AMATH 352 Homework 4

Tom Trogdon

Due Wednesday, July 18

Exercise 1

Consider the λ -dependent linear system

$$(I - \lambda^{-1} H_{100})\mathbf{x} = \mathbf{b}, \ \lambda > 0$$

where H_{100} is the 100×100 Hilbert matrix (see page 58 of the text). In MATLAB hilb(100) will return this matrix. For large enough λ it can be shown that

$$\|\mathbf{x}_n - \mathbf{x}\|_2 \to 0 \text{ as } n \to \infty \text{ where } \mathbf{x}_n = \mathbf{b} + \sum_{i=1}^n (\lambda^{-1} H_{100})^i \mathbf{b}.$$

We can approximate the solution \mathbf{x} by \mathbf{x}_n and this type of behavior is called *convergence in norm*.

1. With $\lambda = 5$ and

$$\mathbf{b} = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}^T,$$

evaluate $\|\mathbf{x} - \mathbf{x}_{10}\|_2$ (in MATLAB norm(x) returns the 2-norm of x).

- 2. How large does n need to be so that $\|\mathbf{x} \mathbf{x}_n\|_2 < 10^{-10}$?
- 3. If λ is too small \mathbf{x}_n will not converge in norm. By restricting λ to the integers, find the smallest value of λ such that \mathbf{x}_n still converges in norm. Note: to investigate this you'll need to vary n.

Please upload the main algorithm needed to compute \mathbf{x}_n for this problem. You don't need to include every detail in your uploaded code.

The following exercises should be done by hand, showing all steps.

Exercise 2

Olver & Shakiban
— 2.5.14

Exercise 3

Olver & Shakiban
— $2.5.21\mathrm{b}$

Exercise 4 Olver & Shakiban— 2.5.30

Exercise 5 Olver & Shakiban— 3.1.7

Exercise 6 Olver & Shakiban— 3.2.6

Exercise 7 Olver & Shakiban— 3.3.11