assume that tones are governed by a binary feature [+High-tone] — this allows only two levels of tone, but we will not concentrate on languages with more than two tone levels.

2.7. Summary of Feature Values

Features combine quite freely, so we cannot give a complete list. By learning some specific feature values and applying your knowledge of the meaning of features, it should be possible to arrive at the feature values of other segments. This is, of course, possible only if you know relevant phonetic details of the sound that you are considering. In order to know the feature values of [l], you need to know that this is the symbol for a retroflex lateral approximant, thus it has the features appropriate for [l], and it also has the features that characterize retroflex consonants, which are [-ant,-dist]. If you do not know the phonetic characteristics of the segment symbolized as [y], it is necessary to first understand its phonetic properties — it is a voiced pharyngeal continuant — before trying to deduce its
feature values. In reading descriptions of languages, it is also important to understand that a symbol used in published data on a language is not always used according to a particular standard of phonetic transcription practices at the moment, so read the phonetic descriptions of letters in the grammar carefully!

The standard feature values for the consonants of (American) English are given in (15), to help you understand how the entire set of features is applied to the sound inventory of a language which you are familiar with.

<table>
<thead>
<tr>
<th>(15)</th>
<th>p</th>
<th>t</th>
<th>ċ</th>
<th>k</th>
<th>b</th>
<th>d</th>
<th>ğ</th>
<th>g</th>
<th>f</th>
<th>v</th>
<th>θ</th>
<th>ɒ</th>
</tr>
</thead>
<tbody>
<tr>
<td>syl.</td>
<td>-</td>
</tr>
<tr>
<td>son.</td>
<td>-</td>
</tr>
<tr>
<td>cons.</td>
<td>+</td>
</tr>
<tr>
<td>cont.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>del.rel.</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>lat.</td>
<td>-</td>
</tr>
<tr>
<td>nas</td>
<td>-</td>
</tr>
<tr>
<td>voi.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>c.g.</td>
<td>-</td>
</tr>
<tr>
<td>s.g.</td>
<td>(+</td>
<td>-</td>
</tr>
<tr>
<td>ant.</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>cor.</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>dist.</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>hi</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>lo</td>
<td>-</td>
</tr>
<tr>
<td>back</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>round</td>
<td>-</td>
</tr>
</tbody>
</table>
The assignment of [spread glottis] — aspiration — in English stops varies according to context, so the value [\(-s.g.\)] is in parenthesis in the chart because both values of this feature are found on the surface, depending on context. The value [\(-s.g.\)] represents the underlying value.

Vowel feature summary. Certain feature values are uniform for all vowels: [\(+syl, -cons, +son, +cont, -del.rel., -ant, -lat, -dist.\)]. Typically, vowels are also [\(+voice, -s.g., -c.g.\)]. There are languages such as Mazateco and !Xoo where breathy voicing and glottalization are used contrastively, so in these languages [\(+s.g.\)] and [\(+c.g.\)] are possible specifications. A number of languages have phonetic voiceless vowels, but the phonological status of voiceless vowels is not so clear, thus it may be that there are no phonologically [\(-voice\)] vowels. Values of the main features used to distinguish vowels are given in (16). (Recall that we are not certain whether [tense] applies to low vowels).

(16)

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>ü</th>
<th>i</th>
<th>u</th>
<th>e</th>
<th>ö</th>
<th>a</th>
<th>ø</th>
<th>æ</th>
<th>ø</th>
<th>a</th>
<th>ð</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>low</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>back</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>round</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>tense</td>
<td>+</td>
</tr>
</tbody>
</table>
Nasality, length, breathiness and creaky voice are properties freely available to vowels, so any of these vowels can have ±nasal, ±long, ±s.g. or ±c.g. counterparts.

Consonant feature summary. Primary place of articulation for consonants is summarised in (17), using continuant consonants (voiceless in the first row, voiced in the second: numbers in the third row are keyed to traditional place of articulation terms). Continuant consonants are used here because they exhibit the maximum number of distinctions, for example there are bilabial and labiodental fricatives, but only bilabial stops. All of these consonants are [-syl, +cont, -del.rel., -nas, -lat, -c.g., -tense, -rnd].

<table>
<thead>
<tr>
<th></th>
<th>φ</th>
<th>f</th>
<th>θ</th>
<th>s</th>
<th>ʃ</th>
<th>s</th>
<th>ʃ</th>
<th>x</th>
<th>χ</th>
<th>h</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>v</td>
<td>ð</td>
<td>z</td>
<td>ž</td>
<td>ž</td>
<td>ʒ</td>
<td>ʒ</td>
<td>ɣ</td>
<td>ɣ</td>
<td>ɣ</td>
<td>ɣ</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

ant. + + + + - - - - - - -
cor. - - + + + + - - - - -
dist. + - + -
hi - - - - - - - + - - -
lo - - - - - - - - - - -
back - - - - - - - - - - -

Secondary place of articulation is illustrated in (18), here restricted to secondary articulations on [p t]. All of these consonants are [-syl, -son, +cons, -cont, -del.rel., -lat, -nas, -voice, -s.g., -c.g., -tense].
Round consonants might simply have the specification [+round]. Tongue raising and backing is not necessary in order to achieve rounding, whereas tongue raising and backing is by definition necessary in order to have a velarised consonant.

Round consonants might simply have the specification [+round]. Tongue raising and backing is not necessary in order to achieve rounding, whereas tongue raising and backing is by definition necessary in order to have a velarised consonant.

A final important point must be made. The 20 features discussed here — syllabic, sonorant, consonantal, high, low, back, round, tense (advanced tongue root), coronal, anterior, strident, distributed, continuant, delayed release, nasal, lateral, spread glottis, constricted glottis, voice, long, stress — are specific empirical hypotheses. This means that they are subject to change in the face of evidence that a change is required, so they are not immutable. On the other hand, as scientific hypotheses, they must be taken seriously until good evidence is presented that another system of features are better (see section 6 of this chapter and Chapter 10 for discussion of such changes). Features should not be invented willy-nilly: using distinctive features is not the same as placing a plus sign in front of a traditional articulatory description, and thus describing sounds as [+mid], [+alveolar] or [+vowel] misconstrues the theoretical claim of distinctive features.

3. Features and Classes of Segments

Besides defining phonemes, features play a role in formalizing rules, since rules are stated in terms of features. Every specification, such as [+nasal] or [-voice], defines a class of segments. The generality of a class is inversely related to how many features are required to specify the class, as illustrated in (19).

<table>
<thead>
<tr>
<th>Feature</th>
<th>+</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>syllabic</td>
<td>+syl</td>
<td>-nasal</td>
</tr>
<tr>
<td>sonorant</td>
<td>+syl</td>
<td>+round</td>
</tr>
<tr>
<td>coronal</td>
<td>+syl</td>
<td>+high</td>
</tr>
<tr>
<td>high</td>
<td>+syl</td>
<td>+nasal</td>
</tr>
</tbody>
</table>

Table 18

<table>
<thead>
<tr>
<th>Feature</th>
<th>+</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>ant.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>cor.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>dist.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>hi</td>
<td>(+)</td>
<td>+</td>
</tr>
<tr>
<td>lo</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>back</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>round</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 19

<table>
<thead>
<tr>
<th>Feature</th>
<th>+</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>syllabic</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>
The most general class, defined by a single feature, is [+syllabic] which refers to all vowels. The size of that class is determined by the segments in the language: [+syllabic] in Spanish refers to [i e a o u], but in English refers to [i i e æ œ o u æ η r]. As you add features to a description, you narrow down the class, making the class less general. The usual principle adopted in phonology is that simpler rules, which use fewer features, are preferable to rules using more features.

One challenge in formalising rules with features is recognising the features which characterise classes. Discovering the features which define a class boils down to seeing which values are the same for all segments in the set, then checking that no other segment in the inventory also has that combination of values. The main obstacle is that you have to think of segments in terms of their feature properties, which takes practice to become second nature. As an exercise towards understanding the relation between classes of segments and feature descriptions, we will assume a language with the following segments:

(20) p t k b d g f s x ϕ γ w y l m n a e i o u ü

To assist in solving the problems which we will consider, feature matrices of these segments are given below in (21).

(21)

<table>
<thead>
<tr>
<th></th>
<th>cns</th>
<th>son</th>
<th>syl</th>
<th>voi</th>
<th>cnt</th>
<th>nas</th>
<th>lat</th>
<th>ant</th>
<th>cor</th>
<th>hi</th>
<th>bck</th>
<th>low</th>
<th>rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>t</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>k</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>b</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>d</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>g</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>f</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>x</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>y</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>γ</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>w</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>y</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>l</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>m</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>a</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>e</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>i</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>o</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>u</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>ü</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
Each of the following sets of segments can be defined in terms of some set of distinctive features.

(22)
 i. p t k f s x
 ii. p t b d f s v l m n
 iii. w y l m n a e i o u ü
 iv. p k b g f x v γ
 v. y l m n a e i
 vi. v γ w y a e i o u ü

In the first set, each segment is a voiceless obstruent, and, equally importantly, every voiceless obstruent of the language is included in this first set. This set could be specified as [-sonorant,-voice] or as [-voice], since all voiceless segments in the language are [-sonorant]. Given that both specifications refer to exactly the same segments, there is no question of one solution being wrong in the technical sense (assuming the language has the segments of (20): if the language had [h], these two feature specifications would not describe the segment segments). However, unless there is a compelling reason to do otherwise, the simplest definition of the set of segments should be given, using only those features which are absolutely necessary. The features which are used to exactly define a set of segments depends very much on what the entire set of segments in the language is.

If we were dealing with a language which had, in addition, the segments [pʰ tʰ kʰ] then in specifying the set [p t k f s x], you would have to also mention [−s.g.] in order to achieve a definition of the set which excludes [pʰ tʰ kʰ].

The set (22ii) contains only consonants (i.e. [−syllabic] segments), but it does not contain all of the [−syllabic] segments of the language. Compare the segments making up (22ii) with the full set of consonants:

(23)
 p t b d f s v l m n ← Selected class of segments
 p t k b d g f s x v γ w y l m n ← Entire set of consonants

This set does not include glides: [consonantal] is the essential property which distinguishes glides (including [h] and ?, which are lacking here) from regular consonants. Thus, the segments in (ii) are [+consonantal]. But not all [+consonantal] segments are included in set (ii): the velars are not included, so we need a further restriction. The features typically used to specify velars are [+high, +back], so we can use one of those features. Thus, you can pick out the segments in (ii) as the class of [+consonantal,+high] segments, or the [+consonantal,-back] segments. Rather than refer to [consonantal], you could try to take advantage of the fact that all glides are [+high] and refer to (ii) as the set of [-high] segments, without mentioning [consonantal]. It is true that all segments in the set are [-high], but [-high] itself cannot be the entire description of this set since not all [-high] segments of
the language are in the set: the vowels \{aeo\} is not in set (ii). We conclude that [+consonantal,-high] is the correct one for this class of segments.

Set (iii) contains a mixture of vowels and consonants: it includes all vowels, plus the nasals, the lateral [l], and the glides. This class is defined by [+sonorant]. Another feature which is constant in this group is [+voice], so you could define the class as [+sonorant,+voice]. But addition of [+voice] contributes nothing, so there is no point to mentioning that feature as well. Set (iv) on the other hand contains only obstruents, but not all obstruents. Of the whole set of obstruents, what is missing from (iv) is the group \{tds\}, which are [+coronal]. Therefore, we can refer to set (iv) by the combination [-sonorant,-coronal].

The fifth set, \{ylmnaei\}, includes a mixture of vowels and consonants. Some properties that members of this set have in common are that they are voiced, and they are sonorants. Given the phoneme inventory, all sonorants are voiced, but not all voiced segments are sonorants. Since the voiced obstruents \{bdg\} are not included in this set, it would be less efficient to concentrate on the feature [+voice], thus we focus on the generalization that the segments are sonorants. Now compare this set to the total set of sonorants.

\[24\] y l m n a e i w y l m n a e i o u ü

We can see that this set of segments is composed of a subset of sonorants, namely the sonorants excluding \{w,o,u,ü\}. But that set is the set of [+round] segments; therefore, the set is the set of [+sonorant,-round] segments.

The last set also contains a mixture of consonants and vowels: it includes all of the vowel and glides, plus the voiced obstruents \{v,γ\}. Therefore, the feature [sonorant] cannot be used to pick out this class of segments, since members of the class can have both values for that feature. However, all of the members of this class are voiced. Now compare set (vi) against the set of all voiced segments.

\[25\] v γ w y a e i o u ü b d g v γ w y l m n a e i o u ü

The fundamental difference between [b] and [v], or between [g] and [γ], is that \{bg\} are stops while \{vγ\} are continuants. This suggests using [+continuant] as one of the defining features for this class. Vowels and glides are all [+continuant], so we have passed the first test, namely that all segments in set (vi) are [+continuant,+voice]. We must also be sure that this is a sufficient specification for the class: are there any [+continuant,+voice] segments in the language which are not included in set (vi)? The segments to worry about in this case would be \{lmn\}, which are [+voice]. However, inspection of the chart of feature specifications given above indicates that these are all [-continuant].
As a further exercise in understanding how sets of segments are grouped by the features, assume a language with the following segmental inventory.

\[(26)\) \(p \ p' \ t \ t' \ c \ k \ b \ b' \ v \ \beta \ d' \ j \ g \ m \ n \ \phi \ s \ \tilde{s} \ d \ \tilde{d} \ z \ \tilde{z} \ i \ \tilde{i} \ \epsilon \ \tilde{e} \ \sigma \ \sigma \ \iota \ u \ \upsilon \ a \ \omega \ y\)

For each group, determine what feature(s) define the particular set of segments.

\[(27)\)

i. \(c \ k \ j \ g \ \eta \ \tilde{z} \ \tilde{i} \ \epsilon \ \tilde{e} \ \sigma \ \sigma \ \iota \ u \ \upsilon \ a \ \omega \ y\)

ii. \(s \ \tilde{s} \ e \ f \ z \ \beta \ \alpha \ \tilde{z} \ \alpha \ \tilde{y} \ \tilde{\theta} \ \tilde{\alpha} \ \tilde{w} \ \tilde{\delta}\)

iii. \(k \ y \ g \ c \ w \ i \ u \ \iota \ \eta\)

iv. \(k \ g \ a \ \eta\)

4. Possible Phonemes and Rules — an Answer

We now return to the theoretical questions raised at the beginning of this chapter, what is a possible phoneme and what is a possible phonological rule.

4.1. Possible Phonemes

The theory of features answers the question of possible phonemes, saying that the segments which can be constructed using these features are all and only the possible phonemes. This gives a mathematical upper limit of \(2^n\) segments, given \(n\) binary features, so if there are 20 features (a reasonable number), there are 1,048,576 logically possible feature specifications, and this is quite a lot of segments. It also has to be physically possible to realize a segment, so the number of possible segments is smaller than this. Many segments can be imagined which are phonetically uninterpretable, such as one which is \([+\text{high}, +\text{low}]\). Such a segment is physically impossible since the tongue cannot be contradictorily raised and lowered at the same time, so the non-existence of a large class of such segments is independently explained. Similarly, no segment can be \([+\text{cons}, -\text{hi}, -\text{back}, -\text{ant}, -\text{cor}].\)

A segment which is \([+\text{cons}]\) is not a vowel or glide. The feature \([-\text{back}]\) tells us that the segment would have a place of articulation in front of the velar position. \([-\text{Anterior}]\) tells us that it must have a place of articulation behind the alveolar ridge, and \([-\text{hi}]\) tells us that it cannot be a palatal. Everything about this description suggests the vowel \([e]\), except that it is \([+\text{consonantal}]\), whereas vowels are \([-\text{consonantal}]\). No major constriction can be formed with the tongue in the position of \([e]\): hence this combination of features happens to be physically impossible. To be attested in a language, a segment must be both combinatorially possible, i.e. uses the features given by the theory, and physically possible.

Although the set of attested phonemes in human languages is quite large, there are significant limitations on what phonemes are possible. Retroflex consonants have the features \([-\text{anterior}, +\text{coronal}, -\text{distributed}]\). Recall the question whether a language could contrast two kinds of retroflex consonants, such as apical
and sub-laminal retroflex as found in Hindi versus Telugu. According to this theory of features, such a contrast is impossible, since no feature is available to describe such a difference within a language. Phonetic differences across languages are possible because phonetic interpretation is not subject to the limitations of phonological feature theory. Were we to discover such a contrast, the theory of features would be challenged, because it has no mechanism for expressing such a distinction. Similarly, the differences attested in the phonetics of [u] and [Ű] across languages are never found within a language. In a single language, the maximal contrast is between two such vowels, governed by the feature tense (or ATR). The fact that such differences exist at the phonetic level between languages, but are never exploited within a single language as a way to distinguish words, is an example of the difference between phonetic and phonological properties.

Thus one of the main goals of distinctive feature theory is providing a predictive framework for saying what contrasts will and will not be found in the phoneme systems of human languages.

4.2. Rule Formulation and Features

The most important function of features is to form the basis for writing rules, which is crucial in understanding what defines a possible phonological rule. A typical rule of vowel nasalisation, which nasalises all vowels before a nasal, can be formulated very simply if stated in features:

\[\text{[+syllabic]} \rightarrow \text{[+nasal]} / _ _ \text{[+nasal]} \]

Such a rule is common in the languages of the world. Very uncommon, if it exists at all, is one nasalising only the lax vowel [i], and only before [m]. Formulated with features, that rule looks as follows:

\[\begin{array}{c}
\begin{array}{c}
\text{[+syl]} \\
\text{- ATR} \\
\text{+ hi} \\
\text{- round}
\end{array} \\
\end{array} \rightarrow [\text{+nasal}] / _ _ [\text{+nasal}] \]

This rule require significantly more features than (28), since [i] which undergoes the rule must be distinguished in features from other high vowels such as [i] or [u] which (in this hypothetical case) do not undergo the rule, and [m] which triggers the rule must be distinguished from [n] or [ŋ] which do not.

Simplicity in rule writing. This relation between generality and simplicity on the one hand, and desirability or commonness on the other, has played a very impor-
tant role in phonology: all things being equal, simpler rules are preferred, both for the intrinsic elegance of simple rules and because they correlate with more general classes of segments. Maximum generality is an essential desideratum of science.

The idea that rules are stated in terms of the simplest, most general classes of phonetically defined segments has an implication for rule formulation. Suppose we encounter a rule where high vowels (but not mid and low vowels) nasalize before nasals stops \((n,m,ŋ)\), thus \(\text{in} \rightarrow \text{in}, \text{uŋ} \rightarrow \text{uŋ}\) and so on. We could formulate such a rule as follows:

\[(30) \quad \begin{array}{c}
+ \text{syl} \\
+ \text{hi} \\
\rightarrow \begin{array}{c}
+ \text{nasal} \\
- \text{cont}
\end{array}
\end{array}
\]

However, we could equally well formalize the rule as

\[(31) \quad \begin{array}{c}
+ \text{syl} \\
+ \text{hi} \\
- \text{low} \\
\rightarrow \begin{array}{c}
+ \text{nasal} \\
- \text{cont} \\
- \text{low}
\end{array}
\end{array}
\]

We could freely add \([-\text{low}]\) to the specification of the input segment (since no vowel can be \([+\text{hi},+\text{low}]\), thus high vowels automatically would pass that condition), and since the same class of vowels is referenced, inclusion of \([-\text{low}]\) is empirically harmless. Saying that the vowel becomes \([+\text{syl},+\text{hi},-\text{low}]\) is harmless, since the vowel that undergoes the change already mad these specifications. At the same time, the additional features in (31) are useless complications, so on the theoretical grounds of simplicity, we formalise the rule as (30). In writing phonological rules, we specify only features which are mandatory. A formulation like

\[(32) \quad [+\text{syl}] \rightarrow [+\text{nasal}] / [-\text{cont}]
\]

would mention fewer features, but it would be wrong given the nature of the rule we assume, since the rule should state that only high vowels nasalise, but this rule nasalises all vowels.

Formalisability. The claim that rules are stated in terms of phonetically defined classes is essentially an axiom of phonological theory. What are the consequences of such a restriction? Suppose you encounter a language with a phonological rule of the type \(\{p,r\} \rightarrow \{i,b\} / _ _ \{o,n\}\). Since the segments being changed \((p\) and \(r\)
or conditioning the change (σ and η) cannot be defined in terms of any combination of features, nor can the changes be expressed via any features, the foundation of phonological theory would be seriously disrupted. Such a rule would refute a fundamental claim of the theory, that processes must be describable in terms of these (or similar) features. This is what it means to say that the theory makes a prediction: if that prediction is wrong, the theory itself is wrong.

Much more remains to be said about the notion of ‘possible rule’ in phonology; nevertheless, we can see that distinctive feature theory plays a vital role in delimiting possible rules, especially in terms of characterising the classes of segments that can function together for a rule. We now turn to a discussion of rule formalism, in light of distinctive feature theory.

5. The Formulation of Phonological Rules

Many aspects of rule theory were introduced in our informal approach to rule-writing, and they carry over in obvious ways to the formal theory that uses features. The general form of a phonological rule is

\[
\begin{align*}
\begin{bmatrix}
\alpha & F_i \\
\beta & F_j \\
\vdots & \\
\end{bmatrix} & \rightarrow \\
\begin{bmatrix}
\gamma & F_k \\
\mu & F_l \\
\vdots & \\
\end{bmatrix}
\end{align*}
\]

where \(F_i, F_j, F_k\) are features and \(\alpha, \beta, \gamma\) are plus or minus values. The matrix to the left of the arrow is the segment changed by the rule; that segment is referred to as the focus or target of the rule. The matrix immediately to the right of the arrow is the structural change, and describes the way in which the target segment is changed. The remainder of the rule constitutes the trigger (also known as the determinant or environment), stating the conditions outside of the target segment which are necessary for application of the rule.

Each element is given as a matrix, which expresses a conjunction of features. The matrices of the target and trigger mean “all segments of the language which have the features \([\alpha F_i]\) as well as \([\beta F_j]\)...”. The matrix of the structural change means that when a target segment undergoes a rule, it receives whatever feature values are specified in that matrix.

There are a few special symbols which enter into rule formulation. One which we have encountered is the word boundary, symbolized as “#”. A rule which lengthens a vowel before a word-final sonorant would be written as follows.

\[
\begin{align*}
\{+\text{syl}\} & \rightarrow \{+\text{long}\} / \\
\end{align*}
\]

A rule which devoices a word-initial consonant would be written as:

\[
\begin{align*}
\{-\text{son}\} & \rightarrow \{-\text{voice}\} / \\
\end{align*}
\]
A word boundary can come between the target and the trigger segments, in which case it means “when the trigger segment is in the next word”. Such processes are relatively infrequent, but for example there is a rule in Sanskrit which voices a consonant at the end of a word when it is followed by a sonorant in the next word, so /tat#aham/ becomes [tad#aham] “that I”; voicing does not take place strictly within the word, and thus /pat-a:mi/ “I fly” does not undergo voicing. This rule is formulated as in (36).

(36) \([-\text{son}] \rightarrow [+\text{voice}] / _ _ _ [+\text{son}]\]

Another symbol is the null, \(\emptyset\), used in the focus or structural change of a rule. As the focus, it means that the segment described to the right of the arrow is inserted in the stated context, and as the structural change it means that the specified segment is deleted. Thus a rule that deletes a word-final short high vowel which is preceded by a sonorant would be written as follows.

(37) \(\left[\begin{array}{c}
{+\text{syl}} \\
{-\text{hi}} \\
{-\text{long}}
\end{array}\right] \rightarrow \emptyset / [+\text{son}] _ _ \#\)

There are occasions where it is necessary to restrict a rule to apply only when a sequence occurs in different morphemes, but not within a morpheme. Suppose you find a rule that deletes a consonant after a consonant, but only when the consonants are in separate morphemes: thus the bimorphemic word /tap-ta/ with /p/ at the end of one morpheme and /t/ at the beginning of another becomes [tapa], but monomorphemic word /tapta/ does not undergo deletion. Analogous to the word boundary, there is also a morpheme boundary symbolised by “+”, which can be used in writing rules. Thus the rule deleting the second of two consonants just in case the consonants are in different morphemes (hence a morpheme boundary comes between the consonants) is stated as:

(38) \([-\text{syl}] \rightarrow \emptyset / [-\text{syl}] + _ _____\]

You may encounter other conventions of formalism. One such notation is the brace notation. Whereas the standard matrix [...\] refers to a conjunction of properties — segments which are A and B and C all at once — braces {...\} express disjunctions, that is, segments which are A or B or C. One of the most frequent uses of braces is exemplified by a rule found in a number of languages which shortens a long vowel if it is followed by either two consonants or else one consonant plus a word boundary, i.e. followed by a consonant that is followed by an consonant or #. Such a rule can be written as (39).
Most such rules use the notation to encoding syllable related properties, so in this case the generalization can be restated as “shorten a long vowel followed by a syllable-final consonant”. Using “.” as the symbol for a syllable boundary, this rule could then be reformulated as:

\[
(40) \ [+\text{syl}] \rightarrow [+\text{long}] / _[-\text{syl}] \ .
\]

Although the brace notation has been a part of phonological theory, it has been viewed with considerable skepticism, partly because it is not well motivated for more than a handful of phenomena that may have better explanations (e.g. the syllable), and partly because it is a powerful device that undermines the central claim that rules operate in terms of natural classes (conjunctions of properties).

Some rules need to refer to a variably sized sequence of elements. A typical example is vowel harmony, where one vowel assimilates a feature from another vowel, and ignores any consonants that come between. Suppose we have a rule where a vowel becomes round after a round vowel, ignoring any consonants. We could not just write the rule as (41), since that incorrectly states that only vowels strictly next to round vowels harmonise.

\[
(41) \ [+\text{syl}] \rightarrow [+\text{rnd}] / [+\text{syl},+\text{rnd}] __
\]

We can use the subscript-zero notation, and formalise the rule as in (42).

\[
(42) \ [+\text{syl}] \rightarrow [+\text{rnd}] / [+\text{syl},+\text{rnd}] [-\text{syl}]_0 __
\]

The expression “[-syl]₀” means “any number of [-syl] segments”, from none to an infinite sequence of them.

A related notation is the parenthesis, which surrounds elements that may be present, but are not required. A rule of the form \(X \rightarrow Y / _ (WZ)Q \) means that \(X \) becomes \(Y \) before \(Q \) or before \(WZQ \), that is, before \(Q \) ignoring \(WZ \). The parenthesis notation essentially serves to group elements together. This notation is used most often for certain kinds of stress-assignment rules and advancements in the theory of stress have rendered parenthesis unnecessary in many cases.

One other very useful bit of notation is the feature variable notation. So far, it has actually been impossible to formalise one of the most common phonological rules in languages, the rule which assimilates a nasal in place of articulation to the following consonant, where /mk/ \(\rightarrow [ŋk], \ /np/ \rightarrow [mp] \) and so on. While we can write a rule which makes any nasal become [+ant,+cor] before a [+ant,+cor] consonant — any nasal becomes [n] before /t/ — and we can write a
rule to make any nasal [+ant,-cor] before a [+ant,-cor] consonant — nasals become [m] before [p] — we cannot express both changes in one rule.

(43)
\[
\begin{array}{c}
\text{a.} \\
[+ \text{nas}] \rightarrow \\
\quad [+ \text{ant}] \\
\quad [+ \text{cor}] \\
\quad [+ \text{ant}] \\
\quad [+ \text{cor}] \\
\end{array}
\]

b.
\[
\begin{array}{c}
[+ \text{nas}] \\
\quad [+ \text{ant}] \\
\quad [- \text{cor}] \\
\quad [+ \text{ant}] \\
\quad [- \text{cor}] \\
\end{array}
\]

The structural change cannot be “→ [+cor]” because when a nasal becomes [m] it becomes [-cor]. For the same reason the change cannot be “→ [-cor]” since making a nasal becomes [n] makes it become [+cor]. One solution is the introduction of feature variables, notated with Greek letters \(\alpha, \beta, \gamma \) etc. whose meaning is “the same value”. Thus a rule which makes a nasal take on whatever values the following consonant has for place of articulation would be written as follows.

(44)
\[
\begin{array}{c}
[+ \text{nas}] \rightarrow \\
\quad [\alpha \text{ant}] \\
\quad [\beta \text{cor}] \\
\quad [\alpha \text{ant}] \\
\quad [\beta \text{cor}] \\
\end{array}
\]

Thus when the following consonant has the value [+cor] the nasal becomes [+cor] and when the following consonant has the value [-cor] the nasal becomes [-cor]. We will return to issues surrounding this notation in the final chapter.

There are a couple of commonly-used informal shorthand practices which you need to recognise. Many rules refer to “consonants” versus “vowels”, meaning [-syllabic] and [+syllabic] segments, and the shorthand “C” and “V” are often used in place of [-syllabic] and [+syllabic]. Also, related to the feature variable notation, it is sometimes necessary to write rules which refer to the entire set of features. A typical example would be in a rule “insert a vowel which is a copy of the preceding vowel into a word-final cluster”. Rather that explicitly listing every feature with an associated variable, such a rule might be written as:

(45)
\[
\emptyset \rightarrow V_i / V_i \text{C_C#}
\]

meaning “insert a copy of the preceding vowel”.

6. Changing the Theory

The theory of features is an empirical hypothesis, and is subject to revision in the face of appropriate data. It is not handed down by a higher authority, nor is it arbitrarily picked at the whim of the analyst. It is important to give critical thought
to how the set of distinctive features can be tested empirically, and revised. One prediction of the theory which we have discussed in section 4.1 is that the two kinds of phonetic retroflex consonants found in Hindi and Telugu can not contrast within a language. What would happen if a language were discovered which distinguished two degrees of retroflexion? Would we discard features altogether?

This situation has already arisen: the theory presented here evolved from earlier, similar theories. In an earlier theory proposed by Jakobson & Halle, retroflex consonants were described with the feature [flat]. This feature was also used to describe rounding, pharyngealisation and uvularization. While it may seem strange to describe so many different articulatory characteristics with a single feature, the decision was justified by the fact that these articulations share an acoustic consequence, a downward shift or weakening of higher frequencies. The assumption at that point was that no language could minimally contrast retroflexion, rounding, and pharyngealisation. If a language has both [i] and [kʷ], the surface differences in the realisation of [flat], as retroflexion versus rounding, would be due to language-specific spell-out rules.

The theory would be falsified if you could show that rounding and pharyngealisation are independent, and counterexamples were found. Arabic has the vowels [i a u] as well as pharyngealised vowels [iː aː uː], which derive by assimilation from a pharyngealised consonant. If rounding and pharyngealisation are both described by the feature [flat], it is impossible to phonologically distinguish [u] and [uː]. But this is not at all inappropriate if the goal is to represent phonological contrasts as opposed to phonetic differences, since the difference between [u] and [uː] is a low-level phonetic one. The relevance of Arabic — whether it falsifies the feature [flat] — depends on what you consider to be the purpose of features.

Another prediction is that since uvular and round consonants are both [+flat], there should be no contrast between round and non-round uvulars, or between round velars and non-round uvulars, within a language. But a number of languages of the Pacific Northwest including Lushootseed have the contrast [k kʷ q qʷ]: this is a fact which is undeniably in the domain of phonology. The Dravidian language Badaga is reported to contrast plain and retroflex vowels, where any of the vowels [i e a o u] can be plain, half-retroflex, or fully retroflex. If [flat] indicate both retroflexion and rounding, it would be impossible to contrast [u] and [uː]. Since such languages actually do exist, their discovery forced the abandonment of the feature [flat] in favor of the system now used.

The specific feature [flat] was wrong, not the theory of features itself. Particular features may be incorrect, which will cause us to revise or replace them, but revisions should be undertaken only when strong evidence is presented which forces a revision. Features form the foundation of phonology, and revision to those features may lead to considerable changes in the predictions of the theory. Such changes should be undertaken with caution, taking note of unexpected consequences. If the theory changes constantly, with new features constantly being added, this would rightly be taken as evidence that the underlying theory is wrong.
Suppose we find a language with a contrast between regular and sublingual retroflex consonants. We could accommodate this hypothetical language into the theory by adding a new feature [sublingual], defined as forming an obstruction with the underside of the tongue. This theory makes a new set of predictions: it predicts other contrasts distinguished by sublinguality. We can presumably restrict the feature to the [+coronal] segments on physical grounds. The features which distinguish coronals subclasses are [anterior] and [distributed], which alone can combine to describe four varieties of coronal — which actually exist in a number of Australian languages. With a new feature [sublingual], eight coronal classes can be distinguished: regular and sublingual alveolars, regular and sublingual dentals, regular and sublingual alveopalatals, and regular and sublingual retroflex consonants. Yet no such segments have been found. Such predictions need to be considered, when contemplating a change to the theory.

Similarly, recall the problem of ‘hyper-tense’, ‘plain tense’, ‘plain lax’ and ‘hyper-lax’ high vowels across languages: we noted that no more than two such vowels exist in a language, governed by the feature [tense]. If a language were discovered with three or four such high vowels, we could add a feature ‘hyper’. But this makes the prediction that there could also be four-way contrasts among mid and low vowels. If these implications are not correct, the modification to the theory is not likely to be the correct solution to the problem. In general, addition of new features should be undertaken only when there is compelling evidence for doing so. The limited number of features actually in use is an indication of the caution with which features are added to the theory.

The case for labial. A classical case in point of a feature which was added in response to significant problems with the existing feature system is the feature [labial]. It is now accepted that feature theory should include this feature:

[labial]: sound produced with the lips

This feature was not part of the set of features proposed in Chomsky & Halle 1968. However, problems were noticed in the theory without [labial].

The argument for adding [labial] is that it makes rules better formulizable. It was noticed that the following types of rules, inter alii, are frequently attested (see Campbell 1974, Anderson 1974).

(46) a. b → w / __ C
 b. w → b / [+nasal] __
 c. w → v
 d. i → u / {p,b,m,w,u,o} __

In the first three rules, the change from bilabial obstruent to rounded glide or rounded glide to labiodental obstruent is a seemingly arbitrary change, when writ-
ten according to the then-prevailing system of features. There is so little in com-
mon between [b] and [w], given these features, that a change of [b] to [r] would be
simpler to formulate as in (47b), and yet the change [b] → [r] is unattested.

\[
(47) \begin{align*}
\text{a.} & \quad \begin{bmatrix} + \text{ant} \\ - \text{cor} \\ + \text{voi} \end{bmatrix} \rightarrow \begin{bmatrix} - \text{ant} \\ - \text{cons} \\ + \text{back} \end{bmatrix} / _ _ _ C \\
\text{b.} & \quad \begin{bmatrix} + \text{hi} \\ - \text{cor} \\ - \text{hi} \end{bmatrix} \rightarrow \begin{bmatrix} + \text{ant} \\ - \text{cons} \\ + \text{rd} \end{bmatrix} \\
\end{align*}
\]

In the last rule of (46), no expression covers the class \{p, b, m, w, u, o\}: rather they
correspond to the disjunction [+ant,-cor] or [+round].

These rules can be expressed quite simply with the feature [labial].

\[
(48) \begin{align*}
\text{a.} & \quad \begin{bmatrix} + \text{labial} \\ + \text{voi} \end{bmatrix} \rightarrow [\!-\!\text{cons}] / _ _ _ C \\
\text{b.} & \quad \begin{bmatrix} + \text{lab} \\ - \text{cons} \end{bmatrix} \rightarrow [\!+\!\text{cons}] / [\!+\!\text{nasal}] \\
\text{c.} & \quad \begin{bmatrix} + \text{labial} \\ + \text{round} \end{bmatrix} \rightarrow [\!+\!\text{cons}] / [\!-\!\text{round}] \\
\text{d.} & \quad i \rightarrow [\!+\!\text{labial}] / [\!+\!\text{labial}] \\
\end{align*}
\]

Feature redefinition. Even modifying definitions of existing features must be
done with caution, and should be based on substantial evidence that existing defi-
nitions fail to allow classes or changes to be expressed adequately. One feature
which might be redefined is [continuant]. The standard definition states that a
segment is [+continuant] if it is produced with air continuously flowing through
the oral cavity. An alternative definition is that a segment is [+continuant] if
air flows continuously through the vocal tract. How do we decide which definition is
correct? The difference is that under the first definition, nasals are [-continuant]
and under the second definition, nasals are [+continuant].

If the first definition is correct, we expect to find a language where \{p, t, ċ,
k, m, n, ŋ, b, d, ţ, g\} undergo or trigger a rule, and \{f, s, ŋ, x, v, z, ŏ, ţ\} do not: un-
der the “oral cavity” definition, [-continuant] refers to the class of segments \{p, t,
č, k, m, n, ŋ, b, d, ţ, g\}. On the other hand, if the second hypothesis is correct, we
should find a language where \{n, m, n, f, s, x, v, x, ŋ\} undergo or trigger a rule,
and the remaining consonants \{p, t, ċ, k, b, d, ţ, g\} do not: under the “vocal tract”
definition of [continuant], the feature specification [+continuant] would refer to the
set \{n, m, n, f, s, x, v, x, ŋ\}.

Just as important as knowing what sets of segments can be referred to by
one theory or another, you need to consider what groupings of segments cannot be
expressed in a theory. Under either definition of [+continuant], finding a process
which refers to \{p, t, k, b, d, g\} proves nothing, since either theory can refer to this
class, either as [-continuant] in the “oral cavity” theory or as [-continuant,-nasal] in
the “vocal tract” theory. The additional feature needed in the “vocal tract” theory
does complicate the rule, but that does not in itself disprove the theory. If you find
a process referring to \{n, m, n, f, s, x, v, x, γ\}, excluding \{p, t, k, b, d, g\}, this
would definitively argue for the “oral cavity” theory. Such a class can be referred
to with the specification [+continuant] in the “oral cavity” theory, but there is no
way to refer to that set under the “vocal tract” theory. As it stands, we have not
found such clear cases: but, at least we can identify the type of evidence needed to
definitively choose between the theories. The implicit claim of feature theory is
that it would be impossible for both kinds of rules to exist in human languages.
There can only be one definition of any feature, if the theory is to be coherent.

Central vowels. We will consider another case where the features face a problem
with expressing a natural class, relating to the treatment of central versus back
vowels. In Chapter 3 we saw that Kenyang, \([k]\) and \([q]\) are in complementary dis-
tribution, with \([q]\) appearing word-finally after the vowels \([o, ı, a]\) and \([k]\)
appearing elsewhere. Representative examples are reproduced here.

\[
\begin{align*}
(49) & \quad \text{en}q \quad \text{‘tree’} & \quad \text{en}q \quad \text{‘drum’} \\
& \quad \text{ngaq} \quad \text{‘knife’} & \quad \text{ekaq} \quad \text{‘leg’} \\
& \quad \text{mak} \quad \text{‘dirt’} & \quad \text{nde}k \quad \text{‘European’} \\
& \quad \text{pOpens}k \quad \text{‘work project’} & \quad \text{ayu}k \quad \text{(person’s name)}
\end{align*}
\]

Schwa does not cause lowering of \(k\) to \(q\). In the standard account of vowels, \([a]\)
differs from \([ı]\) only in rounding, though phonetic tradition claims that these vow-
els also differ in being back \((\text{[a]}\)) versus central \((\text{[ı]}\)). As previously discussed, this
difference is attributed to a low-level, phonologically insignificant phonetic factor.

The problem which Kenyang poses is that it is impossible to formulate the
rule of k-lowering if schwa is phonologically a mid back unrounded vowel. A
simple attempt at formulating the rule would be:

\[
\begin{align*}
(50) & \quad \left[\begin{array}{c}
+ \text{hi} \\
+ \text{back}
\end{array} \right] \rightarrow \left[\begin{array}{c}
\text{high} \\
\text{- high}
\end{array} \right] \\
\left[\begin{array}{c}
+ \text{back}
\end{array} \right]
\end{align*}
\]

If schwa is \([+\text{back},-\text{hi},-\text{round}]\) it would satisfy the requirements of the rule so
should cause lowering of \(/k/\), but it does not: therefore this formulation cannot be
correct. Since schwa differs from \([a]\) in being \([-\text{round}]\), we might try to exclude \([a]\)
by requiring the trigger vowel to be \([+\text{round}]\).
But this formulation is not correct either, since it would prevent the non-round low vowel [a] from triggering uvularization, which in fact it does do.

These data are a problem for the theory that there is only a two-way distinction between front and back vowels, not a three-way distinction between front, central and back vowels. The uvularization rule of Kenyang can be formulated if we assume an additional feature, [±front] which characterises front vowels. Under that theory, back vowels would be [+back,-front], front vowels would be [+front, -back], and central vowels would be [-back,-front]. Since we must account for this fact about Kenyang, the theory must be changed. But before adding anything to the theory, it is important to consider all of the consequences of the proposal.

A positive consequence is that it allows us to account for Kenyang. Another possible example of the relevance of central vowels to phonology comes from Norwegian (and Swedish). There are three high, round vowels in Norwegian, whereas the standard feature theory countenances the existence of only two high rounded vowels, one front and one back. Examples in Norwegian spelling are do ‘outhouse’, du ‘you sg.’ and dy ‘forbear!’. The vowel o is phonetically [u], and u and y are distinct non-back round vowels. In many IPA transcriptions of Norwegian, these are transcribed as [du] ‘you sg.’ and [dy] ‘forbear!’ implying a contrast between front, central and back round vowels. This is exactly what the standard view of central vowels has claimed should not happen, and it would appear that Norwegian also falsifies the theory.

The matter is not so simple. The vowels spelled u versus y also differ in lip configuration. The vowel u is ‘in-rounded’, with an inward narrowing of the lips, whereas y is ‘out-rounded’, with an outward-flanging protrusion of the lips. This lip difference is hidden by the selection of the IPA symbols [u] versus [y]. While it is clear that the standard theory does not handle the contrast, we cannot tell what the correct basis for maintaining the contrast is. We could treat the difference as a front ~ central ~ back distinction and disregard the difference in lip configuration (leaving that to phonetic implementation); or, we could treat the labial distinction as primary and leave the presumed tongue-position to phonetic implementation.

Given that the theory of features has also accepted the feature [labial], it is possible that the distinction lies in [labial] versus [round], where the out-rounded vowel <y> is [+round, +labial] and in-rounded <u> is [-round, +labial] — or vice versa. Unfortunately, nothing in the phonological behavior of these vowels gives any clue as to the natural class groupings of the vowels, so the problem of re-presenting these differences in Norwegian remains unresolved. Thus the case for positing a distinct phonological category of central vowel does not receive very strong support from the vowel contrasts of Norwegian.
A negative consequence of adding [front], which would allow the phonological definition of a class of central vowels, is that it defines unattested classes and segments outside of the realm of vowels. The classical features could distinguish just [k] and [k’], using [±back]. With the addition of [front], we would have a three-way distinction between k-like consonants which are [+front, -back], [-front, -back] and [-front, +back]. But no evidence at all has emerged for such a contrast in any language. Finally, the addition of the feature [front] defines a natural class [-back] containing front and central vowels, but not back vowels: such a class is not possible in the classical theory, and also seems to be unattested in phonological rules. This may indicate that the feature [front] is the wrong feature — at any rate it indicates that further research is necessary, in order to understand all of the ramifications of various possible changes to the theory.

Thus the evidence for a change to feature theory, made to handle the problematic status of [ə] in Kenyang phonology, would not be sufficiently strong to warrant complete acceptance of the new feature. We will suspend further discussion of this proposal until later, when non-linear theories of representation are introduced and answers to some of the problems such as the unattested three-way contrast in velars can be considered. The central point is that changes in the theory are not made at will: they are made only after considerable argumentation and evidence that the existing theory is fundamentally inadequate.

Summary

Language sounds can be defined in terms of a small set of universal phonetically-based features, which not only define the basic atoms of phonological representations, but also play a central role in the formal expression of rules. An important theme of this chapter is the nature of scientific theories, such as the theory of features, which make predictions both about what can happen and what cannot happen. The fundamental role of feature theory is to make specific predictions about the kinds of segments and rules that we should find in human languages. One of the main concerns of phonological theory is finding the correct set of features that define the sounds and rule systems of all human languages.
Exercises

1. Assume a segmental inventory composed of: [f k t d s z n p b i u e o a w h]. Indicate what feature or features characterize the following classes of sounds.

 i. Û k u o a w
 ii. f p k h
 iii. f p b t s d z n
 iv. Û u o w a b d z n i e
 v. i z n e d

2. Given the segments [w y h ? i e a o o u m l r m ƞ p t kû k q b ð d d' g γ], describe the following segment classes, being as economical as you can with your use of features.

 i. m l r m ƞ p t kû k q b ð d d' g γ
 ii. w y i e a o o u m l r m ƞ
 iii. w a o o u ƞ k q γ
 iv. w y h i e a o o u l r ð γ
 v. y i e a l r ð ð d d' g γ
 vi. y i kû d'
 vii. i e a o o u ƞ

3. Assume a language with the following segmental inventory:

 p t tʰ č c k φ f ð s š x b d d' ŵ j j m n ƞ l i e o u a ū ō w y

 (In this case, <c> represents a palatal stop, assumed to be featurally identical to a palatalized k). In each of the following groups, one of the segments is not a member of the natural class which the other sounds belong to. Identify that sound, and state what features characterise the remaining class of segments.

 i. t č c š ŵ j j i e ū ō y
 ii. t tʰ č ŵ s š d d' ŵ j j n l
 iii. c k x ŵ j j i u ū w y
 iv. k x ƞ o u a w y
 v. p φ f b m l o u ū ō w
4. Based on the segmental inventory \([p\ t\ k\ b\ d\ m\ n\ \gamma\ \varphi\ f\ s\ l\ a\ i\ o\ u\ y]\), characterise the following segments or groups of segments uniquely using the fewest features possible.

i. \(\gamma\)
ii. \(i\)
iii. \(n\)
iv. \(b,d\)
v. \(a,o\)
vi. \(o,u\)

5. State all of the features which are changed in each of the following rules.

i. \(p \rightarrow f\)
ii. \(t \rightarrow \eta\)
iii. \(o \rightarrow w\)
iv. \(k \rightarrow s\)
v. \(s \rightarrow t\)
vi. \(a \rightarrow i\)

6. Formalise the following rules using distinctive features (segmental inventories to be assumed for each language are given in brackets).

i. \(b,d,g \rightarrow \beta,\delta,\gamma / V\) __ \([p\ t\ b\ d\ g\ \beta\ \delta\ \gamma\ m\ n\ \eta\ r\ i\ u\ a\ e]\)
ii. \(p,k,q \rightarrow \beta,\gamma,\varphi / V\) __ \([p\ t\ e\ \kappa\ q\ \beta\ \gamma\ \varphi\ m\ \i\ e\ \i\ e\ \ae\ ou\ u]\)
iii. \(\emptyset \rightarrow y / i,e\) __ \([p\ t\ k\ h\ d\ v\ s\ r\ l\ m\ n\ y\ i\ e\ \ii\ o\ u\ u]\)
iv. \(t \rightarrow s / i\) __ \([p\ t\ k\ h\ d\ s\ r\ l\ m\ n\ y\ i\ e\ \ii\ o\ u]\)
v. \(s \rightarrow r / V\) __ \([p\ t\ k\ b\ d\ g\ s\ r\ l\ m\ n\ h\ w\ y\ e\ i\ o\ u]\)

7: Review previous solutions to exercises which you have done in the preceding chapters, and state the rules according to the features given here: discuss any problems which you may encounter in reformalising these rules.

Further reading