
AMATH 352 Coding Final

Tom Trogdon

Due Friday, August 17

Rules:

• Absolutely no late submissions will be accepted. This part of the exam is
due Friday, August 17 by 10:50am.

• NO COLLABORATION. This exam should be your own work. You may
not discuss the problems or results with anyone other than our TA or
myself. Violating this has serious consequences,
see http://www.washington.edu/uaa/advising/help/academichonesty.php.

• This exam is worth 20% of your grade (2/3 of the whole final).

• Choose THREE of the four problems below. If you do all four I will just
grade the first three I see.

• All code written should be uploaded on the Moodle page. Filenames
MUST be of the form LastName ExerciseNumber.m. Points will be de-
ducted for not following this convention.

Exercise 1

In this question we consider applying Gram-Schmidt to the inverse of the
Hilbert matrix. In matlab this matrix is constructed by calling invhilb(n) for
an integer n. For any given n, write code that will orthonormalize the columns
of invhilb(n) using the following algorithms:

1. Using formula (5.19) in the text and normalizing all the columns after
making them orthogonal (Classical GS).

2. Using the more stable version (page 234, see also homework 6) of Gram-
Schmidt (Modified GS).

3. Applying Classical GS twice to the same matrix (Two Step GS).

4. Using matlab ’s built-in QR algorithm [Q,R] = qr(A) (Built-in GS).

Now, apply each of these algorithms to to invhilb(n) for n in N = 2:20. If Q
is the othogonalized matrix then measure the error by norm(Q’*Q - eye(n)).
For each algorithm and each n you will have an associated error. Plot these
errors on a semilog plot versus n using

1



clf

figure(1)

hold on

semilogy(N,ModifiedError,’.g’)

semilogy(N,ClassicalError,’.r’)

semilogy(N,TwoStepError,’.b’)

semilogy(N,BuiltinError,’.k’)

Also include the plot of the condition number cond(invhilb(n)) of the inverse
Hilbert matrix on the same figure. Comment on what you see and rank the
algorithms in terms of effectiveness/efficiency.

Exercise 2

Code the full PA = LU algorithm (pseudo code given in the text). Apply
your algorithm to the matrices

%(a)

a = [0,1,1,0,10;

0,1,2,5,4;

1,-1,0,0,11;

3,1,1,-15,1;

1,-1,-1,1,-1];

%(b)

b = [0,1,1,0,10;

0,1,2,5,4;

1,-1,0,0,11;

3,1,1,-15,1;

1,3,4,5,45];

%(c)

c = [1,1,1,0,10;

0,1,2,5,4;

1,-1,0,0,11;

3,1,1,-15,1;

1,2,4,5,0];

Comment on what you see for each matrix. You can find these matrices in an
m-file on the Moodle page.

Exercise 3

Code the following algorithm for computing the largest (in modulus) eigen-
value of a matrix A.

Choose a vector v randomly
set ratio to be zero
for i = 1 to max

set vnew to be Av

2



set rationew to be 〈vnew, v〉/〈v, v〉
if rationew differs from ratio by less than 10−15 then break out of loop
set ratio to be rationew

set v to be vnew/‖vnew‖
end
print out ratio

Note: This can also be done with a while loop.
The variable ratio will be an approximation of the largest eigenvalue and v

will be an approximate eigenvector. Additionally, when you break out of the loop
i will give you the number of iterations you needed. Apply this algorithm to A =

rand(10) many times and comment on what you see in terms of the eigenvalue
found and i. Running the full algorithm many times and then averaging the
output may help.

Exercise 4

In this exercise we will numerically solve the differential equation

Ψ′′(x)− sin2(x)Ψ(x) = cos(x), x ∈ [0, 2π],

for a periodic solution Ψ(x). You do not need to know how to solve differential
equations to do this problem!

• matlab has an implementation of the Fast Fourier Transform (FFT),
called by fft(v) for a vector v ∈ Cn. The FFT is a linear function. Write
code to find its matrix representation for any given n by applying the FFT
to each basis vector. Use the variable FFTMAT to denote this matrix.

• The inverse FFT (iFFT) is called by ifft(v) so that v - ifft(fft(v))

= 0. Write code to find the matrix representation of the iFFT. Call this
matrix iFFTMAT.

• Check that iFFTMAT*FFTMAT produces the identity matrix.

• Use the code

X = linspace(0,2*pi,n+1);

x = X(1:n);

d = diag([0 1:floor(n/2) -fliplr(1:floor((n-1)/2))]);

a = -diag(sin(x).^2);

diffop = -iFFTMAT*d*d*FFTMAT+a;

rhs = cos(x)’;

sol = diffop\rhs;

plot(x,sol)

to obtain and plot an approximate solution sol. Plot this solution for
n = 5, 10, 20, 40 on this same figure.

3


