RADIOCARBON CHRONOLOGY OF LAKE LAHONTAN AND LAKE BONNEVILLE

WALLACE S BROECKER and PHIL C ORR

Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society.

Notes
RADIOCARBON CHRONOLOGY OF LAKE LAHONTAN AND LAKE BONNEVILLE

BY WALLACE S. BROECKER AND PHIL C. OKR

ABSTRACT

Radiocarbon measurements on fresh-water carbonates have been used to determine the absolute chronology of the two largest fossil lakes in the Great Basin. The possibility of systematic errors due to exchange and to low initial C14 concentration has been considered with the conclusion that most of the measurements reported have not been affected by more than 10 per cent.

The results of the study suggest a high-water period from 25,000 to about 14,000 years ago. This period was preceded by an interval of moderately low water level extending back to at least 34,000 years before present. Following a recession to a moderately low water level close to 13,000 years ago Lake Lahontan and possibly Lake Bonneville rose to their maximum levels close to 11,700 years ago. This rapid rise was followed by an equally rapid fall close to 11,000 years ago. This latter decline is recorded by terrestrial deposits in many of the wave-cut caves on the shore lines of the ancient lakes. There is some evidence for another maximum close to 10,000 years ago. The lakes have probably remained low since 9000 years ago.

Consideration of the factors influencing the response of the lakes to climate change suggests that response is sufficiently rapid that the lake levels can be used as direct estimates of the relative climates. The lake-level chronology is hence a climate chronology for the Great Basin.

CONTENTS

TEXT

Page
Introduction ... 1010
General statement 1010
Acknowledgments 1011
Nature of samples 1011
Uncertainties in the radiocarbon ages 1011
Composite samples 1011
Initial C14/C12 ratio 1011
Postdepositional exchange 1012
Internal consistency 1015
Radiocarbon results 1015
General .. 1015
Samples from lake sediments 1018
Samples from terrace deposits 1021
Samples from cave deposits 1024
Discussion .. 1027
Chronology ... 1027
Relation of lake level to climate 1029
Conclusions ... 1031
References cited 1032

ILLUSTRATIONS

Page
Figure
1. Map of Great Basin with outline of lakes Lahontan and Bonneville 1010
2. Concentration as a function of depth in an infinite slab for various degrees of penetration of a material diffusing in from the surface 1015
3. Map showing sample locations in the Lahontan area 1018
4. Map showing sample locations in the Bonneville area 1019
5. Lake-sediment sections 1020
6. Idealized section of Lahontan shore line 1022
7. Section of a concentric tufa dome located in the Needles area on Pyramid Lake 1022
8. Diagram showing the evolution of Fishbone Cave 1025
9. Height of lakes Lahontan and Bonneville as a function of time based on radiocarbon data 1028
10. Conditions under which Lake Lahontan could be maintained at its highest level 1030

TABLES

Page
Table
1. Measurements of contemporary materials from the Lahontan area 1012
2. Estimates of contamination due to exchange with atmospheric CO\textsubscript{2} 1013
3. Radiocarbon dates on Great Basin samples 1016
4. Comparison of the heights of the main Lahontan and Bonneville terraces 1023
INTRODUCTION

General Statement

Since the explorations of the Great Basin by Fremont in 1842 geologists have been interested in the history of the numerous dry and near-dry fluctuations that might be precisely correlated with other events in the late Pleistocene and Recent periods.

The two lakes chosen for this study were Lahontan and Bonneville, which are now represented by their far smaller remnants such as Pyramid Lake in Nevada and Great Salt Lake in Utah. The outlines of these lakes is given on the map of the Great Basin (Fig. 1). This choice was made partly because they are the largest and hence most representative of the so-called “pluvial lakes” and partly because extensive studies of their deposits have been made. The importance of the early surveys conducted by Russell (1885) in the Lahontan area and Gilbert (1890) in the Bonneville area cannot be overemphasized. Their work supplied maps of the area, elevations of the main terraces, and descriptions of the significant deposits and provided the relative chronologies that have been the starting points for all subsequent investigations. The authors are
actively continuing their research, and this paper should be considered a preliminary report.

Acknowledgments

The investigations of the history of Lake Lahontan reported in this paper began with the discovery of the Winnemucca Caves by G. E. Rollins. Field work in the area was supported by funds provided by the Max C. Fleischman Foundation of Nevada and O. H. Truman, President of the Western Speleological Institute. The authors express their appreciation to the following for their active interest in the program: J. W. Calhoun of the Nevada State Museum; Julius Bergen and S. S. Wheeler of the Fleischman Foundation; A. S. Coggeshall and Harold S. Chase of the Santa Barbara Museum of Natural History; Thomas Trelease of the Nevada Fish and Game Commission; Louise G. Reed of the Western Speleological Institute.

A. J. Eardley of the University of Utah and O. A. Schaeffer and Raymond Davis, Jr., of the Brookhaven Laboratories aided the authors in obtaining samples in the Bonneville region. Bench marks established in critical areas by the U. S. Geological Survey allowed instrument surveys of sample elevations to be made.

The radiocarbon measurements were made at the Lamont Observatory. The authors would like to express their thanks to C. S. Tucek, James Hubbard, and Marylou Zickl for their assistance in this part of the work. A large part of the financial support for these measurements was provided by the National Science Foundation.

Nature of Samples

Most of the samples measured in this study were fresh-water carbonates. These include shell, mard, and fine-grained lithified carbonates, or tufas. Tufa consists of relatively pure CaCO₃ in many forms, from massive or coralline in structure to prismatic crystals of fine-grained calcite. It is found as thick coatings on the rock outcrops of wave-cut terraces, as grotesque castles extending up to 300 feet above ground surface, as speleothems inside the caves, and as pure carbonate lenses or conglomerate cement in sequences of sedimentary deposits.

Geologists agree that these carbonate masses were deposited from the lake waters, but there have been two conflicting opinions as to the processes involved. Early workers (Russell, 1885; Gilbert, 1890) considered tufa deposits to be the result of inorganic precipitation primarily from the evaporation of wave spray. Jones (1925, p. 6–13) pointed out that tufa forming today in both Pyramid Lake and the Salton Sea is covered with blue-green algae, and his suggestion that the precipitation is organic is generally accepted at present. The presence of algae remains within ancient tufas, as determined by the examination of acid residues (Flowers, 1956, personal communication), lends support to this hypothesis.

Whereas this mode of origin fits the coralline and massive tufa forms, it is less acceptable for the thinolite variety. Dana (in Russell, 1885, p. 214) suggested that this form is a pseudomorph after some pre-existing salt but could not identify its predecessor. Jones (1925, p. 24) claims, however, to have precipitated minute crystals with the form of thinolite prisms from Pyramid Lake water saturated with CaCO₃. Another possibility is the recrystallization of pre-existing carbonates. This mode of origin is suggested by the occurrence of thinolite crystals in the inner layers of large carbonate mushrooms and spherical masses.

Uncertainties in the Radiocarbon Ages

Composite Samples

Several uncertainties arise in converting the measured C¹⁴ concentration in fresh-water carbonate materials into absolute ages. One of these is the possibility that the sample measured consisted of two generations of tufa. In this case the age obtained from the C¹⁴ data would lie between the true ages of the two component parts. Since, in cases where these ages differ by more than 1000 years the use of the composite age could lead to false conclusions, care has been taken in selecting homogeneous samples for measurement. In most localities where sampling was done only one generation was present. Where more than one was present the boundaries were apparent, and a separation was made. Although tufa of only one age was present in most of the samples measured the possibility of error due to composite samples must not be overlooked.

Initial C¹⁴/C¹₂ Ratio

A fundamental problem in all C¹⁴ age work is the estimation of the C¹⁴/C¹₂ ratio for a material at the time of its formation. This
problem is more acute with fresh-water carbonates than with terrestrial organic materials or marine shells. In the latter cases the materials receive their carbon from the large rather well-mixed reservoirs of the atmosphere and the surface ocean, so that measurement of wood or oceanic shell in one area allows an estimate of the modern value in other areas which is accurate to at least 3 per cent. In the case of lakes, however, each body must be considered separately. The $^{14}C/^{12}C$ ratio for a given lake is dependent on the $^{14}C/^{12}C$ ratio of the dissolved carbonate in the river waters supplying the lake and the ratio of the flushing rate of the lake to the rate of exchange between the CO$_2$ in the atmosphere and the carbonate in the water. Since these factors vary from lake to lake, carbonates from different lakes may be expected to range widely in ^{14}C concentration. Measurements available to date (Deevey, 1954, p. 286) range down to a value 20 per cent below that in atmospheric CO$_2$.

An estimate of the initial $^{14}C/^{12}C$ ratio in ancient samples can be made by measuring the $^{14}C/^{12}C$ ratios in currently forming materials from a similar environment. Measurements on currently forming tufa from Pyramid Lake give a ratio (normalized for $^{13}C/^{12}C$ differences) 5 per cent lower than in wood grown on the shores of the lake. The measurements on which this value is based are summarized in Table 1. For simplicity of presentation the contemporary modern values are normalized to the same $^{13}C/^{12}C$ ratio. The tufa measured formed during the past 40 years.

Lake Lahontan was much larger during deposition of many of the samples studied. Possibly the conditions that caused these high lake levels also affected the $^{14}C/^{12}C$ ratio in the lake waters. Because of the large number of unknowns it is difficult to estimate the magnitude of such effects. An attempt is currently being made to obtain quantitative estimates of the possible variations.

Table 1.—Measurements of Contemporary Materials from the Lahontan Area

<table>
<thead>
<tr>
<th>Sample</th>
<th>$^{14}C/^{12}C$</th>
<th>$^{13}C/^{12}C$</th>
<th>$^{14}C/^{13}C$†</th>
</tr>
</thead>
<tbody>
<tr>
<td>L 288-M</td>
<td>0.0</td>
<td>0.00</td>
<td>0.0</td>
</tr>
<tr>
<td>L 288-C</td>
<td>-1.0 ± 0.8</td>
<td>+1.85</td>
<td>-4.7 ± 0.8</td>
</tr>
<tr>
<td>L 288-I</td>
<td>-8.0 ± 2.0</td>
<td>$\sim+0.20$</td>
<td>-8.4 ± 2.0</td>
</tr>
</tbody>
</table>

* Per cent difference from Lahontan wood (L 288-M).
† Normalized to a common $^{13}C/^{12}C$ ratio.

Pending the results of these studies the ages of carbonate materials deposited from the waters of Lake Bonneville and Lake Lahontan were calculated using the values obtained on current materials from Pyramid Lake. This corresponds to a value about 1 per cent lower than modern wood uncorrected for $^{13}C/^{12}C$ ratio differences and 6 per cent lower than the normalized modern wood value. If, as is probably the case, the variation did not exceed 5 per cent the age uncertainty introduced is less than 400 years. In no case can the error be more than 500 years on the positive side, since this would represent static equilibrium with the atmosphere. The addition of 500 years to the ages quoted hence provides a maximum age as far as the initial $^{14}C/^{12}C$ ratio is concerned.

Postdepositional Exchange

Another possible source of error in ages based on the ^{14}C content of carbonates is exchange of the carbon atoms in the sample with those in the surroundings subsequent to the formation of the material. Since most of the samples studied were exposed to the atmosphere continuously over the past 10,000 years, one possible avenue for exchange is transfer of ^{14}C from the CO$_2$ molecules in the atmosphere to the carbonate ions of the CaCO$_3$. Such a transfer probably involves two steps. The first step is the replacement of the CO$_2$ in a CO$_2$ ion on the surface of a crystal by a CO$_2$ molecule from the atmosphere during a collision. The
second step is the diffusion of these carbonate ions from the surface into the crystal.

One of two possible approaches could determine the extent of such exchange: (1) calculate the amount of exchange expected using the carbonate, the interatomic distances in CaCO₃, and the C¹⁴/C¹² ratio in the atmosphere allows the former to be computed. Using empirical surface-area data obtained by the gas-adsorption method used by Kulp and Carr (1952), an available diffusion coefficients and empirical surface-area data, or (2) examine natural carbonates directly for the effects of exchange. Both approaches have been attempted in the course of this study.

If it is assumed that the rate of exchange between the surface carbonate molecules and the CO₂ in the atmosphere is rapid, an estimate of the maximum amount of contamination can be made without extreme mathematical difficulty. In this case the surface carbonate molecules would at all times have a C¹⁴/C¹² ratio close to that in the CO₂ in the atmosphere. The calculation then becomes a matter of computing the contamination due to this surface layer and adding to it the net contribution of C¹⁴ due to transfer by diffusion from the surface to the interior layers of the crystal.

Knowledge of the surface area of the carbon-averaged CO₂ spacing of 4.0 Å, and a specific C¹⁴ activity of 160 disintegrations per mole for atmospheric CO₂ estimates of the contribution of surface contamination have been made for three tufa samples. The results (Table 2, column 7) are expressed as the ratio of the concentration of surface contaminant C⁴⁰O²⁻ ions in a homogenized sample to the C⁴⁰O²⁻ concentration in atmospheric CO₂. Even in the case of sample L-363D which is unusually porous (hence high in surface area) the age error for a measurement made on bulk material would be only about 300 years. For a sample of similar surface area 20,000 years in age the error due to surface contamination would be about 700 years. As will be shown below the sample can be pretreated so that this error is eliminated. Even if this were not done such errors are negligible for most applications and

Table 2.—Estimates of Contamination with Atmospheric CO₂

<table>
<thead>
<tr>
<th>Description</th>
<th>Locality</th>
<th>Surface area (m²/gm.)</th>
<th>First fraction X10⁶</th>
<th>Last fraction X10⁶</th>
<th>Measured contamination X10⁶</th>
<th>Predicted contamination (Surface exchange) X10⁶</th>
<th>Predicted contamination (Diffusion) X10⁶</th>
<th>Predicted contamination (Total) X10⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-inch-thick layer of massive tufa</td>
<td>Within 50 feet of the Lahontan Beach level in the cave area of Lake Winnemucca</td>
<td>0.5</td>
<td>305 ± 10 (9550 ± 250) (11 per cent)†</td>
<td>308 ± 10 (9450 ± 250) (9 per cent)†</td>
<td>-0.3 ± 1.4</td>
<td>0.15</td>
<td>0.01</td>
<td>0.16</td>
</tr>
<tr>
<td>Massive intermediate layer in an 8-inch thick tufa mass</td>
<td>100 feet above Crypt Cave on top of large granite outcrop</td>
<td>0.075</td>
<td>224 ± 10 (12,000 ± 300) (9 per cent)†</td>
<td>198 ± 10 (13,000 ± 400) (19 per cent)†</td>
<td>2.3 ± 1.3</td>
<td>0.02</td>
<td>0.0012</td>
<td>0.02</td>
</tr>
<tr>
<td>4-inch-thick layer of porous tufa</td>
<td>Coating on outcropping limestone on the broad Provo terrace at the north end of the Oquirrh Mountains</td>
<td>7.5</td>
<td>334 ± 10 (8800 ± 200) (12 per cent)†</td>
<td>265 ± 15 (10,700 ± 400) (12 per cent)†</td>
<td>8.3 ± 2.1</td>
<td>7.5</td>
<td>0.12</td>
<td>7.6</td>
</tr>
</tbody>
</table>

* C¹⁴/C¹² sample: C¹⁴/C¹² atmospheric CO₂.
† C¹⁴/C¹² sample: C¹⁴/C¹² atmospheric CO₂ where C¹⁴ represents the amount of C¹⁴ in a bulk sample due to post-depositional contamination.
** "Apparent age" of sample from its C¹⁴/C¹² ratio.
†† Size of fraction in the per cent of total sample.
become important only for samples greater than 25,000 years in age or where extremely high precision is necessary.

The contribution due to diffusion can be estimated as follows. The fact that none of the tufas under consideration have bulk C\textsubscript{14} concentrations of more than 30 per cent of the C\textsubscript{14} concentration in the atmospheric CO\textsubscript{2} allows the problem to be adequately approximated as that of diffusion into a semi-infinite solid. The surface layer of this solid can be considered to have a constant C\textsubscript{14} concentration equal to that in atmospheric CO\textsubscript{2}. Taking into account the radioactive decay of the diffusing substance the differential equation for such a process is:

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} - \lambda C$$

where C is the concentration of the radioactive species, D the diffusion coefficient, and λ the decay constant of the radioactive species.

Following Crank (1956, p. 124-131) the solution of this equation (for times greater than two half lives of C\textsubscript{14}, i.e., 11,000 years) expressed as the average concentration of diffused C\textsubscript{14} (\bar{C}) in a homogenized sample is closely approximated by

$$\bar{C} = S \sqrt{\frac{D}{\lambda}} (1 - e^{-\lambda t})C_0$$

where S is the surface area, and C_0 is the C\textsubscript{14} concentration in the surface layer and hence the atmosphere.

The room-temperature diffusion constant D can be obtained by extrapolation of high-temperature data through the use of the Arrhenius equation:

$$D = D_0 e^{-\Delta H_{act}/kT}$$

Haul et al. (1953, p. 619) carried out diffusion experiments at 600°C and 800°C on calcite crystals of known surface area using CO\textsubscript{2} enriched in C\textsubscript{13}. From their data they computed values for the two constants, D_0 and ΔH_{act}, and obtained values of 1.81×10^{-18} cm2/sec. and 27,700 cal./mole respectively. The room-temperature value for D would then be 1.8×10^{-30} cm2/sec.

Using this value of D, the empirical surface areas mentioned above and the specific activity of atmospheric CO\textsubscript{2} estimates of the contamination levels are given for three tufa samples in column 8 of Table 2. The results are expressed in the same way as for surface contamination. The term containing t is a second-order correction; hence the order of magnitude of the results is independent of the age assigned. Thus the amount of contamination due to diffusion should be negligible for all applications.

In order to check these predictions three samples of tufa were examined for contamination. Such checks are feasible, since the C\textsubscript{14} added by surface exchange and diffusion is concentrated close to the surface of the crystals. Whereas this is the case by definition for surface exchange, it is not so obvious in the case of diffusion. To make this clear, the distribution of diffused contamination as a function of depth below the surface layer has been calculated as a function of time for a slab. As shown in Figure 2 the concentration falls off very rapidly with depth. The curves represent the distribution for progressively longer periods of time. This figure indicates that for exchange in the range of 5 to 50 per cent there should be a pronounced difference in the C\textsubscript{14}/C\textsubscript{12} ratio in the outer 10 per cent or surface material from that of the inner 10 per cent or core material. For exchange amounting to less than 20 per cent the inner 10 per cent is unaffected.

The experimental problem is to devise a method by which the surface material and the inner material can be separated. Since mechanical separation is not possible, two other methods were considered: acid leaching and thermal decomposition. The two methods were tested by determining their respective efficiencies of separation for tufas which had been purposely contaminated by placing them in an enriched C14O\textsubscript{2} atmosphere at elevated temperatures. Although both methods gave good results, thermal decomposition was superior. More than 95 per cent of the contamination was removed with the first few per cent of the CO\textsubscript{2} released (at 700°C.).

Three samples were checked by this method. The C\textsubscript{14}/C\textsubscript{12} ratio in the first 10 per cent of the CO\textsubscript{2} released was compared in each case with that of the last 10 per cent, on the assumption that more than 95 per cent of the C\textsubscript{14} introduced by surface exchange should be in the first fraction and almost none in the last. Since the concentration of primary C\textsubscript{14} (that present at the time of deposition) should be the same in each of the two fractions the difference between them can be attributed to contamination. The results are shown in Table 2. For each fraction the ratio of the C\textsubscript{14} concentration in the sample to that in atmospheric CO\textsubscript{2} is given (columns 4 and 5). The apparent ages calculated from these.
uncertainties in the radiocarbon ages

ratios are also given. From these results the amount of contamination in a homogeneous or bulk sample can be computed (column 6). If the theoretical predictions are correct this last set of numbers should closely approximate the

sum of the values calculated for diffusion and surface exchange (column 9). In each of the three cases the agreement is within the measurement error indicating that the error due to exchange with the atmosphere is (as concluded above) small. The use of "core" material obtained by either thermal decomposition or acid leaching eliminates the problem.

No laboratory experiments have been done to establish the extent of contamination by solution and redeposition in the presence of rain water or ground water. Since the region is and has been rather dry it is hoped that these effects are also small. Further work is needed before any reliable conclusions can be drawn.

From the above considerations it is clear that no evidence has been found that points to any large systematic errors in the C¹⁴ ages on freshwater carbonate samples. Although this does not prove that such errors do not exist it makes the probability small.

Internal Consistency

The internal consistency of the ages obtained provides additional evidence for the reliability of the samples. The age obtained on shell material separated from a marl gave the same age as the marl (L-364CR and L-364CS). Organic and inorganic material separated from a core sample (L-376D) taken in Great Salt Lake gave ages of 26,300 ± 1100 and 25,300 ± 1000 respectively. Samples of tufa (L-289D) and shell (L-289P) in Fishbone Cave differed in age by less than 400 years.

Radiocarbon Results

General

Age determinations made on samples from the Bonneville and Lahontan areas are listed in Table 3. The modern control value used for carbonate samples is that obtained on recent materials from Pyramid Lake. As mentioned above, this value is 5 per cent below maximum possible or static equilibrium value. The value used for organic materials is based on the average for recently grown woods. Errors quoted include only uncertainties in the laboratory measurements and not those associated with the problems discussed above.

Figures 3 and 4 show the geographical location of the samples. The location of a sample may be determined by noting the number given in parenthesis for each sample in Table 3. These numbers correspond to those on the maps.

The results are most easily discussed by dividing them into three categories: those on materials from lake sediments, those from terrace deposits, and those from wave-cut caves. Such a division will emphasize the correlation between the events in different lake basins.
Table 3.—Radiocarbon Dates on Great Basin Samples

<table>
<thead>
<tr>
<th>Location†</th>
<th>Elevation*</th>
<th>Description</th>
<th>Age</th>
<th>Sample number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Needles (Pyramid Lake) (1)</td>
<td>60</td>
<td>Large oolites</td>
<td>1100±200</td>
<td>L 288-F</td>
</tr>
<tr>
<td>Anaho Island (3)</td>
<td>50</td>
<td>Shell from extensive beach</td>
<td>2100±200</td>
<td>L 288-H</td>
</tr>
<tr>
<td>Crypt Cave (Winnemucca) (8)</td>
<td>305</td>
<td>Basketry from upper deposits</td>
<td>2400±200</td>
<td>L 289-II</td>
</tr>
<tr>
<td>Hidden Cave</td>
<td>304</td>
<td>Wood fragments 32 inches below surface</td>
<td>3050±200</td>
<td>L 289-BB</td>
</tr>
<tr>
<td>Guano Cave (Winnemucca) (8)</td>
<td>245</td>
<td>Twigs from habitation level 22–28 inches below surface</td>
<td>3200±130</td>
<td>L 356-B</td>
</tr>
<tr>
<td>Diaphragm Cave (Pyramid Lake) (2)</td>
<td>10</td>
<td>Shell from lake sediments</td>
<td>3200±250</td>
<td>L 289-R</td>
</tr>
<tr>
<td>Fishbone Cave (Winnemucca) (8)</td>
<td>250</td>
<td>“Amberat” from cave ceiling</td>
<td>4150±150</td>
<td>L 364-BI</td>
</tr>
<tr>
<td>Cowbone Cave (Winnemucca) (8)</td>
<td>220</td>
<td>Matting associated with a human burial</td>
<td>5970±150</td>
<td>L 289-FF</td>
</tr>
<tr>
<td>Fishbone Cave (Winnemucca) (8)</td>
<td>250</td>
<td>Fragments of netting from lowest habitation level</td>
<td>7830±350</td>
<td>L 289-KK</td>
</tr>
<tr>
<td>Needles (Pyramid Lake) (1)</td>
<td>90</td>
<td>Outermost layer of tufa mushroom</td>
<td>8500±200</td>
<td>L 364-CE</td>
</tr>
<tr>
<td>Above Crypt Cave (Winnemucca) (8)</td>
<td>525</td>
<td>Lithoid tufa</td>
<td>9700±200</td>
<td>L 289-G</td>
</tr>
<tr>
<td>Lahontan Beach (Winnemucca) (8)</td>
<td>560</td>
<td>Lithoid tufa, highest observed in area</td>
<td>9500±200</td>
<td>L 364-AA</td>
</tr>
<tr>
<td>Above Crypt Cave (8)</td>
<td>525</td>
<td>Lithoid tufa (duplicate of L 289-G)</td>
<td>10,000±220</td>
<td>L 356-G</td>
</tr>
<tr>
<td>Fishbone Cave (Winnemucca) (8)</td>
<td>250</td>
<td>Juniper roots and bark</td>
<td>11,200±250</td>
<td>L 245</td>
</tr>
<tr>
<td>Anaho Island (3)</td>
<td>570</td>
<td>Lithoid tufa</td>
<td>11,800±200</td>
<td>L 289-N</td>
</tr>
<tr>
<td>Mullen Pass (4)</td>
<td>560</td>
<td>Lithoid tufa</td>
<td>11,250±350</td>
<td>L 289-I</td>
</tr>
<tr>
<td>Anaho Island (3)</td>
<td>520</td>
<td>Lithoid tufa</td>
<td>11,700±200</td>
<td>L 289-M</td>
</tr>
<tr>
<td>Anaho Island (3)</td>
<td>390</td>
<td>Lithoid tufa</td>
<td>11,570±250</td>
<td>L 289-L</td>
</tr>
<tr>
<td>Entrance</td>
<td>250</td>
<td>Lithoid tufa</td>
<td>11,700±500</td>
<td>L 289-C</td>
</tr>
<tr>
<td>Fishbone Cave (Winnemucca) (8)</td>
<td>10</td>
<td>Multi-layer tufa diaphragm</td>
<td>12,700±300</td>
<td>L 289-H</td>
</tr>
<tr>
<td>Truckee River Canyon (5)</td>
<td>202</td>
<td>Radiating material from tufa pavement in lake sediments</td>
<td>12,900±350</td>
<td>L 289-S</td>
</tr>
<tr>
<td>Truckee River Canyon (5)</td>
<td>210</td>
<td>Radiating material from tufa pavement in lake sediments</td>
<td>12,700±300</td>
<td>L 364-AM</td>
</tr>
<tr>
<td>Truckee River Canyon (5)</td>
<td>210</td>
<td>Mammillary material from base of tufa mushroom</td>
<td>13,700±300</td>
<td>L 364-AN</td>
</tr>
<tr>
<td>Above Crypt Cave (Winnemucca) (8)</td>
<td>411</td>
<td>Massive tufa from an intermediate layer in mass 8 inches thick</td>
<td>13,000±400</td>
<td>L 364-DA (2)</td>
</tr>
<tr>
<td>Needles (Pyramid Lake) (1)</td>
<td>90</td>
<td>Dendritic tufa from concentric dome</td>
<td>14,500±400</td>
<td>L 364-CE</td>
</tr>
</tbody>
</table>
| Fishbone Cave (Winnemucca) (8) | 250 | Shell from sand below terrestrial deposits | 15,130±550 | L 289-P"
Table 3.—Concluded

<table>
<thead>
<tr>
<th>Location</th>
<th>Depth (ft)</th>
<th>Description</th>
<th>Radiocarbon Age (BP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fishbone Cave (Winnemucca)</td>
<td>250</td>
<td>Tufa from broken piece of diaphragm</td>
<td>14,800±500</td>
</tr>
<tr>
<td>Hidden Cave (Fallon area)</td>
<td>300</td>
<td>Tufa from diaphragm</td>
<td>15,130±400</td>
</tr>
<tr>
<td>Fishbone Cave (Winnemucca)</td>
<td>250</td>
<td>Shells from lake sediments</td>
<td>15,670±700</td>
</tr>
<tr>
<td>Anaho Island (3)</td>
<td>~280</td>
<td>Dendritic tufa</td>
<td>16,130±750</td>
</tr>
<tr>
<td>Crypt Cave (Winnemucca)</td>
<td>300</td>
<td>Shell from top of lake deposits</td>
<td>18,700±700</td>
</tr>
<tr>
<td>Crypt Cave (Winnemucca)</td>
<td>300</td>
<td>Microscopic shell from lake sediments</td>
<td>19,750±650</td>
</tr>
<tr>
<td>Truckee River Canyon (8)</td>
<td>200</td>
<td>Impure marl from sediments cut by river</td>
<td>17,600±650</td>
</tr>
<tr>
<td>Astor Pass (Pyramid Lake)</td>
<td>~300</td>
<td>Marl deposited at head of valley</td>
<td>16,800±600</td>
</tr>
<tr>
<td>Astor Pass (Pyramid Lake)</td>
<td>~300</td>
<td>Shell from marl deposits</td>
<td>17,500±600</td>
</tr>
<tr>
<td>Anaho Island (3)</td>
<td>170</td>
<td>Thinolite tufa</td>
<td>28,900±1400</td>
</tr>
<tr>
<td>Truckee River Canyon (8)</td>
<td>190</td>
<td>Shell from canyon sediments</td>
<td>>34,000</td>
</tr>
<tr>
<td>Oquirrh Mountains (North end)</td>
<td>~660</td>
<td>Porous tufa coating outcrop on Provo Terrace</td>
<td>11,000±600</td>
</tr>
<tr>
<td>Great Salt Lake (10)</td>
<td>~40</td>
<td>Limy silt and clay from lake bottom core</td>
<td>12,500±250</td>
</tr>
<tr>
<td>Oquirrh Mountains (North end)</td>
<td>~330</td>
<td>Tufa coating limestone outcrop on Stansbury Terrace</td>
<td>12,900±180</td>
</tr>
<tr>
<td>Oquirrh Mountains (North end)</td>
<td>~330</td>
<td>Massive tufa from gravel sequence associated with Stansbury Terrace</td>
<td>13,200±300</td>
</tr>
<tr>
<td>West Mountain area (11)</td>
<td>490</td>
<td>Tufa from intermediate level between Provo and Stansbury Terrace</td>
<td>15,200±400</td>
</tr>
<tr>
<td>Oquirrh Mountains (North end)</td>
<td>~660</td>
<td>Massive tufa coating cliff below Provo Terrace</td>
<td>15,530±280</td>
</tr>
<tr>
<td>Oquirrh Mountains (North end)</td>
<td>~1000</td>
<td>Fine-grained massive white tufa from the Bonneville level</td>
<td>16,100±350</td>
</tr>
<tr>
<td>Reservoir Butte Area (9)</td>
<td>~300</td>
<td>Finely laminated marl from the Old River bed sequence</td>
<td>21,200±450</td>
</tr>
<tr>
<td>Reservoir Butte Area (9)</td>
<td>~300</td>
<td>Poorly laminated marl from the Old River bed sequence</td>
<td>23,300±800</td>
</tr>
<tr>
<td>Oquirrh Mountains (North end)</td>
<td>~1000</td>
<td>Thin tufa coating boulder near Bonneville level</td>
<td>23,150±1000</td>
</tr>
<tr>
<td>West Mountain area (11)</td>
<td>320</td>
<td>Tufa</td>
<td>25,500±1300</td>
</tr>
<tr>
<td>Great Salt Lake (10)</td>
<td>~55</td>
<td>Organic fraction; limy silty clay lake bottom core</td>
<td>26,300±1100</td>
</tr>
<tr>
<td>Great Salt Lake (10)</td>
<td>~55</td>
<td>Inorganic fraction; limy silty clay from lake bottom core</td>
<td>25,300±1000</td>
</tr>
<tr>
<td>West Mountain area (11)</td>
<td>580</td>
<td>Tufa from limestone conglomerate</td>
<td>33,200±4000</td>
</tr>
</tbody>
</table>

* Height in feet above the present level of Pyramid Lake (3800 feet) for the Lahontan samples and above the present level of Great Salt Lake (4200 feet) for the Bonneville samples.

† Numbers in parentheses after the locations indicate the areas from which the samples were taken as shown on the maps (Figs. 3, 4).
Samples from Lake Sediments

Although lake sediments in general do not give information as to the exact position of the water level at specific times in the past, they do indicate the sequence of periods of high and low lake level. Vertical sections of sediments from three of the pluvial lakes in the Great Basin (Fig. 5) show distinct changes in types of sediment. These changes mark the transitions from high- to low-water stages.

The first radiocarbon measurements on such deposits were made by Libby (1955, p. 116–117) on a series of samples submitted by Flint and Gale from a core taken in Searles Lake, California. These samples were from a mud layer between the first and second salt bodies. These salt bodies record successive periods of desiccation, and the intervening mud layer indicates a period of high water level. The results obtained from radiocarbon measurements on organic material extracted from various levels in the mud layer are shown in Figure 5. Their ages range from 10,500 years for a sample from the top of the section to 23,900 years for a sample from the base. The measurement on the latter sample has been rechecked by the Yale University Radiocarbon Laboratory giving an age of 21,200 years (Preston et al., 1955, p. 958).

Even though no core samples are available from the sediments in the Lahontan area,
The three main clay units A, B, and C represent times at which the lake level was more than 200 feet above the present Pyramid Lake level, and the gravel and sand layers represent times at which it was close to or below the 200-foot level. Within the upper clay unit (A) is a layer of tufa 6 inches thick. Two samples (L-364AM, L-289S) of this material were collected from exposures about 1 mile apart. On one sample (L-364AM) two \(^{14}C\) measurements were made: one on the radiating material forming the top of the layer and one on the massive mammillary material that forms the base. The ages were respectively 12,700 ± 300 and 13,700 ± 300 years. Only the radiating or upper portion of the tufa was run from the second sample; the age obtained was 12,900 ± 300 years.

Four feet below the tufa within the clay layer (A) a sample (L-364AL) was taken from a thin layer of rather impure marl. The age obtained on the bulk carbonate from this material was 17,600 years.

The only other datable material found in the sequence was a layer of shell (L-364AK) from near the base of the sand layer located between clay units A and B. The age of this sample is greater than 34,000 years.

From this sequence it appears that an early extensive high-water stage of unknown age (C) was followed by a rather long low-water stage during which the gravel deposits between units C and B were deposited. Following this the lake again rose to a high level and deposited clay unit B. The base of the overlying sand, which presumably records a low-water interval, lies beyond the range of the measurement sensitivity. The upper clay unit records two high-water stages: one precedes 13,000 B.P., and the other follows 13,000 B.P. These high-water stages are separated by an interval (recorded by the tufa deposition) during which the water level was approximately 200 feet above its present level.

Numerous marl deposits are found in the Lahontan area associated with the so-called "dendritic terrace", which is approximately 300 feet above the present level of Pyramid Lake. These deposits are abundant near the old shore line and are either absent or very impure in areas where the water was deeper. A sample (L-364CR) obtained in the Astor Pass area north of Pyramid Lake had an age of 17,200 years. This result is based on two measurements: one on the bulk carbonate and the other on shells separated from the marl. The results were 16,800 and 17,500 respectively. This age is in good agreement with that on the thin marl layer in the Truckee sequence.

Two sections were sampled in the Bonneville area: one a sequence exposed in the Old River bed and the other in a core from the bottom of Great Salt Lake. Two measurements were made on the white marl member of the standard sedimentary sequence as defined by Gilbert (1890, p. 190). The sequence as it appears in the Old River bed is shown in Figure 5. Gilbert recognized two high-water stages separated by a period of low water or even perhaps desiccation. The first of these pluvial periods is marked by a rather thick sequence of yellow clay, whereas the second left only white marl deposits. The portion of the section above the white marl consists of sands and gravels.
Figure 5.—Lake-Sediment Sections

Correlation lines connect points in the cores corresponding to beginning and end of the last major high-water period for each lake. Age determinations on the Searles Lake core indicated by C were made by the Chicago Laboratory (Libby, 1955); Y indicates determinations made by the Yale Laboratory (Preston et al., 1955).
(Fig. 5). Gilbert interpreted these to be low-water deposits except for the lower sand (B), which he felt marked an intermediate level. The radiocarbon dates (L-363J, L-363J) on the white marl from the Old River oed in the Dugway Proving Grounds area are internally consistent; this indicates that the deposition of this material occurred about 22,000 years ago.

Ives (1951, p. 787) estimated the time interval over which the white marl was deposited by counting varves. His estimate of 6000 years is not unreasonable. Since the two samples dated by C¹⁴ were from the middle and lower portion of the deposit possibly the deposition occurred between about 24,000 and 18,000 years ago.

The fourth section in Figure 5 is from a core taken near the south end of Great Salt Lake at a depth of about 28 feet. This core has been studied in detail by Schreiber and Eardley who submitted the samples to the authors for analysis. A detailed lithology and discussion can be found in Eardley et al., (1957, p. 1170). The area where the core was taken has probably been covered with water for at least 30,000 years. The material in the 43-foot core consists primarily of silty clay. The section between a depth of 16.5 feet and 29.5 feet differs somewhat, however, in that it is higher in organic material and has a distinct odor of H₂S. Such a deposit is characteristic of stagnant bottom waters. It is possible that this layer was deposited during a period of rising lake level. In such a case precipitation would exceed evaporation, and a stable low salinity surface layer might prevent the renewal of the bottom water. This interpretation differs from that given by Eardley et al. (1957, p. 1167). They feel that the sulfide-rich layer records a stand of the lake at the Stansbury level.

If the former explanation is assumed, the two age measurements, one from material immediately above the layer (L-367C) and one from immediately below it (L-367D), suggest that the high-water period began less than 25,500 years ago. The estimate of the beginning is in good agreement with that obtained in the Seales Lake borings. The Bonneville date is exceptionally good, since independent measurement of the organic and the inorganic carbon in the sample gave the same result. The 12,500-year age is not strictly comparable with the Seales Lake dates, since it may establish the date when desiccation began rather than when it was completed.

The data from all three localities are internally consistent in that they indicate a general high-water interval from about 23,000 years to 10,000 years before present preceded and followed by low-water intervals. The only information available as to the time of the beginning of the earlier of these two low-water stages is that it was more than 34,000 years ago.

Samples from Terrace Deposits

A more detailed picture of the lake-level history is revealed by considering the dates obtained on materials associated with lake terraces. Although tufa deposits are abundant in the Lahontan Basin, they cover only a small percentage of the total area. Hence, there are only a limited number of localities where a sequence of tufa ranging from the highest known level to the present water surface can be observed. A summary of the vertical distribution based on such sections observed on Anaho Island and in the Fishbone Cave area of Lake Winnemucca, as well as on Jones' (1925, p. 18-23) observations at Marble Buttes, is given below and in Figure 6. Near the highest recognized lake level (Fig. 6, location 1) patches of lithoid tufa up to 6 inches thick are found in crevices in the rocks and in platelike fragments scattered on the slopes. Below this a more or less continuous layer of lithoid tufa 6-20 inches thick coats the rock outcrops (Fig. 6, location 2). Still lower (Fig. 6, location 3), beginning at about 400 feet above the present lake level, the tufa thickens into rounded or shinglelike growths. In some areas there are two distinct masses (Fig. 6, locations 3 and 4) of this thick tufa separated by a terrace. This type of tufa comes to an abrupt end 30-70 feet above the thinolite terrace. On and below this latter terrace, masses (Fig. 6, location 5) consisting of several layers of thinolite tufa, capped on the outside by dendriticlike tufa, occur in forms ranging from sandwichlike sequences to the grotesque tufa castles for which Pyramid Lake is famous.

Radiocarbon measurements on samples from each of the three major terrace deposits show that they were all deposited during the past 35,000 years.

The radiocarbon dates obtained on materials at or below the thinolite terrace range in age from 30,000 years to the present. If these carbonates were deposited when the water was less than 200 feet above its present level, the dates should establish periods of low lake level. The oldest of these samples is thinolite tufa.
Figure 6.—Idealized Section of Lahontan Shore Line
Present elevation of Pyramid Lake is 3800 feet above sea level.

Figure 7.—Section of a Concentric Tufa Dome Located in the Needles Area on Pyramid Lake
from Anaho Island. Its age (assuming no exchange or recrystallization) is close to 29,000 years.

A spherical mass of tufa which formed part of one of the large tufa castles in the Needles area north of Pyramid Lake was sampled from what Russell (1885, p. 190) calls lithoid tufa were obtained on Anaho Island from levels greater than 350 feet above the present lake level. Two of these were from within 100 feet of the highest recognized level of the lake. All the ages obtained were within one sigma of

| Table 4.—Comparison of Heights of the Main Lahontan and Bonneville Terraces |
|------------------------|------------------------|------------------------|------------------------|
| Name | Elevation | Height above 1890* lake level (3870 feet) | Fraction of maximum level |
| Lahontan beach | 4400 | 530 | 1.00 |
| Dendritic terrace | 4190 | 320 | .61 |
| Thinolite terrace | 3980 | 110 | .22 |
| Bonneville level | 5150 | 950 | 1.00 |
| Provo level | 4820 | 620 | .65 |
| Stansbury level | 4500 | 300 | .32 |

* The level of Pyramid Lake has fallen 60 feet since 1890 as a result of use of Truckee River water for irrigation.

the surface to the core. The mass consists of concentric layers of a number of varieties of tufa surrounding a core 16 feet in diameter of short unoriented thinolite crystals. Figure 7 shows a cross-section of the mass pointing out the various layers and the ages obtained. To date only two of the samples have been measured; the sample from the outermost layer (L-364CE) has an age of 8500 years, and the sample (L-364CI) from the series of dendritic layers has an age of 14,500 years.

Samples taken from beaches within 100 feet above the present level of Pyramid Lake yielded recent dates. Shells from such a beach on Anaho Island dated 2100 years before present, and large oolites from the Pinnacles area dated 1100 years before present.

Only one sample of dendritic tufa has been measured from the level of the dendritic terrace. Material from about 300 feet above Pyramid Lake on Anaho Island has an age close to 16,000 years.

The ages obtained on samples from the highest level reached by Lake Lahontan indicate that such a level was reached very close to the end of the high-water period. The samples fall into two groups: those close to 11,700 years and those close to 10,000 years.

Three samples (L-289N, L-289M, L-289L) of 11,700 years. A sample (L-289I) from the 600-foot level in the Mullen Pass area on the west side of Pyramid Lake had an age close to 11,300 years.

Samples obtained on the east side of dry Lake Winnemucca, however, have significantly greater C14 concentrations and hence presumably lower ages. The ages of four such samples fell within 300 years of 10,000 years before present.

A set of measurements has been made on tufas collected from each of the three main Bonneville terraces: the Bonneville, the Provo, and the Stansbury. Although tufa is much less abundant than in the Lahontan area, deposits are fairly abundant on the latter two terraces and can be found with some difficulty on the highest or Bonneville terrace. The heights of the main terraces are compared with those at Lahontan in Table 4.

The two samples collected from the Bonneville level at the north end of the Oquirrh Mountains differed from all the other tufas measured. One consisted of rather dense, fine-grained, white material which formed the cement between large stream cobbles. The second sample formed a thin white coating of CaCO3 approximately a quarter of an inch thick on a large boulder lodged in the alluvium
just below the Bonneville terrace. Both of these samples differed in that they lacked the distinct structure and color (from staining) typical of other tufa. Whether this difference in appearance represents a difference in origin is not clear.

The ages obtained on these samples were respectively 15,600 and 21,150 years. The latter date substantiates Gilbert's (1890, p. 193) conclusion that the white marl beds were deposited during one of the main periods of occupation of the Bonneville level. This conclusion is based on the correlation of the marl layers in a sediment section in the Lemington area with those in the Old River bed and on the fact that the Lemington marl reaches within 50 feet of the Bonneville level.

Three samples from the Provo level have been measured. One (L-333B) was collected at the authors' request by Dr. H. J. Bissel of Brigham Young University. This sample comes from the West Mountain area and consists of a limestone conglomerate cemented with tufa. Although extreme care was taken to select only pieces of tufa free of limestone fragments, the age of 33,200 obtained may be in error because of contamination with ancient carbonate. Since this measurement is close to the limit of reliable tufa ages perhaps the sample should merely be considered greater than 25,000 years old. Correction for as much as 50 per cent limestone contamination would not lower the age more than this.

The second sample (L-363E) was collected by the authors from the well-formed wave-cut Provo terrace at the northern end of the Oquirrh Mountains. The location was directly below the position on the Bonneville terrace where samples L-363G and L-363H were collected. The material formed a 4-inch coating on the face of a cliff formed by Paleozoic limestones near the Provo terrace level. The age obtained is 15,530 years.

A third sample (L-363D) was obtained from a tufa coating on outcrops projecting through the broad Provo terrace. This sample was located within a few hundred yards of the old Provo level discussed above. The two tufas differed in appearance as well as position with respect to the Provo terrace. Whereas L-363D was from the terrace, L-363E came from slightly below the terrace. Of the two, L-363D had a far more porous structure; L-363E was massive. L-363D was thermally decomposed. The age of the last 10 per cent of the CO₂ to be removed was 10,700 years. Bulk material, run in the same manner as most of the other tufas reported, had an age of 10,400 years. Since there is definite evidence for contamination in this sample, an age of 11,000 ± 600 has been selected for the best estimate of the true age. This sample provides the only evidence obtained to date for a high water level in the Bonneville region close to the end of the "pluvial" period.

A sample (L-333C) collected by Dr. Bissel in the West Mountain area from about 130 feet below the Provo terrace gave an age of 15,200 years.

Two samples of tufa from the Stansbury level in the Oquirrh Mountains area have been dated. The first (L-363jC) formed a coating on Paleozoic limestones exposed on the terrace. Its age is 12,900 years. The second (L-363B) is from a large tufa mass found within a delta just below the Stansbury terrace. Its age is 13,200 years.

Comparison of the terrace data from the two lakes shows evidence in both cases of a stand at the level of the lowest terrace between 25,000 and 30,000 years ago and again close to 13,000 years ago. The evidence for the latter occupation in the Lahontan region does not come only from the terrace deposits but also from the tufa pavement in the Truckee sedimentary sequence mentioned above. The elevation of the tufa pavement in the Truckee sequence is very close to that of the Thinolite terrace. The Provo and Dendritic levels were both occupied between 15,000 and 16,000 years ago.

Whereas there is abundant evidence in the Lahontan region for one or possibly two occupations of this level between 12,000 and 9500 years ago, the only evidence for a high water level in the Bonneville region close to the date of 11,000 years for sample L-363D.

Although no tufa deposits have been found in the Lahontan region to indicate that relatively high water levels were occupied during the period 16,000 years ago and the period 23,000 years ago (as suggested by the samples from the Bonneville level), the marl deposits at the dendirritic level indicate a relatively high level about 17,000 years ago, as shown below, evidence from cave deposits indicates that between 18,000 and 20,000 years ago the level was above the Dendritic terrace.

Samples from Cave Deposits

Studies on the deposits in wave-cut caves provide much information concerning the fossil levels of these lakes. They contain lacus-
RADIOCARBON RESULTS

Excavation of the floor of the cave revealed a sequence of human and animal occupation debris lying above a thick layer of water-laid silts. A layer of broken plates of tufa and coarse granitic and shell sand separates the occupation layers from the lake deposits.

Figure 8.—Diagram showing the Evolution of Fishbone Cave

Levels indicated in block 5 represent divisions of the terrestrial deposits based on archeological studies.

These deposits are behind a barrier of blocks of rock that restrict the cave entrance.

The events that occurred in the evolution of Fishbone Cave are depicted in Figure 8. The cave was cut in granite by wave erosion more than 19,700 years ago (the age of the oldest dated deposit in the caves). Subsequent to cutting, rock falls partially choked the entrance of the cave. With a lake level higher than 250 feet silts were deposited behind the barrier. Shells (L-2890) taken from these silts were dated at 15,670 years.

Continued deposition of silt behind the barrier and perhaps construction of a beach in front of the cave gradually sealed the entrance of the cave and left an isolated void inside. This void was then sealed off from the sediments below by the deposition of a flat layer of tufa on the present lake level and those close to the present level. Although the two groups of caves contain similar deposits, indicating similar evolution, the difference in level requires different ages for many of the geological events suggested by the caves.

Fishbone Cave is a typical example of the upper caves. It is cut in a granite sea cliff on the northeast shore of Lake Winnemucca at an elevation of about 250 feet above Pyramid Lake. It consists of one room roughly 30 feet deep, 30 feet wide, and 5 feet high; the walls and ceiling are covered with large mammillary tufa deposits, and the floor is covered with dust and rat debris. The entrance is a slit 20 feet long located at the base of a large mass of comblike tufa which extends approximately 70 feet above the cave.
the surface of the sediments. This “diaphragm” (L-289D) in Fishbone Cave has an age of 14,800 years, and a similar deposit (L-289AA) in Hidden Cave at about the same level but in the Fallon area has an age of 15,130 years. Similar diaphragms have been found in all the caves studied, including the one near the present Pyramid Lake level.

Following the formation of the diaphragm, the lake level dropped and removed a large portion of the supporting sediments in Fishbone Cave, causing the collapse of the diaphragm onto the lake sediments remaining behind the protective barrier. Shells (L-289P) from coarse sand deposited above the broken pieces of diaphragm are 15,130 years old. This date suggests that the time interval between the formation of the diaphragm and its collapse was small. The shells must be younger than the diaphragm, but the time interval between the two events is apparently smaller than the range of error in dating.

An 11,700-year date (L-289C) on tufa from the entrance of the cave indicated that the lake again flooded the cave at this time. Evidence for the events during the period from 15,000 to 12,000 years B.P. was probably removed from the cave by subsequent wave action.

The next event recorded in the cave deposits is the occupation by animals and man (Orr, 1956, p. 6–7). Wood fragments (L-245) from the base of level 4 (just above the broken pieces of diaphragm) are 12,000 years old. Fragments of netting from higher in the same level were dated at 7830 years B.P. Above level 4, which consisted of coarse sand, dust, and human debris including a limited amount of perishable artifacts, human bones, and horse and camel bones, a small change in composition and culture occurs. Level 3 contains a greater abundance of perishable material. Horse and camel bones are still present, but juniper and marmot are replaced by sageweed and jack rabbit bones. From this information it is inferred that the climate became drier and perhaps the lake level lower than during the deposition of level 4.

The upper two levels consist of dust and rat debris; level 2 is compacted, suggesting a more moist climate, and level 1 is loose and typical of the present climate.

Additional information concerning the lake has been obtained from two measurements of material from the sediments of Crypt Cave. This cave is in the same area as Fishbone but at least 70 feet higher. Sediments consisting of microscopic ostracod shell (L-364BS) taken from the base of the lake deposits in the cave are 19,750 years old, and gastropod shell (L-364BR) from sediments near the top of the sequence is 18,700 years old. Since the lake level must have been somewhat above the cave during the deposition of these samples, the dates supply evidence for a near maximum level between 20,000 and 18,000 years ago.

Dates from archeological materials in other caves at the dendritic level add to the post-glacial history of the lakes. Measurements from Cowbone and Crypt caves show human occupation 5900 and 2400 years ago. Dates between 8500 and 1900 years on materials from caves in the Humboldt area (Libby, 1955, p. 118) also show that the lake level has almost certainly not risen to the 300-foot level in recent times.

A study of Diaphragm Cave, one of the group close to the present Pyramid Lake level, adds several significant facts to the picture. A nearly complete diaphragm of tufa divides the cave in half; the sediments on which the diaphragm formed have been removed. Since the diaphragm probably forms soon after the cave is sealed off by sediments, and since these sediments are presumably beach deposits near water level, the 12,700-year age on a piece of the diaphragm (L-289H) may date a low-water stage of the lake.

Remnants of lake silts (L-289R) containing shells and numerous fish scales were dated at 3200 years; they mark a level at least 20 feet above that of the present.

Radiocarbon dates are available for only one cave in the Bonneville region, Danger Cave. This cave is located 50 feet above the present level of Great Salt Lake in the western part of the Bonneville region. Libby (1955, p. 119) dated a number of organic samples from the deposits in the cave. His dates suggest that the water level of Lake Bonneville fell below the cave level about 11,200 years ago. There seems to be little reason to doubt the age: in addition to the duplicate analyses made by Libby, recent rechecks at the Yale Laboratory (Preston et al., 1955, p. 958) give the same results. This date is extremely important, as are the dates of 11,200 years B.P. on the lowermost terrestrial deposits in Fishbone Cave and Libby’s (1955, p. 119) age measurement of 11,200 ± 570 on bat guano from the base of the terrestrial deposits in Leonard Rock Shelter in the Humboldt area. (See Fig. 3). The three dates constitute excellent evidence for a fall in the levels of both lakes close to 11,000 years ago. The extreme importance of this age lies in the fact that tufas from the highest levels have ages slightly older and younger than 11,000 years.
DISCUSSION

Chronology

Figure 9 shows a plot of the probable sequence of lake levels, as indicated by the radiocarbon dates, for Lake Lahontan and Lake Bonneville. The positions of the points with arrows directed upward may be considered as minimum lake levels at the indicated times. These points are obtained from radiocarbon dates on materials deposited from the lake waters. Whereas in most cases the deposits were probably formed near the lake surface, possibly some formed at considerable depth. The points with arrows pointing downward are based on dates on organic material from terrestrial deposits in wave-cut caves. These samples merely set an upper limit on the height of the lake.

In both lakes there is evidence for two main high-water stages within the past 35,000 years. These two stages are separated by a brief low-water stage and were followed by the near-desiccation levels of recent times. The first of these high levels appears to have been rather long, i.e., from about 25,000 years to 15,000 years ago. The beginning of this event in the Bonneville region is dated by the sample from the Salt Lake core and perhaps by the one Stansbury level sample. In the Lahontan region no direct estimate is available, but the thinolite terrace date of 29,000 years may be used as a maximum and the 19,000 year date on the Crypt Cave shell as a minimum. The estimates from both lakes are in good agreement with that of 24,000 from the mud-layer dates determined by Libby (1955, p. 117) on samples from the Seares Lake boring.

Both lakes reached rather high levels during this period but perhaps not their maximum. The marl dates from Astor Pass and the cave-sediment dates from the Winnemucca area suggest that Lake Lahontan was above the Dendritic level during at least part of this period. The two Bonneville terrace dates and the white marl dates from the Old River bed provide evidence for near maximum levels in the Bonneville region.

The period between 16,000 and 13,000 years seems to have been one of declining water level in both lakes. In the Lahontan area the Crypt Cave sediments, the Fishbone Cave sediments and diaphragm, and the Truckee Canyon tufa pavement show a fall from the +400-foot level to approximately the +200-foot level between 17,000 and 13,000 years ago. The Diaphragm Cave diaphragm dates suggest an even lower level close to 12,500 years ago.

In the Bonneville area dates of 16,000 on the Bonneville terrace, 15,000 on the Provo terrace, 15,200 on a sample taken between the Provo and Stansbury levels, and finally two 13,000-year dates on Stansbury level samples suggest the same pattern. This decline may have been modulated by numerous oscillations, as suggested by the 14,500-year date on the large tufa mushroom from Pyramid Lake and the 13,000-year date on the tufa from above Crypt Cave.

Following the intermediate-low- to low-water stage of about 12,500 years ago, there appears to have been a sharp rise to the maximum levels attained by the lakes. The most probable time of the maximum is 11,700 years ago. Numerous tufa samples from Anahoo Island and Mullen Pass record this event in the Pyramid Lake area.

To date only one sample in the 11,000-year range has been run from the Bonneville area. It was from the Provo terrace. Whether the lake rose above the Provo terrace at this time is not clear and depends on when the Red Rock Pass outlet was cut. If the 16,000-year Bonneville terrace tufa date is valid, it may be used as a maximum date for the cutting of the pass. Possibly the outlet formed during the 11,500-year maximum; the Lahontan evidence indicates that this high level exceeded that attained during the earlier broad maximum. More evidence is needed before this problem can be solved.

Evidence from terrestrial deposits in wave-cut caves indicates a rather sharp decline in lake level close to 11,000 years ago. Whether this decline marks the close of the pluvial period is not clear, since there is radiocarbon evidence for a post-11,000-year maximum in the Lahontan region. In the past most workers have concluded that the base of the terrestrial deposits in the caves marks the beginning of the continuous low-water stage of recent times. They reason that if the lakes had risen one would expect that the terrestrial deposits would have been removed from the caves by wave action or at least that the perishable materials would have decomposed. Since deposits (dating 11,000 years B.P.) which contain some perishable materials exist in most caves, the possibility of a post-11,000-year high-water stage has been excluded in the past.

Thus far no evidence for a major post-11,000-year oscillation has been found in the sediment sections. In the case of Searles Lake it would only show up if there were complete desiccation.
11,000 years ago. More careful examination of the Lahontan and Bonneville sections may help to answer the question.

On the positive side the four radiocarbon dates of close to 9700 years B.P. are internally consistent. These samples taken hundreds of feet apart and differing in size and texture give the same result. No evidence for exchange with the atmosphere exists. Using the maximum possible control value the age could be raised to only 10,500 years.

A more careful examination of the deposits in Crypt Cave shows that the lowest terrestrial level appears to have been partially eroded and disconformably covered by the more recent layers. Also the materials in this level are not nearly so well preserved. Further field studies and radiocarbon dating of these layers will yield valuable information on this problem.

Since neither argument is based on sufficiently strong evidence the problem remains unsolved. The post-11,000-year rise is hence indicated by a question mark in Figure 9.

The C¹⁴ chronology for Lake Lahontan presented in this paper is in agreement with the relative chronology given by Russell (1885, p. 237) with one exception. He felt that the deposition of the lithoid tufa at the highest lake levels preceded the deposition of either the thinolite or the dendritic tufa. He concludes, however,
that the lake stood at the high level once again after it deposited the thinolite and then the dendritic tufa. This agrees with the present findings. The only change that must be made in Russell's chronology is that the lithoid tufa on the highest terraces was deposited during his second rather than his first high stand. The first stand at the lithoid terrace probably precedes the radiocarbon record.

The agreement between the "classical" and radiocarbon chronologies at Bonneville is nowhere near so good. Data given here does not yield the accepted Bonneville-Provo-Stansbury sequence. One possible explanation for this disagreement is that the stands recorded by tufa deposits on wave-cut cliffs are not the same stands recorded in the sedimentary sequences. The latter could record major fluctuations that occurred much earlier than the events given here. The rapid fluctuation that appears to have occurred between 12,000 and 11,000 years ago may have left only minor geomorphic and sedimentary features.

The major purpose of this research was not to date the established stratigraphic units but to work out the pattern of lake fluctuations over the past 30,000 years. Most of the samples selected were chosen because they were directly related to the position of the lake. Where samples were run from sedimentary units of the alluvial and soil sequences. The authors have not attempted to relate the measurements obtained to the more detailed stratigraphic units of the various alluvial and soil sequences. This is left to the geologists engaged in these studies.

A large amount of work will be needed to make the radiocarbon data from both lakes agree with detailed field relationships. Errors in both approaches will be found. The authors hope that their radiocarbon chronology will supply a stimulus for more research in this branch of Pleistocene history.

Relation of Lake Level to Climate

It is interesting to consider the climatic implications of such lake-level fluctuations. The area and height of a lake with no outlet are controlled by a delicate balance between input and evaporation. Three factors affect the input: (1) the rate of precipitation in the hydrographic basin, (2) the rate of evaporation, and (3) the net uptake or release of water by mountain glaciers within the basin. The loss from the lake depends only on the evaporation rate per unit area of lake surface and the total area of the lake.

Neglecting the contribution of mountain glaciers, the area of the lake can be related to three parameters: the average rainfall per year, \(I_r \), the average evaporation per year, \(I_e \), and the fraction of terrestrial precipitation reaching the lakes as runoff, \(f_r \). The following equation is obtained for the equilibrium situation when the input of water per year due to direct precipitation and runoff equals the loss due to evaporation.

\[
A_{\text{lake}} = \frac{f_r}{I_r/I_e + f_r - 1} A_{\text{basin}}
\]

Estimates of the present values of the parameters in the Lahontan Basin are as follows:

- \(I_r = 54 \) inches/year (Hardman and Venstrom, 1941, p. 82)
- \(I_e = 10 \) inches/year (Jones, 1925, p. 32)
- \(f_r = .20 \) (Jones, 1925, p. 33–39)

Combined with the area of 45,000 square miles for the basin, the present area of the lakes would be estimated as 1900 square miles. This compares favorably with Russell's (1885, p. 260) estimate of 1500 square miles.

What change in these parameters would be required to raise the level of the lake to its maximum? This represents an area increase of about a factor of five. If the increase were entirely due to increased precipitation with no corresponding change in evaporation rate or per cent runoff, an average rainfall of about 31 inches per year would be required. If evaporation rate alone were changed, a decrease to 17 inches per year would be required. Nearly 100 per cent runoff would be required if it alone were different. The increased lake level was, however, probably due to a change of all three of these factors.

The present value of \(f_r \) is certainly no greater than that during the high-water periods, since either decreased evaporation or increased rainfall would allow more runoff (Thornthwaite and Mather, 1955). The present value of rainfall can also be considered as a lower limit for periods of expanded lakes since the evaporation rates required would otherwise be extremely low (~ 15 inches/year). It is also unreasonable to assume a higher evaporation rate during high-water periods than that observed at present. Combining these values with those calculated above, the following limits can be
placed on the three parameters during the maximum high-water stage:

\[I_1 = 31 - 10 \text{ inches/year} \]
\[I_2 = 17 - 54 \text{ inches/year} \]
\[I_3 = 0.2 - 1.0 \]

Figure 10 shows the possible combinations of these parameters capable of maintaining the high lake level. Any point within the field defines all three parameters.

Another factor that must be considered is the rate of response of the lake to climatic change. A hypothetical example will point out that aside from the possible influence of mountain glaciers the response is rapid. If Lake Lahontan were filled to its maximum level today, calculations based on present evaporation and rainfall rates for Pyramid Lake show that within 200 years the lake would have returned to close to its present size.

Before concluding that the lag between climatic change and adjustment of the lake level is negligible the role of mountain glaciers must be considered. Since a large portion of the water that supplies the existing lakes in both the Lahontan and Bonneville basins originates in the mountains, during times of expanding glaciers potential lake water should be withheld. This water would then be released during times of glacial retreat. The question is whether the amount of water involved would be significant to the water budgets of the lakes. Evidence shows that the times of high lake level broadly correlate with times of expanded glaciers.

The effect of mountain glaciers on the lakes would be far less if glacial periods were primarily the result of increased precipitation rather than...
DISCUSSION

Decreased temperature. Although both are capable of producing simultaneous expansion of mountain glaciers and interior lakes, they would operate in different manners. In one case the glaciers would grow because of increased nourishment and the lakes because of increased inflow; in the other case, the glaciers would grow because of decreased melting rates and the lakes because of decreased evaporation loss over the lake and the basin. The rate of turnover in the lakes would be approximately a factor of three lower in one case than in the other. Hence any holdup or release of water by the mountain glaciers would be three times as effective in a temperature-controlled glacial period as in a precipitation-controlled glacial period.

Another important factor in determining the influence of mountain glaciers on the response of the lakes to climatic change is the ratio of the volume of water in the glaciers at their maximum to that in the lakes at their maximum. Only mountain glaciers within the lake basin are important in this respect.

Although the volume of the lakes can be estimated accurately, that of the glacial ice is rather difficult, since only their areal extent is recorded and not their thickness. A crude estimate for the Lahontan Basin, based on an area of 4000 square miles and an average thickness of a quarter of a mile, gives a volume of 1000 cubic miles for the mountain glaciers. This is the same order of magnitude as that of about 600 cubic miles for Lake Lahontan at its maximum. Bearing in mind the uncertainty in the estimate, a ratio of the maximum volume of glacial ice to lake water of 2 to 1 will be assumed for the Lahontan Basin. The volume of the mountain ice is hence great enough that if it were either created or melted in a short period it could influence the lake level.

Since the rate of transfer of water through the Lake Lahontan system even during a temperature-controlled glacial period would be about 2 cubic miles per year, any such growth or melting would have to occur in less than 1000 years to produce a significant change in the lake regime. Spread over 5000 years it would produce only a minor perturbation.

Even a rapid expansion or melting would tend merely to create a lag in the response of the lakes and not any pronounced minima or maxima in their levels. This becomes clear by considering a hypothetical example. Assume that during a prolonged cold period both the lakes and glaciers have come to equilibrium with the climate and have reached their maximum size. The temperature is then changed suddenly to its present value. If the ice were to melt away at a constant rate over a period of 500 years, a simple calculation shows that the lake level would fall continuously. The increased loss by evaporation of lakes would more than balance the inflow of melt water. The only effect would be a slight lag in the response of the lake level to the climatic change. This lag would probably be no more than 500 years regardless of the rates involved. The influence of the mountain glaciers on the response of the lakes to climatic change is therefore negligible.

The response of the lakes to any change in temperature or precipitation is completed in less than 500 years.

The fact that the lakes respond very rapidly to climate change means that the curves of lake level versus time are also an index of relative climate in the Great Basin. Detailed studies should allow oscillations in climate as small as 1000 years in duration to be established.

Conclusions

The following conclusions are drawn concerning the histories of the dry and near dry lakes in the Great Basin.

1. Radiocarbon measurements on carbonate materials deposited from the waters of these lakes appear to give reliable estimates of the age of fossil lake levels. Possible error, as a result of variation in the C14/C12 ratio in the lake carbonate and exchange of carbon between the carbonate material and the atmosphere after deposition, is probably less than 500 years.

2. The major fluctuations in the levels of Lake Lahontan and Lake Bonneville over the past 25,000 years have been determined. Two pronounced maxima are recorded in each case: a broad maximum between 24,000 and 14,000 years B.P. and a rather sharp maximum close to 11,500 years ago. Although some evidence is available for a third maximum close to 10,000 years ago (separated from the 11,500 year maximum by a pronounced minimum), more data are needed before it can be established. The lakes have been comparatively low during the past 9000 years.

3. The Bonneville outlet at Red Rock Pass appears to have been cut more recently than 16,000 years ago and perhaps during the 11,500-year maximum.

4. The climatic changes required to produce the observed lake maxima are not extreme. A twofold increase in the precipitation rate and a
5°C decrease in temperature would be adequate.

(5) The fluctuations in lake level are sensitive indices of climate. Lags in response and perturbations produced by expanding or retreating mountain glaciers are on the order of the uncertainty in the radiocarbon ages and hence negligible. Hence the lake-level curves provide a record of the climate in the Great Basin over the past 30,000 years.

REFERENCES CITED

Hardman, G., and Venstrom, C., 1941, A 100-year record of Truckee River runoff estimated from changes in levels of Pyramid and Winnemucca Lakes: Am. Geophys. Union Trans., v. 22, p. 72–90

Preston, R. S., Person, E., and Deevey, E. S., 1955, Yale radiocarbon measurements II: Science, v. 122, p. 954–960
