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Abstract—In many practical applications of wireless sensor networks, it is crucial to accomplish the localization of sensors
within a given time bound. We find that the traditional definition of relative localization is inappropriate for evaluating its actual
overhead in localization time. To address this issue, we define a novel problem called essential localization, and present the first
rigorous study on the essential localizability of a wireless sensor network within a given time bound. Additionally we propose an
efficient distributed algorithm for time-bounded essential localization over a sensor network, and evaluate the performance of the

algorithm with analysis and extensive simulation studies.
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1 INTRODUCTION
1.1 Time-Bounded Localization

Many military and civil applications of wireless sensor
networks require the sensors to be aware of their positions
in the physical space [1], [2], [3], [4]. Such positions can be
described as either absolute locations (e.g., a combination
of latitude, longitude, and altitude) or relative ones (i.e.,
the location of a sensor relative to others). The localization
problem has been extensively studied in terms of both theo-
retical analysis on the localizability of a sensor network [5],
[6], [7] and practical techniques for the actual positioning
of sensors [8], [9].

Missing from the existing research, however, is the
localization of sensors within a given period of time. Such a
time-bounded localization is extremely important for many
practical applications. Consider a battlefield scenario as
a simple motivating example. The localization of sensors
must be accomplished within a short period of time because
i) it is on the critical time path - i.e., a sensor has to po-
sition itself first before annotating the monitored data with
geographical information, and ii) the localization process
in general requires message exchanges between sensors,
making the network more likely to be detected by the
enemy. Thus, it is critical for the localization process to
complete within a given time bound.

1.2 Outline of the Technical Results

We find that the traditional definition of relative localiza-
tion - i.e., a process which terminates when all sensors
obtain their locations in the same coordinate system -
is inappropriate for evaluating the actual efficiency of
localization in practice. The main reason lies in that part
of the localization process can be seamlessly integrated
into subsequent payload transmissions without incurring
additional communication overhead. For example, we shall
demonstrate later in this paper that for a given sensor
network topology, localization may require an arbitrarily

long period of time according to the traditional definition,
but indeed it only needs the time of transmitting a short
message before allowing every pair of nodes to have their
positions automatically transformed into one coordinate
system.

In this paper, we re-examine the definition of relative
localization and define time-bounded essential relative lo-
calization, a novel problem that captures the minimum
amount of time required by localization before it can be
integrated with regular payload transmissions. Based on
the definition, we present the first rigorous study on the
essential localizability of a wireless sensor network within
a given time bound. We also propose an efficient distributed
algorithm to perform time-bounded essential localization
over a sensor network.

For physical localization in a sensor network, there
must exist multiple anchor nodes that are capable of
acquiring their physical locations from outband channels
(e.g., through a GPS module). Intuitively, if the number
of anchors is large enough, the network can always be
localized in any time bound. However, in practice there
can be only a small number of anchor nodes because of the
high cost. Thus, in analogy to essential relative localization,
we define the problem of time-bounded essential physical
localization and analyze its complexity. Furthermore, we
show that our distributed algorithm for essential relative
localization can also be used to solve the problem of
essential physical localization in polynomial-time.

The rest of the paper is organized as follows. In Section
2, we introduce the preliminaries for localization in wireless
sensor networks. The problem of time-bounded essential
(relative and physical) localization is defined in Section 3.
Its complexity from a centralized view is analyzed in
Section 4. Section 5 describes our distributed algorithm
for time-bounded essential localization. Section 6 presents
our simulation evaluation of the proposed algorithm. We
briefly review the related work in Section 7, followed by
the conclusion in Section 8.
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2 PRELIMINARIES
2.1 Graph Model and Basic Notations

Graph Model: We model a sensor network as a graph
G(V,E) in which each vertex v € V represents a sensor.
For the purpose of this paper, we assume all sensors to
have an equal communication range. Thus, we consider the
graph to be undirected, with an edge e = (1, j) between two
vertices' ¢ and j iff their corresponding sensors are within
range to communicate with each other.

Fig. 1 depicts an example of such a graph model which
we shall use as a running example. There are 5 nodes
in the figure connected by 9 edges. Nodes 1,2,3,4 are
interconnected with each other while 5 is connected with
2,3,4 only.
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Fig. 1. An example graph modeling a sensor network
of five nodes, with the real numbers associated with
the edges being the range distances.

Relative and Physical Locations: In general, the location
of a sensor node in a d-dimensional space can be specified
by a (d + 1)-dimensional vector

(ID,ty,...,tq),

where ID is a unique identifier of the d-dimensional
coordinate system, and ¢; is the corresponding coordinate
of the sensor node at the i-th dimension. For the sake of
simplicity, we consider all sensors to be distributed in a 2-
dimensional space, and denote the relative location of each
sensor by (ID, z,y). Without causing ambiguity, we denote
the physical location of a sensor by (x,y).

Round of Communications: Finally, we define the granu-
larity of time for evaluating the efficiency of a localization
algorithm over a wireless sensor network. In particular, we
define a round of communications as the amount of time
required for a sensor with a degree deg to broadcast a
message of length O(deg) to all its neighbors and to receive
a message of length O(deg(i)) from each of its neighbors,
where deg(i) is the degree of the ith neighbor.

2.2 Multi-Lateration-based Localization

Forming the basic primitive of our study is the multi-
lateration-based localization technique - i.e., the ability of
each sensor to measure its distance with the neighboring
sensors and to determine its relative position based on the

1. In this paper we use sensor, node, sensor node, and vertex inter-
changeably.

measured distances. For the purpose of this paper, we do
not consider the details of lateration (interested readers
are referred to [10] for the details on the principles of
lateration), but instead, formulate it as a pre-processing
stage with the following two steps:

o In the first step, each sensor measures its distance
to each of its neighbors and stores the measured
distances in a distance table as depicted in Table 1.
Note that d(4, j) is the distance between sensors ¢ and
7. Also in this step, each sensor broadcasts its distance
table (to all of its neighbors). Thus, in one-round of
communications, each sensor i broadcasts a message
of length O(deg(4)), where deg(i) is the degree of
node ¢. For example in Fig. 1, node 5 broadcasts the
following message: {(5,0), (2,0.3),(3,0.5),(4,0.4)},
which is received by nodes 2, 3, 4.

« In the second step, each sensor computes its relative
position to its neighbors based on its own distance
table and the distance tables received from the neigh-
boring nodes. To understand how such a positioning
process works, consider a sensor node i. Let N (i) be
the set of neighboring sensors of ¢. If three nodes
Jyk,h € N(i)U {i}, where j # k # h, are inter-
connected with each other? and non-collinear, then i
has the knowledge of d(j, k), d(j, h), and d(k, h) after
receiving all broadcasted messages. Based on such
information, ¢ can construct an orthogonal coordinate
system as follows. First, it sorts j, k, and A in an
increasing order of their IDs. Without loss of general-
ity, let such an order be (j, k, h). Then, it constructs
a coordinate system by assigning the location of j
to (0,0), the location of k to (d(j,k),0), and the
location of h to (d(j,h) x cos(8),d(j,h) x sin(f)),
where 6 is the angle formed by the edges (j,k)
and (j,h). Note that 6 can be obtained through the
Law of Cosines, and that the constructed coordinate
system is unique in 2D because j, k and h are non-
collinear. In the example shown in Fig. 1, node 5
is capable of constructing a coordinate system under
which the coordinates of 3,4,5 are (0,0), (0.4,0),
and (0.3125,0.3903), respectively. This step incurs no
message exchange, and the storage overhead of each
sensor i is O(deg?(i)).

In multi-lateration-based localization, each localized
node® should broadcast its position to help its neighbors’
localization process. Therefore one round of communication
refers to the total time required by the localized nodes
to broadcast their positions and to receive their localized
neighbors’ broadcasts. The to-be-localized nodes, on the
other hand, have to wait for one or more rounds in order to
get the position information of 3 non-collinear neighbors. A
to-be-localized node becomes a localized one after obtain-
ing the distance information to three localized neighbors.
We employ the number of communication rounds as a
metric to quantify the time required to localize the network.

2. Note that one of j, k, or h might be 3.
3. A localized node is one whose position is available.
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Nodel D Distance
jl d(Z,]l)
j2 d(Z,jg)
Jaeg(i) | A0 aeq(s))
TABLE 1
The distance table of sensor i with deg(;) neighbors
jlv v 7jdeg(j)

3 TIME-BOUNDED ESSENTIAL LOCALIZA-
TION

In this section, we define a new problem of time-bounded
essential localization. In particular, we first explain the
deficiency of the traditional evaluation on the overhead of
localization time, and then formally define two variants
of the time-bounded essential localization for relative and
physical positioning.

3.1

Traditionally, a relative localization process is considered
accomplished only if all sensors are positioned in the same
coordinate system. Nonetheless, we argue that this is not a
proper definition for evaluating the overhead of localization
because part of such a process can be seamlessly integrated
into the subsequent transmissions of valuable payload in-
formation, incurring little extra overhead.

To understand why, consider an example of relative
localization as depicted in Fig. 2. With the traditional
definition, at least h rounds of communications are required
for localization because the radius of the network is h.
For example, to localize the network under the coordinate
system (h, h', k"), which is noted as (h) for short, i rounds
of flooding are required to send the information of (h) to the
nodes 0 and 2h, the two farthest nodes from (h). Moreover,
the results are the same even if each node starts localizing
by constructing a Local Coordinate System (LCS) itself
instead of waiting for the information from (h). The reason
is that the traditional definition requires all the nodes to be
localized in the same coordinate system. In other words, the
nodes’ positions under their LCSs need to be transformed
to their corresponding positions under a unique global
coordinate system. To transform between two 2D LCSs, a
sufficient and necessary condition is that at least three non-
collinear nodes are aware of their positions in both LCSs.
As a result, each node needs to wait for the information to
perform the coordinate system transformation, which also
requires at least i rounds of flooding to transform all LCSs
to a unique global coordinate system for the example in
Fig. 2.

In practice, however, one-round of communications
might be sufficient for the network shown in Fig. 2.
Consider the case where sensor 0 is supposed to transmit
a message M as well as its own position (z, o) to node
2h (which can be either a sensor or a sink). Suppose that
the routing protocol transmits M through 1,2,... h h +

The Objective of Essential Localization

1,...,2h —1,2h. Note that the ultimate objective of local-
ization is for node 2h to be able to understand the locations
of 0 and itself in the same coordinate system. This objective
can be achieved with exactly one-round of localization
communications plus coordinate transformations during the
regular payload message transmissions.

Let’s take a look at the details. In the pre-processing
stage, nodes 4, ¢ and ", where 0 < i < 2h, select
the coordinate system (i), and localize themselves and
their direct neighbors in (7). Nodes 0 and 2h localize
themselves in (1) and (2h — 1), respectively. Then, each
sensor broadcasts its selected coordinate system as well as
the coordinates of itself and its neighbors in the selected
coordinate system.

(h+1)"

(2h-2)" (2h-1)"

Fig. 2. An example network localizable with one-round
of communications.

Clearly, neither node 0 nor node 2h can position each
other in the same coordinate system after this single round
of communications. Nonetheless, all future steps needed for
localization can be embedded into the actual transmissions
of the payload information without incurring any additional
communication overhead.

After this single round, node O positions itself in the
coordinate system (1). Let LC'S; be the ID of this coor-
dinate system and (z§, y$) be the coordinates of node 0 in
LCS;. What node 0 sends to node 1 during the payload
transmission is

(M, (25, yp))- (1)

Note that the length of this message is the same as that
when 0 knows its position in a global coordinate system.

After receiving (xd,y3), the processing by node 1 is as
follows. First, from the information it learns during the
pre-processing step, node 1 is aware of the coordinates
of 2,2'2” in LCS;. Since during the single round of
communications, node 2 has broadcasted the positions of
itself, 2/, and 2 in the coordinate system LC'S3, node 1
also knows the positions of 2,2’,2” in LC'S,. This enables
node 1 to construct a linear transformation between the two
coordinate systems.

Now what node 1 does is to transform the location
of node 0 from LCS; to LCSs,, and then transmit
(M, (2%, 92)) to node 2, where (23, y32) are the coordinates
of node 0 in LC'Ss. Again, the message length remains the
same as if a global coordinate system exists. We can derive
in analogy that the final message received by node 2h is
(M, (z2"=1 42"=1)). Since node 2h can also infer its own
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location in LC'S5;,_1 based on the information it receives
during the pre-processing stage, the ultimate objective of
relative localization is achieved - i.e., node 2h learns the
locations of both 0 and itself in the same coordinate system.

One can see from this example that it is unfair to attribute
O(h)-round of communications to the relative localization
process (as in the traditional definition) because the com-
munication overhead incurred by localization is only one
round - after which localization incurs only computation
overhead for coordinate transformation. Note that the time
taken by one round of communications is defined to be
the maximum amount of time for a node to broadcast
its positioning information and to receive its neighbors’
broadcastings.

It is important to understand that such an improvement
depends on the network topology, the selected coordinate
system, and the employed routing protocol. For example,
the communication overhead of localizing the network
shown in Fig. 3 includes two rounds of communications
when packets are routed from node 0 to 4 via the shortest
path that passes node 3 when LCS; and LCS, are se-
lected to localize nodes 0,1,1’,1” and nodes 2,2’,2" 4,
respectively, in the pre-processing stage. After the first
round of broadcasting, node O is aware of the positions
of nodes 1,1’,1” in LCSy, but not in LC'S5. To compute
their positions in LC'S,, another round of communications
is needed. In other words, node 0 needs two rounds of
communications to get sufficient information for LC'S; and
LCS, transformation. Note that node 3 is not localizable,
and that only one round of communications is needed if
packets are routed through 1 and 2 to reach 4.

Fig. 3. An example network that requires two rounds
of communications in order for the packets to be routed
from 0 to 4 via the shortest path.

From the above discussions, we argue that the objective
of a localization process should be to provide each node
sufficient information such that any future transmissions
of the payload information can automatically integrate the
locations of the source and destination into the same co-
ordinate system. This is a weaker requirement than having
all sensors share the same coordinate system immediately
after the localization process. We formally define this new
objective as follows:

Definition 3.1: (The Objective of Essential Relative Lo-
calization) Essential relative localization is accomplished

if and only if for any pair of nodes ¢,j in the net-
work, there exist a sequence of coordinate systems
LCS;, ji ks LCSy, i, ks such that

e i can position itself under LC'S;, j, k13

« 7 can position itself under LC'S;, ;. ks

o For any s € [1,h — 1], there exists a sensor u such
that u is capable of transforming a position between
LCSiS,jS,kS and LCS

The key idea of essential localization is to avoid the
unnecessary communications for localization. The objective
of essential localization is quite broad. Some nodes could
be essentially localizable even if they can not be localized
in any LCS after k rounds of communications. Fig. 4 shows
such an example, where the network N is essentially local-
izable after k rounds of communications but the outside
node 1, which does not belong to N, can not be localized
by any of the LCSs in N because its neighbors have not
yet been localized in a global coordinate system. However,
as N is essentially localizable, nodes 2, 3, and 4 will be
eventually localized in a global coordinate system, and thus
node 1 will become localizable. Therefore, we mark the
network shown in Fig. 4 (the network N plus the outside
node 1) as k-round essentially localizable.

Ts41,Js+1,Ks41°

Network N
LCs3
LCS) LCSy
2 3 4

Fig. 4. A network that is essentially localizable with an
essentially localizable outside node 1.

Furthermore, outside nodes that are essentially localiz-
able can also contribute to the essential localizability of the
whole network. In Fig. 5, N; and Ny are two essentially
localizable subnetworks, and node 1 is an outside node of
both N; and Ns. N; and Ny can be eventually localized in
LCSy, and LCSy,, respectively. Since node 1 has three
neighbors in each of N; and No, it is essentially localizable
in both LC'Sy, and LCSy;,. Then the whole network (the
union of Ny, Ny, node 1, and the associated edges) is also
essentially localizable because nodes 1, 2 and 3 can be
eventually localized in both LC'Sy, and LCSy,, which
implies that the two LCSs are mutually transformable.

3.2 Formal Definitions

Based on the objective of essential relative localization, we
shall define the concept of k-round essential localization
and the problem of time-bounded essential localization for
relative and physical positioning.

Definition 3.2: (k-round essential localization) In k-
round essential localization, sensors intend to localize
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Subnetwork Ny

Fig. 5. An example essentially localizable network with
subnetworks N; and N5, and an essentially localizable
outside node 1.

themselves under their local coordinate systems during
the first k£ rounds of communications; after that, they can
localize themselves only through transferring positioning
information among the available LCSs.

Definition 3.3: (Time-Bounded Relative Localization) A
wireless sensor network is k-round localizable if and only
if there exists an algorithm that accomplishes the essential
relative localization within k rounds of communications.

This definition reflects our novel view of the relative
localization: it is accomplished within a bounded time, i.e.,
after k£ rounds of communications, the subsequent payload
transmissions can be used to transform the positions of
communicating nodes into the same coordinate system
without extra communication overhead.

Note that this definition may not be applicable to all
sensor networks - for a sensor network whose topology is a
disconnected graph, it is not localizable even when k — oo
because the distance between two disconnected sensors can
never be determined.

Such a situation changes in physical localization, how-
ever, because anchor nodes can be placed into isolated
components of a network for positioning all sensors in
the physical coordinate system. In an extreme case, if each
sensor is within the communication range of three anchors,
the pre-processing step is sufficient for positioning every
sensor. Thus, the definition of localizability for physical lo-
calization must involve both the number of communication
rounds required for localization and the number of anchor
nodes deployed to a network.

Definition 3.4: (Time-Bounded Physical Localization) A
wireless sensor network is k-round localizable with ¢ an-
chors if and only if there exists a location configuration
of ¢ anchors aq,...,ay and a localization algorithm that
terminates within k rounds of communications such that for
any sensor ¢, there exist at least three anchors av,, a, Qs
and for each of these anchors, say «,,, there exist a sequence
of coordinate systems LC'S;, j, k,,...,LCS; satis-

fying

hodnskn

i. 4 can position itself under LC'S;, j, k3
ii. o, can position itself under LC'S;,, j, k,;
iii. For any s € [1,h — 1], there exists a sensor v such
that v is capable of transforming a position between
LCSis,js,ks and LCS

One can see from the definition that if a sensor network
is k-round localizable with 3 anchors, it must be k-round
localizable for relative localization. To understand why, we
observe that the sequence of coordinate systems specified
in Definition 3.4 is invertible. With 3 anchors, for every
pair of sensors ¢ and j, there must exist an anchor, say
oy, with which both 7 and j are connected through a
sequence of coordinate systems. The concatenation of these
two sequences defines a sequence that connects ¢ and j,
and thus fulfills the localizability requirement for relative
localization.

Ts41,Js+1,Ks41°

4 COMPLEXITY ANALYSIS FOR TIME-

BOUNDED LOCALIZATION

4.1 Preliminaries

In order to analyze the complexity of localizing a given
network in a given time-bound, we assume that the follow-
ing parameters are available: the time bound %, the network
size N, the network diameter «, and the maximum node
degree . We start our analysis from a sensor’s local k-
hop graph, the induced graph of the sensor’s neighbors
within k-hop distance. Lemma 4.1 claims that a sensor’s
local k-hop graph covers all the possibilities that can make
the sensor localizable in &k rounds of communications.

In a graph, there might exist multiple anchors and multi-
ple possible LCSs because every three mutually connected
nodes can construct a LCS. The localization process can
start from a subset of anchors and/or a subset of LCSs.
We denote the set of the selected anchors and/or LCSs
as a combination. In the (d + 1)-lateration localization for
d-dimensional space, a necessary and sufficient condition
for a node’s localizability is that the node has (d + 1)
direct localizable neighbors to which it has the distance
information. Then, to localize the node in k& rounds of
communications, those (d 4 1) direct neighbors should be
localized within (k — 1) rounds of communications. With
the same reasoning, we claim that any of the node’s h-hop
neighbors could contribute to the node’s localizability only
if it can be localized within (k — h) rounds of communica-
tions. Therefore, the anchors or the local coordinate systems
that are (k + 1)-hop away from the node do not help with
the node’s localizability in k rounds of communications.

Lemma 4.1: All the combinations of the anchors and/or
the local coordinate systems that can cooperate to localize
a node under some LCS in k rounds of communications
reside in the node’s local k-hop graph.

Proof: The statement is true for the combination of
anchors because anchors located at more than k-hop away
can not contribute to the localization of the node in k rounds
of communications.
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Let C be a node that is more than k-hop away from the
to-be-localized node S. Assume that C' participates in con-
structing a local coordinate system LC'S,. that contributes to
node S’s localization in & rounds of communications. Then,
there must exist a node T that can be localized in LC'S,,
and T is essential to localize the node S in k rounds of
communications. Without loss of generality, we assume that
T is localized in LC'S,. at the ¢th round of communications.
This means that 7" is at most (k — ¢)-hop away from S in
order to localize S in k rounds of communications, and that
T is at most t-hop away from C' in order to be localized
by LCS, at the tth round of communications. Therefore,
the hop distance between C and S is at most k, which
contradicts our assumption. Thus, the statement is true for
the combination of local coordinate systems. O

For a given network G(V, E), the number of nodes in a
node’s local complete k-hop graph is O(%), where 3 is the
maximum node degree. For each node, it can participate in
constructing O(3%) number of local coordinate systems in
the d-dimensional space. Then, there exist in total O(N X
Bd) = H number of possible LCSs in the network, where
N is the network size. In a node’s local k-hop graph, there
exist O(39+*) number of possible LCSs; and the number
of all possible combinations of the LCSs is 20(B*F) =
M. For better elaboration, a combination of the LCSs is
denoted as a Cooperating LCS (CLCS).

For each CLCS, as the number of communication rounds
for localization is bounded by F, it takes O(k x 8¥) = P
time to identify the nodes that can be localized under some
LCS of the CLCS. Therefore, it takes O(P x M x N)
time to figure out which node can be localized under which
LCS after k£ rounds of communications. Note that the time
complexity is polynomial to N.

In the following, we begin with analyzing the complexity
of time-bounded relative localization.

4.2 The Complexity of Time-Bounded Essential
Relative Localization

A necessary and sufficient condition for mutually trans-
forming coordinates between two LCSs is that there exist
at least (d+1) nodes that are aware of their positions in both
LCSs in the d-dimensional space. According to Section 4.1,
each possible LC'S;, 1 < i < H, can obtain its A;, the set
of nodes that can be localized under LC'S; in k rounds of
communications, in polynomial-time. Then, it takes at most
O(N x H?) time to transform all the LCSs into a Locally
Unique Coordinate System (LUCS) through enumeration.
Considering the essentially localizable nodes outside the
network and their contributions to the network’s k-round
essential localizability, it takes at most O(N?)x O(N x H?)
time in total to eventually transform all the LCSs into
the LUCS. Note that there might exist multiple LUCSs
when the network is not essentially localizable in k& rounds
of communications. We call each LUCS an isolated LCS
island. An isolated LCS island is a set of mutually trans-
formable LCSs. Any two LCSs in two different islands are
not transformable to each other.

Therefore, the complexity of checking whether a given
network can be essentially relatively localized in k rounds
of communications is polynomial to N, which is the num-
ber of nodes in the network. Let « be the network diameter.
It takes at most 7' = O(N x H x a) x O(N?) x O(N x H?)
time, which is also polynomial to NV, to figure out whether
the network is localizable in k& rounds of communications,
and to obtain the minimum £k that guarantees the network’s
localizability.

4.3 The Complexity of Time-Bounded Essential
Physical Localization

Following the results presented in Section 4.2, we study
the complexity of time-bounded physical localization in
this subsection. According to Definition 3.4, we should
address the following questions for time-bounded physical
localization.

1) Given a network G and the deployed anchors, is the
network essentially physically localizable in k rounds
of communications?

2) Given a network G and the deployed anchors, is the
network localizable? If yes, what is the minimum
required communication rounds k?

3) Given a network G and k, how should the anchors
be deployed such that the network is localizable in k-
round of communications and the number of anchors
is minimized?

To answer these questions, we construct a new graph
C:T(V:T7 ET), where Vi = VyUVN UV, and Er = Eyny U
Eya, with Vir, Vi, V4, Eyy, and Ey 4 being defined as
follows:

o LUCS set V7, where each node represents a Locally

Unique Coordinate System;

o To-be-localized node set Vjy, where each node repre-
sents a to-be-localized node in the network G;

o Candidate anchor set V4, where each node represents
a potential anchor node in the network G

« Dominating edge set Eyn, where each edge joints a
LUCS node in V; and a node in the to-be-localized
node set Vy if the node in Vy can be localized under
the LUCS in k rounds of communications;

o Anchor edge set Fyy 4, where each edge joints a LUCS
node in Vy; and a node in the candidate anchor set V4
if the node in V4 can be localized under the LUCS in
k rounds of communications.

Note that it takes polynomial-time to construct the graph
G according to the analysis in Section 4.2. For the first
question, it is equivalent to the problem of finding whether
there exists a set V7, C Vi such that each node in Vi is
dominated by at least one node in V[’], and that each node
in V[} connects to at least three nodes in V4. Obviously,
this problem can be easily solved in polynomial-time. To
answer the second question, we need to construct G and
to check whether the network G is essentially physically
localizable in k rounds of communications for each possible
k. According to the analysis presented in Section 4.2,
k is upper-bounded by O(N x H x «). Therefore, the
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time complexity of answering the second question is also
polynomial.

For the third question, the solution set VA C V4 should
simultaneously satisfy the following three requirements.

 For any V; C Vi, each node in V}; is dominated by
at least three nodes in V).

e Each node in Vi is dominated by at least one node in
VL.

e |V4| is minimized.

It is easy to conclude that the hitting set problem [11] is
a degeneration of the above problem. Therefore, generally
speaking, the third question is NP-hard. Intuitively, it is
related to the dominating set and connected dominating set
problems, with both being proved to be NP-hard [12], [13].
There exist many effort [14], [15], [16], [17] to construct a
connected dominating set in sensor networks. A survey of
these algorithms can be found in [18]. Nevertheless, none
of the proposed algorithms could be applied to solve the
time-bounded essential localization problem because they
focus on the 1-hop 1-dominating set problem. Moreover,
the practical constraint also makes it impossible to construct
the graph G in real-world implementations. On the other
hand, the time-bounded essential localization problem is
more likely to be related to the k-hop (d + 1)-dominating
set problem, in which a node should either be a dominator
or be dominated by (d + 1) dominators within k-hop
away. Distributed algorithms for the k-hop 1-dominating set
problem, which is proved to be NP-hard [12], are reported
in [19] and [20]. To our knowledge, none of the existing
works focuses on the k-hop (d+1)-dominating set problem
for a positive integer d. Furthermore, solutions for the k-hop
(d+1)-dominating set problem can only produce necessary
solutions for the time-bounded localization problem, be-
cause they can at most guarantee k-hop (d+ 1)-dominating
graphs, which are insufficient for localizability as reported
in Section 7.

In our investigation, the most related research to the time-
bounded essential physical localization problem is the Fast
Information Propagation problem proposed in [21]. This
problem intends to extract the minimum size of nodes for
initial activation such that information could be sent to all
the nodes in the given social network within a bounded
time. It has been proved [21] that the fast information
propagation problem is NP-hard when the time bound
(number of hops) is 1 and the number of dominators is
B/2, which is half of the maximum node degree. An
approximate algorithm is also proposed in [21]. Under
the same conditions, Zhu et al. [22] prove that the fast
information propagation problem is APX-hard whether the
initial active nodes are connected or not. Although the
fast information propagation problem is a good match to
our time-bounded essential localization problem, the 1-hop
constraint makes the currently focused problem degenerate
to be a variation of the dominating set problem. Therefore,
as stated above, no existing result can be applied to our
general time-bounded essential localization problem.

4.4 Analysis on Optimal Anchor Selection for
Time-Bounded Physical Localization

In this section, we study the problem of how to select the
minimum number of nodes as anchors so that the network
can be physically localized in a given time bound. Note
that we use the same notations as those in Sec. 4.3. Fig. 6
shows an example graph G, where |Vyy| < H, and |V4| =
|[Vn| = N. Obviously, V4 and Ey 4 are the reflections
(copies) of Vy and Ey ., respectively, when each node in
Vn can be an anchor candidate. As indicated in Section 4.2
and Section 4.3, given the number of rounds k, the graph
G can be constructed in polynomial time. Additionally,
according to the objective stated in Section 3.1, each LUCS
in Vi has at least 3 neighbors in V. Moreover, any two
LUCS in V; should have at most two common neighbors in
Vi since otherwise they should be merged into one LUCS.

Lucs, LUCS3

Fig. 6. An example Gr.

To physically localize the network, we first identify those
isolated nodes that can not be localized by any LUCS.
These isolated nodes have to be chosen as anchors. Then
we look for a minimum subset of V4 such that the nodes
in V7, which are three-dominated by the selected subset,
can dominate all the nodes in Vy. We set the nodes in the
selected subset of V4 as anchors.

To find the minimum subset, an intuitive question to ask
is: are all the LUCSs essential to localize the network?
In other words, does each LUCS localize some nodes that
can not be localized by other LUCSs? If the answer is
Yes, the problem can be degraded to the three-dominating
set problem. Unfortunately, the answer is No because
the nodes, which can be localized by LUCS5, can also
be localized by either LUC'Sy or LUCS3 as shown in
Fig. 6. A possible solution to this problem is to employ
enumeration on V4, which has a time complexity of 2.

Our next goal is to find the lower bound of the minimum
number of anchors to physically localize a network with
diameter o in k£ rounds, which is denoted as N 4. Suppose
that each node can be localized in some LUCSs. Then, the
minimum number of LUCSs that can 2localize the whole
network is lower bounded by H' = ¢5. This means that
H' is the number of essential LUCSs to cover the whole
network in k rounds. As any two of these essential LUCSs
can share at most two common neighbors in Vy, we have

Cx, =H' 2)

which implies that any three nodes in the minimum required
anchor set, whose cardinality is N4, can construct an
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essential LUCS. Then, we can obtain the theoretical lower
bound of the minimum number of anchors by solving (2),
with N4 being the only unknown.

Theorem 4.1: Given a network with diameter «, the
lower bound of the number of required anchors, which
can cooperatively localize the network in %k rounds, is
Ny = max{3, [root?%:" ).

Note that r0ot??3**® is the minimum positive root of (2).

Although there exist some greedy methods for finding
approximate solutions, we simply skip the discussions
because they are centralized, which makes them inappli-
cable in wireless sensor networks. In the next section we
propose a distributed approximate solution for the essential

localization problem.

5 DISTRIBUTED ALGORITHM

In this section, we describe a distributed algorithm for
time-bounded essential localization. From an algorithmic
perspective, the objectives of essential localization for both
relative and physical positioning are the same - i.e., to
maximize the number of localized nodes at any given time
bound.

5.1

The algorithm is depicted in Algorithm 1. The only input
is the time bound - i.e., the maximum number of commu-
nication rounds that can be consumed by the localization
process. The algorithm requires each sensor node to main-
tain the following data structures:

Algorithm Design

o A position table, which stores the positions of all 1-
and 2-hop neighbors of the sensor node under all local
coordinate systems (LCS) constructed by the sensor.

o A LCS identification table, which specifies how each
LCS is constructed (i.e., the IDs of all the sensors that
define the LCS).

o A LCS transformation table, which specifies the trans-
formation between each LCS in the LCS identification
table and a Base LCS (BLCS). Note that each node has
its own BLCS.

The BLCS is a LCS, which is constructed by the senor
itself and two of its direct neighbors, such that the number
of localized nodes under this LCS is no less than that
by any other LCS in the node’s 2-hop topology. The
BLCS is determined as follows. At each communication
round, a sensor broadcasts its 1-hop position table so
that its neighbors can update their corresponding 2-hop
position tables. Then, based on the 2-hop position table,
each sensor constructs its BLCS by finding two of its 1-
hop neighbors such that i) these two neighbors are within
the communication range of each other, and ii) the LCS
constructed by the two neighbors and the sensor itself can
localize the maximum number of sensors in the 2-hop
topology. Note that this step can be achieved by brute-force
searching and trilateration as the sensor is aware of its 2-
hop topology. The time complexity is O(32), with 3 being
the node degree. Once the BLCS is selected, three steps are

performed by the function Update the LCS transformation
table: first, a sensor checks its position table to find all the
LCSs that can be transformed to the BLCS; second, the
sensor transforms all LCSs identified in the first step to
the BLCS; finally, the sensor localizes more sensors based
on the updated position table. The output of the algorithm
includes the following information:

e Num_Island: The number of isolated LCS islands
remaining in the network. Num_Island presents how
many islands that are not globally transformable in
the network if we run the proposed algorithm for an
infinite number of rounds.

o Iteration_Bound: The max/min number of commu-
nication rounds required to connect all LCSs in every
island (as defined above).

e Max_Localized: The number of localized sensors
in the isolated LCS island that contains the largest
number of localized nodes among all the isolated LCS
islands.

e Num_Unlocalized: The number of unlocalized
nodes in the network - i.e., the number of nodes that
can not be essentially localized.

e Num_Anchors: The number of anchors required to
physically localize the network.

Based on the outputs, a sensor network is k-round
essentially relatively localizable if Iteration_Bound < k,
Num_Island = 1, and Num_Unlocalized = 0. For
physical localization, a sensor network is k-round localiz-
able when Iteration_Bound < k. The number of required
anchors is calculated by

3 X Num_Island + Num_Unlocalized 3)

which means that each island has 3 anchors, and that each
unlocalized node is an anchor. Note that (3) is an upper
bound of the number of required anchors. As any two
islands can have at most two common nodes, the lower
bound of the required number of anchors is

2+ Numlsland + NumUnlocalized (4)

which implies that all the islands share the same two
common nodes that have been chosen as anchors. The
output Num anchors 1S the upper bound defined in (3).

5.2 Algorithm Analysis

In this section, we shall first show that our algorithm is
capable of positioning more sensors (through polynomial-
time transformations among LCSs) than the traditional
technique. Then we investigate the local optimality of our
algorithm in selecting a BLCS. We prove that, within a
sensor’s 2-hop topology, the group of sensors that can be
localized by the selected BLCS is a superset of those that
can be localized by other LCSs that can also localize the
Sensor.

As multilateration is the basic approach adopted by each
LCS to localize a network, there exists an order of the
localized nodes for each LCS, in which each node except
the three origins defining the LCS has at least three ancestor
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Algorithm 1 Time bounded Localization Algorithm

iteration = 0;
while iteration < k do
iteration = iteration + 1;
Subphase I: Broadcasting and Collecting
if the LCS identification table has been updated
then
6: Broadcasts the update of the LCS identification
table;
end if
if the position table has been updated then
: Broadcasts the update of the position table;
10 end if

AN

11: if the LCS transformation table has been updated
then

12: Broadcasts the update of the LCS transforma-
tion table;

13: end if

14: Collects all the messages from its neighbors;

15: Subphase II: Localization

16: Updates the LCS identification table;

17: Updates the position table;

18: Combines the LCS transformation table with the

received messages;
19: Selects a BLCS;

20: Updates the LCS transformation table;

21: while the the position table has been updated do
22: Updates the LCS transformation table;

23: end while

24: end while

25: Outputs the position table and the LCS transformation
table;

26:

27: Functions:

28: function UPDATES THE LCS IDENTIFICATION TABLE

20: Combines the LCS identification table with the received
messages;

30: end function

31: function UPDATES THE POSITION TABLE

32: Combines the position table with the received messages;

33: Localizes the nodes under LCSs;

34: end function

35: function UPDATES THE LCS TRANSFORMATION TABLE

36: Transforms the transformable LCSs to the BLCS;

37: Transforms the positions in the transformable LCSs to the
BLCS;

38: Updates the position table;

39: end function

nodes. In other words, following that order all the nodes
can be localized by the three origin nodes of the LCS.
However, if randomly selecting three nodes in the ordered
list, we can not guarantee the localizability of their ancestor
nodes nor the localizability of all the nodes after them in
the list. Note that we require the selected three nodes to
be non-degenerative. Fig. 7 shows such an example, where
there exist 6 localized nodes in LC'S23, with nodes 1,2, 3
being the three origins. Nodes 4,5,6 can be localized in

the order of (4,5,6) in LCSy23, but none of the origins
can be localized by them.

Fig. 7. An example to illustrate the ordered list of the
localized nodes in LC'S123.

Note that if two LCSs can be mutually transformable,
the intersection of their ordered lists of the localized nodes
should have at least three degenerative nodes. According to
the above analysis, it can be concluded that the nodes in
the intersection can not guarantee the localizability of all
the nodes in both lists. Therefore, we obtain the following
theorem:

Theorem 5.1: Given a network and a set of anchors,
the number of localized nodes by applying the proposed
algorithm is larger than or equal to the number of localized
nodes by applying the traditional multilateration localiza-
tion method.

Proof: For any node in the ordered list of a LCS, it can
obtain its physical position through position transformations
when there exist at least three anchors in the list. Starting
from these anchors, we can obtain a sublist of the LCS’s list
through the traditional multilateration localization method.
This means that the LCS can localize all the nodes that
can be localized by these anchors. Note that the ordered
list starting from any anchor must be a sublist of some
LCS. However, according to the above analysis, the sublist
can not guarantee the localizability of the two original lists.
Therefore, the proposed algorithm can localize all the nodes
that can be localized by all the anchors, but not vice versa.

L1

Within the 2-hop topology of a node there does not exist
an edge to connect two 2-hop neighbors of the node because
its 1-hop neighbors only broadcast their 1-hop topologies.
Intuitively, for a node to construct a local optimal LCS
that can localize the maximum number of nodes (including
itself) in its 2-hop topology, it is sufficient to consider all
the possible three-node combinations as LCS candidates, in
which the three nodes should mutually hear each other. The
time complexity of this enumeration procedure is O(3%),
where [ is the maximum node degree, because a LCS
candidate can include at most one of the node’s 2-hop
neighbors. Nevertheless, as indicated by Theorem 5.2, the
time complexity of our proposed BLCS selection method is
O(3%). This theorem also proves that the proposed BLCS
selection method is sufficient to find a local optimal LCS.

Theorem 5.2: In the proposed distributed algorithm, the
selected BLCS is a local optimal LCS within the 2-hop
topology of a node.

Proof: In the proposed distributed algorithm, we check
all the LCS candidates that are constructed by the node
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itself and two of its direct neighbors to select a BLCS. We
denote this type of LCS candidates as S(0, 1,1), where 0
represents the node itself and 1 represents one of its 1-hop
neighbors.

A possible LCS candidate can also be constructed by
three of the node’s 1-hop neighbors. We denote this type
of LCS candidates as S(1,1,1), where 1 represents one
of the node’s 1-hop neighbors. Moreover, a possible LCS
candidate can be constructed by one of the node’s 2-
hop neighbors and two of the node’s 1-hop neighbors.
We denote this type of LCS candidates as S(2,1,1),
where 2 represents one of the node’s 2-hop neighbors
and 1 represents one of the node’s 1-hop neighbors. Our
proposed method only needs to check the LCS candidate
set S(0,1,1).

Assume that an local optimal LCS is in the candidate set
S(1,1,1). As all the three 1-hop neighbors that construct
the local optimal LCS can mutually hear each other and the
node itself connects to all of them, the LCS constructed by
the node and any two of the three 1-hop neighbors can
localize the other 1-hop neighbor. Therefore, all the three
origins of the local optimal LCS can be localized by the
newly constructed LCS that is in the set S(0,1,1). Then,
the newly constructed LCS can localize all the nodes that
can be localized by the local optimal LCS. Thus, the newly
constructed LCS is a local optimal LCS.

Assume that a sensor’s local optimal LCS is in the
candidate set S(2,1,1). As the local optimal LCS can
localize the sensor itself, it must be able to localize at least
one more 1-hop neighbor. The LCS, which is constructed
by this 1-hop neighbor and the other two 1-hop neighbors
in S(2,1,1), can localize the 2-hop neighbors in the set
S(2,1,1). Therefore, the newly constructed LCS, which is
in the set S(1,1,1), can localize all the three origins of
the local optimal LCS. Thus it is a local optimal LCS.
According to the analysis of S(1,1,1), there must exist a
local optimal LCS that is in the candidate set S(0, 1,1).

In conclusion, checking only the candidate set S(0,1,1)
is sufficient to find a local optimal LCS within a node’s 2-
hop topology. This means that our proposed BLCS selection
method can find a local optimal LCS in O(3?) time. [

Note that the result of Theorem 5.2 cannot hold if the
communication edge between two nodes is not bidirec-
tional.

6 SIMULATION EVALUATION

In this section, we use MATLAB simulations to evaluate
the performance of our proposed algorithm for essential
localization.

6.1 Simulation Settings

In our simulation, each sensor node runs our proposed lo-
calization algorithm. The topology of the sensor network is
set up as follows: We consider a sensor network consisting
of 100 nodes randomly deployed in a 2-dimensional square
region with a size of 100 x 100. we denote the region’s
border length and the number of sensors in the network by

d = 100 and N = 100, respectively. Thus the node density
can be approximated by dﬂg To control the network average
node degree, we vary the node’s communication range from
R; to Ry such that R? x % =1 and R? x d—Ag =4 -ie,
Ry =10 and R = 20. This yields a node degree ranging
approximately from 3 to 13. Note that the transmission
ranges are the same for all the nodes at each simulation.
The outcomes of all simulations are averaged over 50
i.i.d. random network instances.

6.2 Simulation Results

In this section, we report our simulation results to study
the time-bounded localization problem. The performance
metrics include the Iteration_Bound, which is the minimum
number of communication rounds required to connect all
the LCSs in any isolated LCS island, the number of
isolated LCS islands, the maximum number of localized
nodes in the largest isolated LCS island, the number of
unlocalized nodes, and the estimated number of anchors
required to physically localize the network. Note that the
results reported for the node degree m summarize those
from m — 1 to m. As the node degree can not be directly
controlled, Fig. 8 presents the number of instances each
node degree appears in the simulations. Note that the fol-
lowing reported results are the average of all the instances
at its corresponding node degree.

100

90 ?\

60 | \

501 | \
|

Number of Instances

|

40t | \
|

30t | \

201 | \

2 4 6 8 10 12
Node Degree

Fig. 8. The number of instances for each node degree.

Fig. 9 reports the results regarding how many nodes are
unlocalizable, how many nodes can be localized in the
largest isolated island, and how many anchors are required
to physically localize the network. Generally speaking, all
the curves are monotonic from node degree 3 to 12. An
exception appears at node degree 13. The reason lies in
that the number of instances at degree 13 is very low as
shown in Fig. 8; thus the reported result cannot represent
the general property of degree 13. When the node degree
reaches 10, almost all the nodes become localizable, and
about 75% of the nodes can be localized at the largest
island.

Fig. 10 reports the number of isolated islands identified
by the proposed algorithm vs. the node degree. Generally
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Fig. 9. The numbers of the nodes that are localized
in the largest island and that are unlocalized, and the
number of anchors required to physically localize the
network.
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Fig. 10. The number of Isolated Islands.

speaking, this is a decreasing curve because the LCSs
have more chances to transform to each other when the
node degree is larger. An exception appears when the node
degree varies from 3 to 4. A possible reason is that the
degree 4 is still a low degree but more nodes become
localizable when constructing more LCSs comparing to
the degree 3. The number of islands is relatively high
and decreases fast when the node degree is less than 10.
The curve goes down slowly when it passes the point
(degree) 10, where the number of isolated islands is about
5. The exception at node degree 13 is resulted from the low
number of instances at degree 13, as elaborated for Fig. 9.

Fig. 11 reports the iteration bounds of the network’s
localizability for given node degrees under both the newly
defined essential localization and the traditional trilatera-
tion localization. A maximum localization time represents
the worst case among all the instances for the given
node degree in the simulations. It is easy to observe that
the proposed essential localization algorithm significantly
outperforms the trilateration localization in terms of lo-
calization time. Note that the standard deviations of the
reported average essential localization time and the average
trilateration localization time are about 62% and 58% of the

—e— Average Trilateration Localization Time
—&— Maximum Trilateration Localization Time
—o— Average Essential Localization Time
—&— Maximum Essential Localization Time

Number of Iterations
o)

7 8 9
Node Degree

Fig. 11. lteration Bound.

mean values, respectively. It is interesting to observe that
the maximum essential iteration bound in the worst case is
roughly equal to %, where R is the communication range.
The essential localization bound curve always peaks at the
node degree 10, which demonstrates a change in the trend in
both Fig. 9 and Fig. 10, where almost all the nodes become
localizable and a large island is formed. A possible reason
for the curves’ decrease after 10 is that most of the LCSs
are mutually transformable and that the nodes’ localizability
becomes stable. When the node degree is less than 5, where
the number of isolated islands is relatively large, the bound
is always 1. This indicates that all the isolated islands are
constructed in 1 iteration because the node degree is too low
to satisfy the LCSs’ transformation conditions. When the
node degree reaches 12, the maximum bound is also about
1, where the node degree is large enough to build one big
island to localize almost all the nodes (more than 96%). It
is delighted to see that the average bound for all the node
degrees are less than 2, which means that two rounds of
communications are sufficient for essentially localizing a
large number of nodes.

7 RELATED WORKS

The localization problem has been widely investigated in
wireless sensor networks for many years and now it is still
a hot research topic. In this section, we first summarize
the theoretical results for localization. Then, major existing
localization schemes are reviewed under the categories of
physical positioning and relative positioning.

From graph theory’s point of view, the localization
problem asks how to assign a position to each node in
the network such that the relations among the edges can
be satisfied. Ref. [23] claims that the network localization
problem is solvable in 2-dimensional and 3-dimensional
space if and only if the network graph is globally rigid.
An intuitive description of the rigidity is that the graph can
not flex. A globally rigid graph is unique in the isometry
of d-dimensional space. Generally speaking, the test for
the global rigidity of a graph is NP-hard [24]. A stronger
concept is the generic global rigidity. A graph is said to
be generic if the set containing the coordinates of all its



IEEE TRANSACTIONS ON NETWORKING

points is algebraically independent over the rationals. Refs.
[25] and [26] study a necessary but not sufficient condition
for the generic global rigidity: If a graph G is generically
globally rigid in d-dimensional space then G is redundantly
rigid and (d + 1)-connected. A graph is k-connected if it
remains connected upon removal of any set of < k vertices.
A graph is redundantly rigid in d-dimensional space if the
removal of any single edge results in a graph that is also
generically rigid. This condition has been proved to be
both necessary and sufficient in 2-dimensional space by
[27]. And a six-connected graph is proved to be generically
globally rigid in 2-dimensional space by [27] as well.
However, there exist redundantly rigid and at least (d+ 1)-
connected graphs that are not globally rigid when d > 2
[27].

In general, [23] has proved that the localization problem
is NP-hard, and the result holds true even if the network is a
unit-disk graph. For example, the wheel graph shown in Fig.
12 is globally rigid but can not be localized in polynomial-
time. Fortunately, there exist some kind of graphs that can
be localized easily, such as the (d 4 1)-lateration graph.
A (d + 1)-lateration graph is a graph that has a (d + 1)-
laterative ordering. This is an ordering of all the vertices
in the graph such that from any vertice with ordering j,
j > d+1, there are at least (d + 1) edges to the vertices
earlier than j in the sequence. The (d + 1)-lateration graph
is globally rigid and has a polynomial-time localization
solution in d-dimensional space [23]. The (d+ 1)-lateration
graph can be localized by the geometrical multilateration
method in polynomial-time in d-dimensional space. In a ge-
ometrical (d+1)-lateration method, a node can be localized
by the geometrical localization when (d + 1) number of its
neighbors have been localized and the geometrical distances
between the node and those neighbors are available. Refs.
[5] and [6] prove that all the centralized and distributed
implementations of the geometrical multilateration method
are equivalent in localizing a (d+1)-lateration graph, given
the graph and the anchors. Our time-bounded localization
research focuses on the multilateration localization method
because it can produce solutions in controllable polynomial-
time.

Fig. 12. The Wheel Graph.

Most existing works propose physical localization
schemes because they employ physical anchors. A range-
free positioning method is presented in [28] based on
APIT (Area-based Point-In-Triangulation test) and some
super anchors that have a much larger transmission range

than normal sensor nodes. Without super anchors, a bilat-
eration based localization method is proposed in [29] to
localize sparse networks. The complexity of this proposed
method is exponential. In [30], the authors propose a
trilateration based localization algorithm under the noisy
distance measurement. Different triangulation based lo-
calization schemes are proposed in [8], [9], [31], which
employ the relative distances towards the anchors obtained
from time-difference-of-arrivals. A similar idea is employed
in [32] to propose a silent self-positioning algorithm for
underwater sensor networks. Another underwater localiza-
tion algorithm, named 3DUL, is proposed in [33]. 3DUL
employs three surface buoys as anchors and determines the
inter-node distances through leveraging the low speed of
sound. Mobile localization problem has been addressed in
[34], where the actors (a type of nodes that collect and
process sensor data and perform appropriate actions) limit
their location update scopes based on the Voronoi diagram,
and the sensors predict the movement of the actors based
on the Kalman filtering of the previously received location
updates. The time bound for localization has not been
addressed in the literature. The existing anchor based works
usually focus on the density of the anchors. They can not
answer determinate questions such as how many anchors
are necessary and where to deploy the anchors such that
the network can be localized.

Without utilizing anchors, [35] proposes a SPA (Self-
Positioning Algorithm) algorithm to build a relative coor-
dinate system with the time-of-arrival based range informa-
tion. Local information are collected, and each node builds
its local coordinate system where the node itself is located
at (0,0). Then, a global coordinate system is constructed
by merging the local coordinate systems at the second
step. The major difference between our proposed algorithm
and SPA is the process of the local coordinate system
construction and the time-bounded global localization. Ref.
[36] proposes a multidimensional scaling (MDS) localiza-
tion algorithm. MDS is centralized, and requires an initial
estimation of the complete distance matrix. For relative
localization, we propose a new concept of localizability for
time bounded deterministic study in this paper. Compared
with existing works such as [35], [36], our work is novel
in that it introduces the time bound into the process of
constructing local coordinate systems. We first formally
define the time-bounded essential localization problem,
then analyze its complexity, and finally present a practical
solution.

So far, neither the theoretical nor the practical works has
ever addressed the problem of time-bounded localization.
Moreover, how to deploy minimum number of anchors such
that the network’s localizabiliy is guaranteed is still open.

8 CONCLUSION AND FUTURE RESEARCH

In this paper, we have explained why the traditional defini-
tion of relative localization is inappropriate for evaluating
the actual efficiency of localization in practice. To address
this problem, we define essential localization, a novel
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problem to capture the overhead of localization in a sensor
network. The complexity of the problem is studied, and
an efficient distributed algorithm is proposed to perform
time-bounded essential localization, whose performance are
evaluated through simulation studies.

The concept of essential localization is proposed to
compute the minimum required time for localization and
the earliest time to start a location based application. The
results presented in this paper are based on flooding-
based routing protocols. They should vary when applica-
tions employ other protocols for routing. As the flooding
property maximizes the information diffusion, the essential
localization time derived in this paper should serve as
the lower-bound. In the future, our research will focus
on investigating the essential localization time for other
widely recognized routing protocols (such as shortest path
and the realtime protocol SPEED [37]). In addition, the
study on essential localization has a broad impact on
social network applications. Therefore we will apply the
methodologies proposed in this research to the information
diffusion problem in social networks.
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