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SUMMARY
Neural circuitsmust both execute the behavioral repertoire of individuals and account for behavioral variation
across species. Understanding how this variation emerges over evolutionary time requires large-scale phylo-
genetic comparisons of behavioral repertoires. Here, we describe the evolution of walking in fruit flies by
capturing high-resolution, unconstrained movement from 13 species and 15 strains of drosophilids. We
find that walking can be captured in a universal behavior space, the structure of which is evolutionarily
conserved. However, the occurrence of and transitions between specific movements have evolved rapidly,
resulting in repeated convergent evolution in the temporal structure of locomotion. Moreover, a meta-anal-
ysis demonstrates that many behaviors evolve more rapidly than other traits. Thus, the architecture and
physiology of locomotor circuits can execute precise individual movements in one species and simulta-
neously support rapid evolutionary changes in the temporal ordering of these modular elements across
clades.
INTRODUCTION

Acentral goal of neuroscience is to understand howcircuits shape

behavior. Using a relatively small number of model systems,

diverse efforts in this field have greatly advanced our understand-

ing of neural mechanisms . However, how the structure and func-

tion of neural circuits can support the diversification behavioral

repertoires over evolutionary time is incompletely understood. To

understand how circuits can evolve requires establishing model

clades and groups of related species displaying both behavioral

diversity and having the requisite tools to dissect circuit and

computational mechanisms.1–4 New methods in behavioral mea-

surement5,6 and statistical analysis7,8 have made it possible to

collect and study many aspects of behavior at a large scale in

many clades. Similarly, broadly sampled and time-resolved mo-

lecular phylogenies have become increasingly available for many

groups of animals.9 Here, we demonstrate that combining high-

resolution, quantitative behavioral analyses with robust phyloge-

netics can reveal rich patterns of behavioral evolution comparable

with those seen for other traits.

We focus on the evolution of walking, a critical element of

many behaviors, in fruit flies of the genus Drosophila. Fruit flies

are nearly unique in being both a genetic and an evolutionary

model system, representing a broad range of life histories and

ecological contexts that provide strong bases for inter- and

intra-specific comparisons.10–13 Moreover, the structure of fruit

fly walking has been well resolved in the model species

D. melanogaster,14–16 and recent work has characterized the

functions of a number of critical neuron types that determine

the initiation of walking, turning, and stopping.17–21 Here,

we develop an approach to quantitatively compare the structure
Curre
of walking across fly species and strains. We find that this well-

constrained example of motor control can evolve surprisingly

rapidly, with closely related strains diverging and distantly

related species converging on similar temporal patterns of loco-

motor movements. These results demonstrate that behavioral

variation can emerge from changing the temporal sequence of

individual, modular movements, thereby identifying potential

neural mechanisms of locomotor evolution.

RESULTS

High-throughput measurement of drosophilid walking
To analyze the structure of naturalistic walking in fruit flies, we

developed the Coliseum, a novel apparatus for behavioral experi-

ments in Drosophila (Figure 1A), and flyvr software (STAR

Methods) for the acquisition and analysis of data from the Coli-

seum (Figure 1B). The Coliseum uses a fly-initiated dispenser to

introducefliesontoadarkened�1m31mplatformunder infrared

illumination (Figure 1A; STARMethods). As flies freely explore the

apparatus, a camera attached to a stepper-motor system tracks

and updates the camera position with animal movement

(100 Hz), yielding high-quality video and positional data in real

time (Figure1B).Weused theColiseum tomeasure the trajectories

of 1,030 individuals from 13 globally distributed Drosophila

species with diverse distributions ranging from cosmopolitan

(e.g., D. melanogaster, D. simulans), temperate (e.g., D. virilis,

D. persimilis), tropical (e.g., D. yakuba, D. mauritiana), and desert

(e.g., D. arizonae) habitats13; in addition, to detect traits that can

undergo very rapid evolutionary changes, we analyzed 15 wild-

derived strains of D. melanogaster from its ancestral distribution

in Africa (Figure 1C).
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Figure 1. High-throughput measurement of locomotion across Drosophila

(A) Schematic of the Coliseum. Flies are introduced onto an IR illuminated behavior platform by an automated dispenser. A high-definition camera is suspended

above on a stepper-motor system that updates the camera’s position as the fly moves. The visual field of the camera is indicated by the yellow cylinder tracking

the fly’s trajectory (marked by the red path).

(B) Workflow for acquiring fruit fly position in the Coliseum, extracting orientation, and updating camera position via stepper motors.

(C) (Above) Time-calibrated phylogeny of the species analyzed. (Below) The approximate global locations of the ancestral populations for each species or strain

represented in the phylogeny (coded by color).

(D) Probability density function of fly position in the Coliseum, computed using the positions of all trials in the data set. The dispenser hole location is indicated by

the black dot.

(E–G) The distributions of distance covered (cm, E), angular velocity (deg/s, F), and translational velocity (cm/s, G) encompassed by the full locomotor data set.

See also Figure S1 and Data S2.
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Comparing their relationships using a fossil-calibrated phylog-

eny established that these species and strains represent �40

million years of evolutionary history (Figure 1C). A variety of spe-

cies and clade-level relationships were examined, including

recent evolutionary diversifications in the D. melanogaster clade

(crown age = 41 mya; minimum branch length = 0.12 mya; Fig-

ure 1C), facilitating a phylogenetically thorough exploration of

the evolution of walking. Overall, flies uniformly explored the

Coliseum (Figure 1D) and displayed a variety of trajectory lengths
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and durations (Figure 1E) within the typical kinematic range of

adult Drosophila (Figures 1F and 1G).15,16,22 These measure-

ments varied as a function of species and strain (Figures S1A–

S1C), highlighting diversity in these first order statistics across

genotypes. Furthermore, the species and strains varied broadly

in the average time spent moving per trial (Figure S1D), suggest-

ing that the structure and sequencing of behavior may vary as a

function of genotype. Moreover, we found little of evidence of

thigmotaxis (boundary preference) in these data—a common
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Figure 2. Defining a universal walking behavior space

(A) The workflow for the TREBLE framework.

(B) The distributions of translational (top) and angular (bottom) velocities as a function of position in behavior space.

(C) The structure of behavior space annotated with behavioral states and pathways in between.

(D) The mean vector field of behavior space. Arrow angle and length indicate the direction and magnitude, respectively, of probabilistic movement between

points. The angle degree is also denoted by color, corresponding to the circle plotted above.

(E) The 2D probability density function representing the frequency of occurrence across behavior space for the full walking dataset.

See also Figure S2.
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pattern seen in open field tests of animal behavior—reflecting the

fact that animals rarely reach the edge of the Coliseum. The Coli-

seum is therefore a powerful tool for measuring naturalistic

walking and can be used to obtain high-resolution data from

diverse strains and species.

A common space captures drosophilid walking
The first order statistics of walking display substantial temporal

structure on the timescale of hundreds of milliseconds.14–16,22

To capture this structure, we employed the TREBLE framework

(Figure 2A)8 to create a common behavior space encompassing

all individual flies from all strains and species (Figure S1J). The

representation of behavior provided by TREBLE enables a num-

ber of powerful analyses. Intuitively, an animal’s behavioral state

is represented by a coordinate in behavior space. There coordi-

nates are defined by unique combinations of behavioral param-

eters, here measured as a set of velocities over a defined time

interval (discussed below). As these velocities change, the ani-

mal moves along a temporally continuous pathway in this space

that allows for interrogations of the sequencing of movement

over a variety of timescales. As a result, statistical models of

the frequency of, and transition probabilities between, specific

movements can be decoded. Furthermore, aspects of the overall

structure of behavior can be assayed by measuring the fre-

quency and timescale over which an animal revisits specific re-

gions of behavior space. These facets together enable one to

produce a representation of behavior that is temporally resolved,
captures variation across individuals and groups, and can inter-

rogate both local and global behavioral structure across

timescales.

To construct such a representation here, kinematic parame-

ters (Figure 2Aii) were measured from the raw fly trajectories

(Figure 2Aiv), binned into windows that reflected the temporal

structure of walking (see STAR Methods; Figures 2Aiii and

S1E–S1I), and embedded into a 2D behavior space via a

nonlinear dimensionality reduction (Figure 2Aiv).23 The resulting

space separated kinematic parameters along identifiable

axes (Figure 2B) corresponding to recognizable behaviors

(Figures 2C and S1L–S1N). To identify stereotyped movement

through the space, we calculated the mean path of all flies

through every point in behavior space, producing a vector map

in which large vectors correspond to similar movements per-

formed by many animals. This analysis revealed common path-

ways linking specific behaviors that varied in their frequency of

occurrence (Figures 2D and 2E). TREBLE therefore produced a

stereotyped, continuous behavior space encompassing the

breadth of drosophilid walking kinematics.

Distinct gait patterns are associated with variation in kine-

matics over time in D. melanogaster.22,24–28 To explore whether

other species displayed similar patterns, we identified the posi-

tions of all six limbs for each species and strain and extracted

the phase and swing-stance state at each frame (Figure 3A;

STAR Methods). As expected from D. melanogaster,22,24–28 we

found that the number of legs in stance was speed dependent
Current Biology 32, 3005–3015, July 25, 2022 3007
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Figure 3. Biomechanical and temporal characteristics of walking behavior space

(A) Themeasurement of gait parameters from videos of freely walking flies. Positions of the fly’s 6 tarsi are acquired for each frame (fly images on left) and are then

egocentrically aligned and converted to phase (panel top right) from which swing-stance estimates are made (panel bottom right). Sample distributions are from

D. melanogaster.

(B) The distribution of translational velocity as a function of the number of legs in stance across all genotypes.

(C) Emission probabilities corresponding to the number of legs in stance as a function of HMM state.

(D) The distributions of tripod- and tetrapod-biased densities in behavior space. Darker color corresponds to more bias toward the given gait type.

(E) The percent of behavior space covered by pure species in the dataset. Individual trial percentages are denoted per species as gray points, themean of which is

represented by the larger dark gray point.

(F) The distribution of per-bin significance in variance of occurrence across species (measured by Kruskal-Wallis test statistics calculated across all species).

Darker colors correspond to increasing Kruskal-Wallis statistics, representing substantial variation in occurrence across species.

(G) Autocorrelation functions of behavior space position over a 3 s span as species means.

(H) Distributions of the average time taken to return to a point in behavior space, calculated per species.

See also Figure S2 and Table S1.
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across all genotypes wherein velocity decreased as the number

of legs in stance increased (Figure 3B). We next fit hidden Mar-

kov models (HMMs) predicting the number of legs in stance,

given a varying number of hidden states (STAR Methods;

Table S1). Notably, a model with three hidden states represent-

ing tripod, tetrapod, and noncanonical gaits fit the data the best,

again matching D. melanogaster22,26,27 (Figure 3C). Although

each state displayed a characteristic distribution across

behavior space (Figure 3D), tripod gait was associated with a

much broader distribution in comparison with the other states,

corroborating findings that tripod gait can be employed broadly

across walking speeds.28 These observations suggest that the

relationship between gait and kinematics across Drosophila is

similar to that seen in D. melanogaster. Moreover, position in

behavior space maps onto identifiable gait patterns.

Although the above observations suggest conservation of the

overall structure of behavior space, it is possible that locomotor
3008 Current Biology 32, 3005–3015, July 25, 2022
evolution led to the development of unique kinematic combina-

tions in subsets of lineages. Such changes would result in spe-

cies- or clade-specific clustering within behavior space. To test

this possibility, we analyzed the amount of behavior space

covered by each species and observed that each of them

explored at least 95% of the space (Figure 3E). However, there

was significant variation in the amount of space covered by indi-

vidual flies fromeach species (Kruskal-Wallis test; p = 4.23 10�6;

Figure 3E), reflecting variation in the amount of time spent in spe-

cific regions (Figure 3F) that largely corresponded to fast running,

stopping, and fast turning. Furthermore, variation in these traits

wasgreater betweengroups thanwithin, indicating that thesedif-

ferences arise from distinct behavioral differences between ge-

notypes rather than context (Figures S2A and S2B; STAR

Methods). In addition, the behavior of each species displayed

stationarity (Figure S2C). This finding argues that during each

trial, each animal behaves as if in a single ‘‘state.’’



Figure 4. The phylogenetic distribution of drosophild walking

(A) The phylogenetic distribution of behavior space frequency maps across all species/strains. Frequency is represented by a heatmap of color ranging from blue

to red. Blue regions are less frequently visited; red regions are more frequently visited.
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Are the differences in frequency observed above mirrored by

changes in the sequencing of movements? Since position in

behavior space represents an animal’s current movement at a

given time point, we reasoned that the autocorrelation of position

could be used as a proxy for measuring the temporal structure of

behavior. Intuitively, this autocorrelation corresponds to the

timescale over which an animal returns to a given region of

behavior space. We found a common pattern across all flies in

which movements were tightly correlated over several hundred

milliseconds, declined rapidly, and rebounded briefly around a

second (Figure 3G). However, although each individual species

showed this same autocorrelation pattern, their baseline levels

of autocorrelation varied in a fashion that mirrored overall differ-

ences in behavioral frequency: more active species (e.g.,

D. virilis,D. mauritiana) showed higher baseline autocorrelations,

reflecting their tendency to perform longer and more frequent

bouts of movement (Figure 3G; see below). Interestingly, the dis-

tributions of the average time taken to return to specific points in

behavior space also showed similar patterns across species but

peaked over shorter timescales (Figure 3H). These lines of evi-

dence suggest that the frequency and sequencing of individual

movements, but not the range of kinematic parameter combina-

tions, have seen increased differentiation over evolutionary time.

Tempo and dynamics of the evolution of walking
To explore the evolutionary dynamics of these patterns, we

leveraged a fossil-calibrated genome-scale phylogeny of

Drosophila (STARMethods)29 to perform a series of comparative

phylogenetic analyses (Figure 4A). In phylogenetic studies of

traits such as morphology, the evolutionary diversification of

multiple components of a phenotype can be mapped, providing

insights into patterns of developmental constraint, trait hierar-

chy, and phenotypic correlations.30,31 In these frameworks,

multidimensional traits are often represented in a lower dimen-

sional morphological space (‘‘morphospace’’) that represents

the range of trait values possible across the species analyzed.

Given that the TREBLE behavior space captures the full range

of a behavioral trait (walking kinematics), we wondered whether

the structure and dynamics of this space might be studied in a

fashion analogous to morphological traits.

We considered three behavioral traits: structure (%of behavior

space explored), frequency (probability of occurring in specific

regions), and transitions (probability of sequencing between
specific regions; STAR Methods) (Figures 5A–5I). This hierarchi-

cal description of behavior represents, in order, the movements

that are possible, how often they are performed, and how often

certain movements precede others. We created a ‘‘behavioral

morphospace’’ for these three traits using principal component

analysis (PCA) and examined the patterns of variation accounted

for by each PC by analyzing their associated eigenvectors (Fig-

ure 5; STAR Methods). The first two components of the morpho-

space for structure separated species by the amount of behavior

space covered (Figures 2J and 5A), the variation of which was

associated with specific, structured regions of the space

(Figures 5Band5C). On the other hand, frequency and transitions

morphospaces yielded striking results. The first two components

of the frequency morphospace together explained 72% of

variation in the trait (Figure 5D). Comparing the distribution in

morphospace with the phylogenetic patterns of space occu-

pancy and their corresponding eigenvectors (Figures 5D–5F)

demonstrated thatPC1 separated species and strains along spe-

cific components of high translational and angular velocities

(Figures 5D and 5E; 51.73% variance explained). Conversely,

PC2 separated D. melanogaster strains and D. melanogaster-

like species from all others and was associated with variation in

stopped/grooming behavior (Figures 5D and 5F; 20.23% vari-

ance explained). Notably, both frequency PCs were correlated

with the mean translation velocity of each strain and species

(PC1: r = �0.77; PC2: r = �0.55; Pearson correlation), further

demonstrating that the mirroring of behavioral space occupancy

and kinematic parameters. The first two components of the tran-

sitionsmorphospaceexplained81%of variation (Figure 5G). PC1

(66.97% variance explained) was associated with variation in

transitions leading to bouts of running (Figures 5G and 5H),

whereas PC2 (13.75% variance explained) represented behav-

ioral differences associated with turning sequences (Figures 5G

and 5I). Taken together, these results indicate that locomotor di-

versity across the Drosophila phylogeny is driven by variation in

specific components of movement, largely related to the occur-

rence and sequence of running and turning. Furthermore, there

is a substantial degree of trait variation not associated with

phylogenetic relationships, providing initial evidence of both

behavioral convergence across distantly related species and

divergence among closely related strains.

We wondered whether morphological variation, particularly

body size, might contribute to these striking patterns of
Current Biology 32, 3005–3015, July 25, 2022 3009
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Figure 5. Morphospace representations of behavioral variables

(A) Structure morphospace. Variance explained by the first two PCs are denoted in the axes.

(B and C) The 2D representations of the first 2 eigenvectors associated with the structure morphospace. Eigenvector values correspond to the blue-red heatmap.

(D) Frequency morphospace.

(E and F) Eigenvector representations of the frequency morphospace.

(G) Transitions morphospace.

(H and I) Eigenvector representations of the transitions morphospace.

See also Figures S3 and S4.
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diversification as our ensemble of species displayed a range of

sizes (Figure S4A). To what extent might this variation be

predictive of behavior? Although we found mild to moderate

correlations between body size and structure, frequency, and
3010 Current Biology 32, 3005–3015, July 25, 2022
transitions (Figures S4B–S4D), species of origin was a signifi-

cantly better predictor of these behavioral traits than body size

(Figures S4E–S4G). We also explored whether measuring trans-

lational movement as a fraction of body length, as opposed to
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Figure 6. The dynamics of locomotor evolution across Drosophila

(A) Violin plot of the distribution of phylogenetic signal across behavior space for structure, frequency, and transitions (see STAR Methods; Kruskal-Wallis test

followed by post-hoc Dunn’s test) ****p < 0.0001, ***p < 0.001.

(B) Violin plot of the comparison of relative rate of evolution measurements across all nodes in the phylogeny for all three traits (Kruskal-Wallis test followed by

post-hoc Dunn’s test) ****p < 0.0001, ** p < 0.001.

(C) Mean relative rates of evolution over time for each trait (computed in 0.1 million year windows). Species accumulation was calculated by summing the number

of extant species per 0.1 million year window (inferred by the time-calibrated phylogeny) and is indicated by the dotted red line.

(D) The evolutionary landscape of frequency. Darker colors correspond to greater evolutionary rates (measured by phylogenetic independent contrasts [PICs]).

(E) The evolutionary landscape of transitions. Transition probability is represented by the thickness of the lines connecting nodes (corresponding to Louvain

clusters; see STAR Methods). Evolutionary rate corresponds to darkness of color (PICs, phylogenetic independent contrasts).

(F) Cophyloplot comparing the fossil-calibrated whole-genome phylogeny (left) to a phylogeny made from variation in frequency (right). Species are represented

by colored nodes at the terminal tips of both phylogenies, with their corresponding positions indicated by dotted lines.

(G) Cophyloplot comparing the fossil-calibrated whole-genome phylogeny (left) to a phylogeny made from variation in transitions (right). Color legend of species

labels are plotted to the right.

See also Figures S3–S5.
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translational velocity, would affect the observed behavioral dis-

tributions.We found that doing so had little effect on the resulting

behavior spaces and did not change the overall relationship of

species (Figure S4H). Thus, the evolutionary patterns present

in our data are not driven by variation in body size.

Next, the evolutionary lability of the behavioral traits was esti-

mated by calculating the distribution of phylogenetic signal for

each (STAR Methods). Phylogenetic signal varied as a function

of the behavioral hierarchy (Figure 6A). Structure was extremely

conserved (mean Blomberg’s K = 8.32, SD = 2.14), whereas

the mean values of both frequency (mean Blomberg’s K =

0.24, SD = 0.14) and transitions (mean Blomberg’s K = 0.16,

SD = 0.11) were well below 1, suggesting rapid evolution of these

traits independent of phylogenetic relationships. Furthermore,

the phylogenetic signal distributions across all three traits varied

significantly (Kruskal-Wallis test: p < 13 10�100) with transitions

having a distribution significantly lower than frequency (Dunn’s

test: p = 0.0088; z = 2.37), suggesting a particularly rapid tempo

of evolution in the sequencing of behavior across the Drosophila

tree.

To assess the temporal dynamics of these patterns, we esti-

mated ancestral states with variable-rate models of evolution
and examined variation in morphospace occupation over time.

Across the full phylogeny, transitions evolved at the fastest

rate (mean normalized relative evolutionary rate = 0.14; STAR

Methods) followed by frequency (rate = 0.11) and structure

(rate = 0.05). Each trait had a distinct distribution of rates across

the phylogeny (Figure 6B) that varied significantly from the others

and corroborated the phylogenetic signal analyses. Accordingly,

the rate of evolution of structure largely mirrored the accumula-

tion of species (Figures 6C and S5C), increasing in rate in parallel

with the diversification of the D. melanogaster clade over �6.7

Ma. On the other hand, frequency and transitions displayed

multiple epochs of increases and decreases in rate across the

phylogeny (Figures 6C and S5C).

To study the rate of behavioral trait diversification, we exam-

ined how each morphospace was populated over evolutionary

time (Figures S5A–S5D; STAR Methods). We found that the full

range of structure morphospace was sparsely sampled (Fig-

ure S5B), covering just 19% of phenotypic values and occurring

at a rate slower than species accumulation (Figures S5C and

S5D). The frequency morphospace was explored to a greater

degree (37%; Figures S5B–S5D) that evolved in tandem with

species accumulation until an increase in variation emerged
Current Biology 32, 3005–3015, July 25, 2022 3011
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Figure 7. Rapid, specific, and convergent behavioral evolution in Drosophila

(A) Distribution of relative rate of evolution across five categories of Drosophila traits: behavior, life history, molecular, physiology, and morphology. Points

correspond to median values, bars represent standard error.

(B) Violin plot of relative rates of evolution given Drosophila trait type (Kruskal-Wallis test p value).

See also Figure S6, Table S2, and Data S1.
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�1.5 Ma (Figures S5C and S5D). Finally, although the transitions

morphospace was slightly less explored than frequency (30%

covered; Figure S5C), it showedmultiple pulses of diversification

that outpaced species accumulation (Figures S5C and S5D) and

filled earlier than the other traits (Figure S5D).

To what extent might specific components of these traits—

movements or the transitions between them—be evolving at

different rates to account for these patterns? Strikingly, we

found that frequencies of specific movements did not evolve

uniformly but rather varied >4-fold across behavior space

with especially rapid rates in regions associated with high

translational velocity, turning at high speed, and stopping (Fig-

ure 6D). Similarly, transitions between specific movements

varied in rate disproportionately (Figure 6E). The recurrence of

high translational velocity and fast turning movements, and

the transitions between them, evolved most rapidly (Figure 6E).

Furthermore, comparing species based on overall variation

in these patterns indicated evolutionary convergence.

Phylogenies produced from variation in frequency and transi-

tions regrouped D. virilis, D. arizonae, and D. mauritiana with

a subset of the D. melanogaster clade and strains (Figures 6F

and 6G).

Taken together, these results imply a hierarchy in the evolution

of drosophilid locomotion: transitions are most malleable, fre-

quency evolves slightly less rapidly but with greater variance

than transitions, and structure is largely conserved. We note

that recent work described a similar relationship between fre-

quency and structure using different methods and a smaller

set of species but did not resolve transitions.32 Furthermore,

these findings suggest that the rapid evolution of frequency

and transitions resulted in convergence of the walking reper-

toires of multiple species and strains. Finally, these findings

reveal that walking is organized around two fundamentally
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different strategies, one that is built on longer sequences of

high velocity runs and turns and the other on shorter sequences

of lower-velocity movements.

Behavior evolves more rapidly than other traits
Given the hierarchical and rapid evolution described above, we

wondered how the diversification of walking might compare

with that of other traits. To do so, we conducted a meta-analysis

of the evolution of 78 behavioral, morphological, molecular,

physiological, and life history traits (Table S2). We normalized

trait measurements and used the fossil-calibrated genome tree

to calculate evolutionary rate and phylogenetic signal for each

(STARMethods). For these traits, the relative rate of evolutionary

change varied over an order of magnitude (Figure 7A). Strikingly,

of the 25 most conserved traits, only one was behavioral and, as

expected, was structure. Of the 25 most rapidly evolving traits,

21 were behavioral including aspects of frequency, transitions,

and a variety of courtship behaviors. Importantly, the remaining

4 rapidly evolving traits were morphological and tightly associ-

ated with courtship that is known to evolve rapidly in drosophil-

ids.13,33,34 Reflecting this pattern, behavioral traits showed the

greatest rates of evolution (Figure 7B).

DISCUSSION

Here, we dissected the evolution of walking in a phylogenetically

diverse clade, fruit flies of the genus Drosophila. A universal

behavior space captured the full range of drosophilid walking ki-

nematics. Variation in hierarchical aspects of the walking

behavior space—structure, frequency, and transitions—was

captured by individual morphospaces, eachwith a unique tempo

and pattern of evolutionary diversification. Although structure

was conserved, frequency and transitions displayed multiple
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pulses of phenotypic evolution, resulting in species and strains

that converge on commonmovement patterns. Furthermore, be-

haviors were associated with significantly faster rates of evolu-

tion than morphology, life history, physiology, and molecular

traits, results that are consistent with previous studies.35,36

Whether this pattern holds across other systems will be of great

interest. Such comparative work could resolve the long-standing

debate of whether behavior is a facilitator, or inhibitor, of pheno-

typic variation during organismal evolution.36–42 In particular,

notwithstanding the need to perform comparable analyses using

other behaviors and clades, by revealing relatively rapid evolu-

tionary change in the behaviors of one model clade, our work

supports the idea that behavior can indeed facilitate the

emergence of phenotypic variation.

Our data demonstrate that sequences of motor actions, rather

than individual movements, have evolved rapidly. Furthermore,

divergent species and strains have converged on similar behav-

ioral patterns multiple times, whereas closely related strains that

live in comparable natural environments can be highly divergent

behaviorally. Thus, the evolutionary patterns we observed

appear robust to the specifics of our behavioral assay. In some

cases, behavioral convergence has occurred independent of

life history and ecological background. For example, species

from tropical (D. mauritiana) and temperate (D. virilis) habitats

have converged on similar behavioral repertoires to those seen

in the cosmopolitan D. melanogaster. In the same vein, very

closely related D. melanogaster strains isolated from a single

subregion in Africa can also diverge markedly in their walking

behavioral repertoires, spanning distances in behavior space

comparable with that seen in divergent species pairs. Future

work should explore the evolutionary and coevolutionary

relationships between behavioral structure and traits such as

physiological regulation and anatomical differences across

Drosophila species. Furthermore, it will be especially interesting

to if these intraspecific patterns are present among other

species populations (e.g., North American populations of

D. melanogaster or D. persimilis) and if such variation arises

from identifiable evolutionary processes such as adaptation or

drift.

Studies of a wide range of both social and nonsocial behav-

iors, in many animals, have identified discrete, modular elements

that can be arranged in temporal sequences of varying flexi-

bility.14–16,43–52 Here, we compare the structure of a common

behavioral repertoire across a densely sampled set of species

and strains to show that the apparent focus of rapid evolutionary

change lies in changing the temporal sequences of individual

movements, with substantially less variation in the fine structure

of the movements themselves. Thus, the modularity of behavior

seen in individual species in fact appears to reflect the structure

of evolutionary change. These observations, in tandem with

comparisons with other traits, suggest that the diversification

of walking arises first via changes in neural control, as opposed

to biomechanical or morphological mechanisms that would alter

the fine structure of individual movements. In this case, behav-

ioral diversification may be tightly coupled with neural evolution

and labile over even very short evolutionary timescales, such as

those seen within a species. Thus, the architecture and function

of neural circuits appears to both enable complex behavior and

facilitate its rapid diversification.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fly strains
All stocks were kept at 25�C on molasses-based food and reared under a light-dark cycle of 12:12 h. The following stocks were ob-

tained from National Drosophila Species Stock Center: D. willistoni ((Heed) H57.30), D. santomea ((Gompel)STO.4), D. persimilis

(2529.6), D. mauritiana (E18912 MS17), D. virilis (3367.1), D. arizonae, D. yakuba, D. sechellia, D. simulans, D. pseudoobscura,

D. erecta, and D. teissieri. Strains of D. melanogasterwere collected in Southern Africa, the ancestral range of the species (Coughlan

et al.,55).

METHOD DETAILS

Behavior
Apparatus

The Coliseum is an enclosed 1m x 1m arena for measuring the unconstrained walking of fruit flies. The arena is sealed from external

light via Velcro-attached curtains on the sides and solid walls on the top and bottom. Flies are released into the arena through a hole in

the floor bymeans of an automated dispenser consisting of a vial filled with flies and a servo-gated exit (details in Data S2). Flies enter

the arena by crawling up the exit channel. An optical sensor detects that a fly has entered the channel and immediately closes the

gate behind the fly to both avoid releasing multiple flies simultaneously and to prevent flies from returning to the vial from the arena.

Once a fly is in the arena, it is edge-lit by IR LEDs around the perimeter of the floor and recorded from above by a high-definition

camera outfitted with a zoom lens that is sufficiently powerful to capture anatomical details at high resolution. To keep the fly in

its field of view the camera is mounted on a 2-axis CNC mill (grbl with gShield + Arduino UNO; stepper motors are SM42HT47-

1684B) that updates the camera position as the fly moves.

The position of the CNCmill is controlled by the software flyvr (github.com/ClandininLab/flyvr) by tracking the position of the fly and

the camera simultaneously. The fly’s position in the camera is first computed by thresholding and extracting the pixels representing

the fly, identifying the head-tail axis and orientation, and then calculating the in-frame coordinates of the fly’s center. This relative

position is then summed with the position of the camera to calculate an absolute position in the Coliseum which is used to update

the stepper-motor coordinates of the CNC and thus keep the camera in sync with the fly’s movement. The absolute position and

heading angle of the fly are recorded for each frame (at 100Hz) and outputted by flyvr at the end of each trial.

Behavior experiments

Immediately after eclosion, virgin female flies were sorted into vials of 10-20 flies and reared in light-dark chambers (12:12h) at 25�C.
2-4 day old flies were used for tracking in the Coliseum. On the day of the experiment, individual vials would be loaded directly into

the automated dispenser and flies would enter the Coliseum one at a time. Flies were allowed to explore the arena freely for up to

20 minutes, after which the animal would be manually removed from the chamber. The floor of the Coliseum was cleaned with
Current Biology 32, 3005–3015.e1–e6, July 25, 2022 e2
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70% ethanol between trials to remove odorants or other stimuli that may affect patterns of locomotor behavior. All experiments were

conducted during the same time window to align with the light-dark cycle, from roughly CT0-CT3.

Age, diet, circadian rhythm, and environment were controlled to facilitate interspecific comparisons, potentially influencing individ-

ual species’ expression of locomotor behavior. However, a standardized diet has minimal effects on the behavior of diverse species,

even on specialist species such as D. sechellia, D. arizonae, and D. erecta.56 Future work comparing the locomotion of wild-caught

flies in natural conditions would be useful for corroborating the controlled laboratory experiment presented here.

Generating a universal behavior space with TREBLE
Determining window size

Following previous work on the kinematics of walking in D. melanogaster8,15 we calculated the following kinematic parameters for

each trial: translational velocity (cm/second), angular velocity (degree/second), and sideslip (cm/second). Per-frame position and

heading angles from the Coliseum were used for these calculations. As in York et al.,8 angular and sideways velocity values were

normalized to the first frame in thewindow and proceeding velocity values were adjusted to ensure that the second framewas always

positive. Since we weren’t concerned with turning direction, the absolute value of angular velocity was used. To control for rare oc-

casions of jitter in the camera movement we smoothed each velocity parameter using a Nadaraya-Watson kernel estimate (ksmooth

function in R; bandwidth = 0.25) and down sampled the data to 30Hz (which removed noise without affecting the structure of the

velocity parameters).

A core component of the TREBLE framework is identifying the temporal structure of a behavioral dataset by iteratively sampling

data in increasing window sizes and empirically analyzing variation in the downstream behavior spaces.8 Here, we performed this

iterative window search by randomly sampling 50 trials and testing the effect of window sizes (from 10ms to 1 second, 20ms intervals)

on the structure and temporal properties of behavior space (Figures S1E–S1I). The goal of this procedure is to identify a window size

that minimizes variation across replicates in both the structure and temporal sequencing of movement through behavior space. Vari-

ation in behavior space structure was assessed by measuring the Procrustes and mean inter-point Euclidean distances between all

replicates (Figures S1F and S1G). Here, Procrustes distance is a measure of the global differences between two spaces.8 First, the

sets are scaled to match each other in size, shifted to match positions in space, rotated until the distances between the points are

minimized, and then compared by calculated the square root of the sum of squared differences between the two configurations of

points.23 Mean inter-point Euclidean distance complements this global assessment by providing a local measurement (i.e. between

adjacent points) of structural variation. In both cases themean stabilized, and variance decreased, at windows around 300ms in size.

Temporal variation was measured by analyzing the timing of recurrence in behavior space, based on the concept that these are

essentially state spaces reflecting the function of a continuous dynamic system.8 Recurrence wasmeasured by calculating the dura-

tion of time it took to return to the local neighborhood of each point in behavior space. The proportions of points that were recurrent as

a function of 10ms temporal bins, ranging from 0 to 2 seconds, were then measured (Figure S1E). From this we obtained the mean

recurrence time across all temporal bins (Figure S1H) and the overall proportion of recurrent points across all bins (Figure S1I) for each

window size. As has been seen previously in studies of fruit fly walking,8 there was a narrow range of window sizes (�140-360ms) that

displayed a peak of recurrence at around 250ms (Figure S1E) and dissipated with increasing window size. Taken together, these

analyses indicated that a window size of 333ms optimally reduced variation in the structure of behavior space while capturing the

temporal patterns present.

Embedding temporal windows into behavior space

We next produced windows for all trials using the size identified above. For each frame of a given trial (denoted here as frame i), and

for a window size w, we individually extracted the kinematic parameters (x) for time i:i+w and then concatenated them linearly into a

single vector of length 3x. These window vectors were then collected into a single matrix spanning all flies and containing 3,890,645

windows. Further details of this procedure can be found in York et al.8We then used the R implementation of the UMAP algorithm23 to

non-linearly embed the windows into a 2-dimensional behavior space containing all flies from all species and strains. To facilitate

downstream analyses, we also produced version of the space with simplified 2-d coordinates by decomposing each point onto a

grid of size n bins x n bins using the TREBLE function bin_space. Most analyses described below use a 64x64 grid size, containing

4,096 unique bins, unless otherwise noted.

Characterizing behavior space

Stereotypy in movement through behavior space was assessed by creating a vector field representation. Using the 64x64 grid rep-

resentation of behavior space, we identified all points associated with a given bin and then calculated the mean direction for all in-

stances of a trajectory leaving that bin (in xy coordinates). Mean direction was represented by plotting themean trajectory out of each

bin via an arrow, the direction and magnitude of corresponded to the xy coordinates calculate above (as in Figure 2D). Arrow color

reflected the polar coordinates of the vector for each bin.

Variation in the percent of behavior space covered by individuals and species/strains (Figure 3E) was measured by calculating the

number of unique bins in behavior space were visited as a function of the total number of bins. The significance of per-bin variance as

function of species (Figure 3F) was measured using a Kruskal-Wallis test. First, we calculated the total proportion of time spent in

each bin (as a fraction of overall trial time) for all flies. We then ran a Kruskal-Wallis test (kruskal.test function in the R package stats)

for each bin, comparing species and using the bin-wise proportions from each fly of a given species to account for intraspecific

variation.
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Patterns of temporal sequencing through behavior space were inferred by calculating the autocorrelation of position in behavior

space. To do so, we assigned each bin in behavior space a unique 1-d identifier, creating a single numeric representation of behavior

space position (a metric outputted by bin_space). This vector was then used to calculate autocorrelation using the acf function in

R (lag time = 3 seconds), for all species (Figure 2G). Analyses of the return time distribution to specific portions of behavior space

were calculated in the same fashion as the recurrence tests run during the iterative window search procedure (outlined above).

Here, we measured recurrence timing across all bins for each species and then measured the mean distribution of return times

over a span of 3 seconds (as seen in Figure 2H).

Behavior space power tests, intra- inter-species variance, and inter-trial variance

Animal behaviors can be influenced by a variety of factors - such as context, physiological state, or personality - in addition to ge-

notype.42 If the variance of a given behavior is strongly driven by contextual factors, then identifying consistent species differences

may be difficult or impossible. With this in mind, we sought to calculate the intra-individual variability in behavior space statistics and

to compare this to the variance observed with and between strains and species.

To address the first goal, we performed a power test exploring the number of individuals needed to capture the overall structural

and frequency statistics within behavior space for each species. First, we calculated probability density functions (pdfs) of xy coor-

dinates in behavior space for each species using all individuals (grid points = 100, bandwidth = 1). We then compared pdfs calculated

using a range of included trials (1 to 10 trials) to the full pdf for each species using correlation. To factor in intra-trial variability, we

bootstrapped each trial sample size 10 times (i.e., 2 trials were randomly chosen 10 times and correlated to the full pdf; then 3 trials

were randomly chosen 10 times.), randomly permuting which trials were used per species. Comparing mean correlations across

permutations, we found that each species and strain had a high level of autocorrelation with a small number of trials included, for

most reaching a correlation >0.9 using just 6 trials and converging >0.95 with 10 trials used (Figures S2A and S2B). These results

indicated that, for the given behavior and experimental set up, intra-species variation in walking could be captured well within the

sample sizes collected (Figure S2A).

We next assessed the relationships of intra-individual, intra-species, and inter-species variation by bootstrapping behavior and

comparing distributions in behavior space using cosine similarity. We first selected trials longer than 5,000 frames (166.66 seconds),

resulting in 373 trials. Intra-individual variance was measured by randomly selecting 2,000 time points 10 times per trial (without

replacement), resulting in a total 3,730 permutations. A pdf (grid points = 100, bandwidth = 1) was calculated each permutation.

The intra-trial similarity was calculated by computing the cosine similarity of the pdfs from the 10 permutations per trial (Figure S2B).

Intra-strain variance was computed in the same fashion except for 100 bootstraps we performed per strain (Figure S2B). Interspecific

variance was measured by bootstrapping xy coordinates (2,000 per shuffled) from the full data set 1,000 times (Figure S2B). The dis-

tributions of all three measures were compared using a Kruskal-Wallis test followed by a post-hoc Dunn’s test (dunn.test function in

the R package dunn.test). We found that all three significantly differed. Intra-individual similarity was greater than intra-strain while

intra-strain similarity was greater than inter-strain (Figure S2B).

Stationarity was assessed by splitting each trial into evenly sized halves, comparing the halves’ distributions within behavior space

via correlation, and then analyzing the mean intra-trial correlations for each species. We reasoned that, for stationary behavior, the

two trial portions should be highly correlated. On the other hand, if the behavior of the flies was governed by multiple states within a

single trial, then the portions would be uncorrelated (and would be reflected by different distributions within behavior space). We

found that each species displayed a correlation of at least 0.8 (Figure S2C), representing strong intra-trial correlations and indicating

that the our data appear to overwhelmingly represent stationary behavior.

Gait analysis
Limb tracking

Behavior videos were first contrast enhanced using customMatlab scripts to optimize the view of the animal’s legs. The head, thorax,

abdomen, and leg tarsi were automatically tracked from the top-down videos using DeepLabCut and Anipose.54,57 Tracked data points

were used to analyze walking kinematics using a custom Python script (https://github.com/Prattbuw/CODE-Evolution-of-

Drosophila-Walking). Position time series data associated with the tarsi was smoothed using a moving average with a time window of

�80ms. Head, abdomen, and leg tarsi positions were normalized to the thorax to calculate positions relative to the body. Heading angle

was calculated based on head and thorax positions relative to an allocentric reference (i.e. experimental chamber). Tarsi positions were

rotatedand translatedbasedondeviations fromacommonheadingangle (allocentric angle of 0�). This transformationwasnecessary for

extractingstanceandswingonsetsas thismaximizes thepositionsignalofeach leg tarsi signalalong thebodyaxis.Stepswereextracted

by identifying the peaks and troughs of the tarsi position signals. Steps consist of two phases: swing (trough to peak) and stance (peak to

trough). Number of legs in stance was calculated by summing the number of legs touching the ground at each sample point. Leg phase

(as in Figure 3A) was calculated using a Hilbert transformation of the position of each leg at all frames (HilbertTransform function in the R

package hht58). The output values were then smoothed using a Savitzky-Golay filter (order = 3, filter length = 15) using the function sgo-

layfilt in the R package signal.59

Gait analysis

Flies were considered walking when body velocity was greater than 5 mm/s, and the maximum likelihood of each of the six tracked

points was greater than 0.99. We identified a small number of rare cases in which flies were estimated to have 0 or 1 legs in stance
Current Biology 32, 3005–3015.e1–e6, July 25, 2022 e4
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while moving at low velocities. Given this, all instances in which these stances were detected at body velocities less than 10mm/s

were replaced with 6 leg stances. We then identified all continuous walking bouts longer than 333ms, yielding 1,123 bouts represent-

ing 216,729 time points.

The walking bout data set was then used to train Hidden Markov Models (HMMs) modelling the states underlying the number of

legs in stance over time using the R package depmixS4.60 We used the function depmix to train three models (2 hidden states, 3

hidden states, 4 hidden states) using the formula stance � 1. We then optimized the model parameters using expectation maximi-

zation via the fit function in depmixS4. The fits of the three models were compared using log likelihood AIC, and BIC (Table S1),

revealing that a model with 3 hidden states fit the data best and paralleling previous observations in fruit flies.24,26,27 Per-frame state

designations were estimated from the posterior probabilities of the models. The distributions of HMM states in behavior space were

calculated by identifying the xy coordinates in behavior space for all time points in which a given state occurred. These were then

used to calculate probability density functions as function of behavior space position for each state (as in Figure 3D) using the function

kde2d in the R package MASS (grid points = 200, bandwidth = 2).

Phylogenetic analyses
Calculating structure, frequency, and transitions

Structure was measured by identifying the unique bins that each species or individual (depending on the analysis) visited. A 643 64

binary matrix was generated and bins visited were filled with 1 while bins not visited were filled with 0.

Frequencywas inferred by calculating probability density functions (pdfs) from xy position in behavior space. Here, greater density

in a specific region would reflect a higher frequency of occurrence of the movement represented by that portion of behavior space.

We calculated pdfs for all individuals using the function kde2d in the R package MASS (grid points = 100, bandwidth = 1). To enable

comparison each pdf was normalized by dividing all values by the maximum. From these we calculated a mean pdf for each species

by averaging each point across all individuals of a species, in addition to the standard error for each bin (used for downstream phylo-

genetic analyses).

Transitions were identified by first clustering points in behavior space based on their graph properties. Many clustering methods

identify structures based on the density of points across some number of dimensions. However, the TREBLE behavior space con-

tains information about both point density and the temporal sequencing between points. We therefore sought a clustering method

that could capture both important aspects. Furthermore, to facilitate rapid comparisons across individuals and species, we priori-

tizedmethods thatminimized assumptions and extensivemodel fitting.We opted to use Louvain clustering, a graph-based approach

common in other nonlinear dimensionality reduction application such as scRNA-seq.61 First, we created an undirected graph with

two columns using the function graph_from_data_frame in the R package igraph in which the first column represented the xy coor-

dinate fromwhich a trajectory was leaving while the secondwas the xy coordinate the trajectory was going to. This resulted in a graph

with 3,890,645 rows corresponding to a full set of feature windows and their corresponding 2-d movement patterns in behavior

space. We then used the igraph function cluster_louvain to do the clustering. The procedure yielded 7 clusters that corresponded

to recognizable features based on point density and movement through behavior space (Figures S2D–S2F). Furthermore, each clus-

ter was associated with a characteristic joint distribution of kinematic parameters used (Figure S2E), reflecting distinct components

of movement. Transition probabilities between Louvain clusters were inferred using Markov models. We created models for all flies

using the function markovchainfit in the R package markovchain62 using the Louvain cluster designations from cluster_louvain as

input. The transition matrices for each fly were extracted and averaged per-species to create a mean transition matrix for each.

The standard error of each transition was also calculated per-species for downstream phylogenetic analyses.

We calculated morphospaces for structure, frequency, and transitions using PCA (Figures 5A, 5D, and 5G). The input matrices for

PCA were produced by linearizing and combining the species mean values for each trait. For example, the 64 3 64 frequency

matrices were linearized into 4,096 element vectors and horizontally combined to create a 4,096 3 24 matrix that was then used

to run a PCA.

Body size comparisons

Body size variation across pure species (Figure S4A) wasmeasured from the videos recorded during trials in the Coliseum. An ellipse

was fit to best match landmarks on the fly corresponding to anterior, posterior, and lateral boundaries. Body size was inferred by

calculating the area of the fitted ellipse for each trial (Area = p*minor axis*major axis). Though this method allowed for an assessment

of the general distribution of body sizes, and their variance, it is not a well standardized measure. To facilitate comparisons of body

size with behavioral traits we instead opted to use the standard measurements of thorax length.63 Relationships between thorax

length and % of behavior space covered, frequency PC1, and transitions PC1 were first measured using Pearson correlation

(Figures S4B–S4D).

We then compared the explanatory power of size and species of origin using a series of generalized linear models for three traits

related to the frequency and sequencing of behavior: time spent moving, frequency PC1, and transitions PC1. For each trait, we con-

structed four models. The first predicted the trait using just size (trait � size), the second using just species of origin (trait � species),

the third using both size and species of origin (trait � size+species), and the fourth allowing for an interaction between size and spe-

cies of origin (trait � size*species). Model fits were compared using Akaike information criterion (AIC) (Figures S4E–S4G).

To assess the effect of body size on the statistics of behavior, we normalized translational velocity by dividing it by thorax length

(‘body normalized translational velocity’). We then re-generated parameter windows using this measure and embedded the resulting

windows into the TREBLE behavior space using the predict function in the R UMAP implementation. Two probability density
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functions were generated for each species, one from windows created with translational velocity and the other for those incorpo-

rating body normalized translational velocity. These were then compared using a cophyloplot, as seen in Figure S4H.

Mapping trait evolution

Phylogenetic signal was measured via Blomberg’s K using the R package phytools.64 For the traits structure and frequency, we

calculated phylogenetic signal for all bins in behavior space, treating each as a unique phenotypic measurement, and using the spe-

cies means and standard errors calculated above. We assessed the extent to which the number of bins chosen for these traits may

affect the calculation of phylogenetic signal by calculating the phylogenetic signal distributions of a range of resolutions (232 to

1003100) for the trait frequency. Comparing mean phylogenetic signal revealed that the measure began to level-off around a reso-

lution of 20320 bins and become stable at a resolution of 30330 bins (Figures S2G and S2H), demonstrating that a relatively broad

range of possible resolutions could be used in comparing this trait across species. For transitions we calculated phylogenetic signal

of each transition probability contained in the mean species-level transition matrices, also factoring in the standard error. This re-

sulted in distributions of phylogenetic signal across all dimensions of the three traits (Figure 6A). Variation in these distributions

was tested using a Kruskal-Wallis test followed by a post-hoc Dunn’s test.

To compare the temporal patterns of trait evolution among structure, frequency, and transitions we computed variable rates

models using the R implementation of the software BayesTraits (evolution.rdg.ac.uk, v.3), and its wrapper btw (github.com/

rgriff23/btw). To facilitate multivariate comparisons, we used independent contrasts models for all three traits and applied Mar-

kov-Chain Monte Carlo chains run with 10,010,000 iterations and thinned every 1,000. For frequency and transitions we modelled

all PCs that accounted for >90% of variance in the data (13 and 4, respectively). The first two PCs were used for transitions. Three

models were created for each trait. We tested for convergence of all models using the Gelman-Rubin diagnostic in the R package

coda (function gelman.diag; 3 chains),65 requiring a value of 1 to proceed with analysis. We required models to have effective sizes

of at least 200 and selected the best model for each trait via Bayes factor using btw. To compare the distributions of relative evolu-

tionary rates, we extracted the rates reported at each node in the tree by BayesTraits and normalized them by themaximum value for

each trait (as seen in Figure 6B). Variation in rate distributions was tested using a Kruskal-Wallis test followed by a post-hoc Dunn’s

test.

We performed an adapted version of the analyses in Cooney et al.66 and Ronco et al.67 to estimate morphospace filling over time.

First, we estimated ancestral states for each trait using the fastAnc function in phytools using the mean rate-transformed tree from

BayesTraits. We then calculated the values of each trait along the species tree in time intervals of 0.1 million years. At each interval,

trait values for all extant branches were identified and then linearly predicted between nodes. To evaluate morphospace filling we

performed this procedure for the first two PCs of each trait, as seen in Figure S5A. To estimate the percent of morphospace filled

as a function of time (Figure S5B), we calculated the cumulative coverage of the xy coordinates of the 2-dmorphospaces in 0.1million

year intervals.

The evolutionary rates of specific components of frequency and transitions were inferred by computing phylogenetically indepen-

dent contrasts (PIC) with the R package ape (pic function).68 For frequency, PIC was calculated for every bin in behavior space. For

transitions, PIC was calculated for each transition probability between Louvain clusters.

Trait meta-analysis

To compare the patterns observed here to other Drosophila traits, we conducted a review of the fruit fly evolutionary literature and

identified studies that measured traits in at least 7 species present in our phylogenetic tree. This yielded measurements for 56 traits

across 18 individual studies (see Table S2 for citations). In addition, we incorporated frequency (PC1, PC2), transitions (PC1, PC2),

structure (% of behavior space covered), and the frequency of occurrence in the 7 Louvain clusters. Overall, the final data set con-

tained 78 traits with 105 species represented at least once (Table S2; Data S1).

To facilitate comparison across traits, eachmeasure was converted to a 0-1 scale by first adding the absolute value of theminimum

and then dividing by the maximum value. We then inferred evolutionary rate (s2 ) using a single-rate Brownian motion model in phy-

tools. Rates were then compared across trait types using a Kruskal-Wallis test followed by a post-hoc Dunn’s test.

Estimates of evolutionary rate can be biased by sample size and the phylogenetic distance of the clade being compared. To test if

such biases were present in our data set, we created a linear model predicting s2 from sample size and distance (inferred by the

maximum branch length of the phylogenetic tree for a given subset of species; lm function in stats). While sample size and distance

accounted for very little of the variation in s2 (R2 = 0.07), and sample size did not significantly predict the outcome variable (P = 0.82),

we did find that distance was marginally significantly predictive (P = 0.02). If this association between phylogenetic distance and

evolutionary rate were to be unevenly distributed across trait categories, then the observed rate differences might have arisen

from artifacts rather than real signal. To control for this potential limitation, we compared the residuals of the linear model (i.e. s2

with the effects of sample size and distance regressed out) using a Kruskal-Wallis test. We found that the five trait types still differed

significantly (P = 8.7 3 10-5) (Figure S6A).
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